A LOWER BOUND FOR THE ORDER OF TELESCOPERS FOR A
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ABSTRACT. We present an algorithm to compute a lower bound for the order of the mini-
mal telescoper for a given hypergeometric term. We also describe a Maple implementation
of the algorithm and show the efficiency improvement it provides to Zeilberger’s algorithm
in the construction of the telescopers.

RiEsuME. Cet article présente un algorithme de calcul d’une borne inférieure pour le
téléscopeur minimal associé & un terme hypergéométrique. Une implantation en Maple
est également décrite, qui permet d’observer le gain de notre méthode par rapport a
l’algorithme de Zeilberger lors de la construction des téléscopeurs.

1. PRELIMINARIES

Let K be an algebraically closed field of characteristic 0, the variables n, k be integer-
valued, and E,, E, be the corresponding shift operators, acting on functions of n and
k, by E,f(n,k) = f(n+ 1,k), Exf(n,k) = f(n,k+1). A K-valued function (k) is a
hypergeometric term of k over K if the consecutive term ratio R = Ejt/t is a rational
function of k over K. This rational function is the certificate of t(k). A K-valued function
T(n, k) is a hypergeometric term of two variables n and k if the two consecutive term
ratios Ry = E,T/T, and Ry = E;T/T are rational functions of n and k over K. They
are called the n-certificate and the k-certificate of T, respectively. Given a hypergeometric
term T'(n, k) as input, Zeilberger’s algorithm [13, 15, 16] (which we name hereafter as Z)
constructs for T'(n,k) a Z-pair (L,G), provided that such a pair exists. The computed
Z-pair consists of L, a linear recurrence operator with coefficients which are polynomials of
n over K

(1) L =a,(n)Ef + -+ a1(n)E, + ao(n) Ey,
and a hypergeometric term G(n, k) such that
(2) LT(n,k) = (Er — 1)G(n, k).

The k-free operator L is called a telescoper. 1t is noteworthy that the problem of establishing
a necessary and sufficient condition for the applicability of Z to T'(n,k) is solved and
presented in [1] (the well-known fundamental theorem [15, 16] only provides a sufficient
condition). It is proven in [16] that if there exists a Z-pair for T'(n, k), then Z terminates
with one of the Z-pairs and the telescoper L in the returned Z-pair is of minimal order.
The computed telescoper L is unique up to a left-hand factor P(n) € K[n], and we name
it the minimal telescoper.

Z has a wide range of applications which include finding closed forms of definite sums
of hypergeometric terms, verification of combinatorial identities, and asymptotic estima-
tion [13, 16, 12].
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The algorithm uses an item-by-item examination on the order p of the operator L in (1).
It starts with the value of 0 for p and increases p until it is successful in finding a Z-pair
(L,G) for T. As a consequence, we waste resources trying to compute without success a
telescoper of ord L < p where p is the order of the minimal telescoper.

In this paper, we present an algorithm that computes a lower bound for the order of the
telescopers. The general approach of the algorithm can be described as follow. If the given
hypergeometric term T'(n, k) is not k-summable, i.e., there does not exist a hypergeometric
term T3 such that T = (E; — 1)T1, then we represent T as (Ey — 1)T; + T» where the
hypergeometric term 75 has some specific features each of which ensures that 75 is not k-
summable. It is then easy to show that a telescoper for T exists iff a telescoper for T5 exists,
and the sets of telescopers for T and T5 are equal. We consider recurrence operators, called
crushing operators, with the distinguishing property that if M € K[n, E,] is a crushing
operator for To, then MT5 does not have at least one of the specific features that T does
(this does not guarantee that MT5 is k-summable, though). It follows that the order of the
minimal telescoper for T5 is always greater than or equal to that of the minimal crushing
operator for To. We then describe an algorithm to compute a lower bound u for the order
of the crushing operators for T5. This value is automatically also a lower bound for the
order of the telescopers for T

When the algorithm is used in conjunction with the algorithm to determine the applica-
bility of Z to T'(n, k) [1], it allows one to use Z to compute a Z-pair only if the existence of
such a pair is guaranteed; and in this case, one can use p as the starting value for the order
of L, instead of 0. Additionally, the computation of a lower bound is much less expensive
than the construction of a telescoper using Z, especially when the order of the minimal
telescoper is high.

Note that for the case where T'(n,k) is also a rational function, there exists a direct
algorithm to compute the minimal telescoper for T efficiently without using item-by-item
examination [8].

The paper is organized in the following manner. In Sections 2 we discuss some known
results which are needed in subsequent sections. They include a description of the additive
decomposition problem of hypergeometric terms [2, 3], and a criterion for the applicability
of Z [1]. The main result of Section 3 is a theorem to compute a lower bound for the
order of the minimal crushing operator M. An algorithm which realizes this theorem is
presented in Section 4. We conclude the paper with a description of an implementation
of the algorithm in Section 5. Various examples are used to show the advantages of this
implementation over other implementations of the original Z.

Throughout the paper, K is an algebraically closed field of characteristic 0, and N de-
notes the set of nonnegative integers. Following [13], we write T1(n, k) ~ Ta(n, k) if two
hypergeometric terms T7(n, k) and Ts(n, k) are similar, i.e., their ratio is a rational function
of n and k.

2. THE ADDITIVE DECOMPOSITION PROBLEM AND THE EXISTENCE OF A TELESCOPER

We begin this section with the notion of Rational Normal Forms (RNF) of rational
functions [4]. This concept plays an important role in the follow-up algorithms.

Definition 1. Let A be a field of characteristic 0. Let R € A(x) be a nonzero rational
function. If there exist nonzero polynomials f1, fo,v1,v2 € Alz] such that

(i) R=F-£Y where F = %, V =1, and ged(vy, v2) = 1,

(ii) ged(f1, E"f2) =1 for all h € Z,
then F - % is an RNF of R.
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Note that every rational function has an RNF [3, Thm. 1] which in general is not unique,
and the rational function F in (i) with property (ii) is called the kernel of the RNF.

2.1. The Additive Decomposition Problem. For a hypergeometric term T'(k) of k
over K(n), the algorithm to solve the additive decomposition problem [2, 3] constructs two
hypergeometric terms T3 (k), T (k) similar to T'(k) such that

(3) T(k) = (BEx — 1) Ty (k) + Ta(k),
and either T5 = 0 or the k-certificate of T5 has an RNF

4 f1 Eg(v1/v2)

(4) T (01/v)

2 (v1/v2)

with vy of minimal possible degree. Note that any RNF of the k-certificate of T has
vy € K(n)[k] of the same (minimal possible) degree.

Lemma 1. [2, 3| Let T(k) be a hypergeometric term over K(n). If (3) is an additive
decomposition of T'(k), then for any RNF of the form (4) of the k-certificate of To(k), and
for each irreducible p from K (n)[k] such that p|vs, the following three properties hold:

(5) Pa: El'plvy=h=0, Pb: Elp|fi=h<0, Pc: Elp|fo=h>0.

If the hypergeometric term T5(k) in (3) vanishes, then T'(k) is said to be k-summable.
Otherwise, each irreducible factor p of vs has properties Pa, Pb, Pc, and T is k-non-
summable.

Proposition 1. [2, 3] Let an RNF of the k-certificate of a given hypergeometric term
T(n, k) be of the form (4). If there exists at least one irreducible factor p of va such that
all three properties Pa, Pb, Pc hold, then T'(n, k) is k-non-summable.

Proposition 2. Let the similar hypergeometric terms T'(n, k), Ti(n, k), and Ta(n, k) be as

defined in (3). (The algorithm to solve the additive decomposition problem is applied to
T(n,k) w.r.t. k over K(n).) Then

(1) A Z-pair for T'(n, k) exists iff a Z-pair for Ty(n, k) exists;

(ii) The minimal telescopers for T and Ty are the same.
Proof:
(i): Let (L,G) be a Z-pair for Ts. It follows from (3) that LT = (Ey — 1) (LT1 + G). Since
Ty ~ Ty, T5 ~ G, and ~ is an equivalence relation, LT} + G is a hypergeometric term [13,
Prop. 5.6.2]. Consequently, (L, LT} + G) is a Z-pair for T. On the other hand, let (L, G) be
a Z-pair for T. By following the same argument, one can easily show that (L,G — LT}) is
a Z-pair for 1.
(ii): Let L be the minimal telescoper for T5. It follows from (i) that L is a telescoper for T.
Suppose there exists a telescoper L for T and ord L < ord L. Then it follows from (i) then
L is a telescoper for Ty and ord L < ord L. Contradiction. -

Definition 2. A polynomial p(n,k) € K[n, k| is integer-linear if it has the form

(6) an + Bk +~ where o, 8 € Z and v € K.
Theorem 1. [5, Thm. 8] For a hypergeometric term T(n,k), let F,V € K(n,k) be such
that v
 Ck
v

is an RNF over K(n) of the k-certificate of T. Then there exists D € K(n,k) so that the
n-certificate of T' can be written as
E,V d;

D=— d(dy,de) =1
V7 d27gC(17 2) I

(7) D
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and F, D both factor into constants and integer-linear polynomials.

2.2. The Existence of a Telescoper. Recall that the fundamental theorem [15, 16] pro-
vides only a sufficient condition for the termination of Z. It states that if T'(n, k) is a proper
hypergeometric term (see the definition from [15, 16]), then a telescoper for T'(n, k) exists.
However, it is well-known that the set S of hypergeometric terms on which Z terminates
is a proper subset of the set of all hypergeometric terms, but a super-set of the set of
proper hypergeometric terms. The following theorem [1] gives a complete description of S.
It provides a necessary and sufficient condition for the termination of Z.

Theorem 2. (Criterion for the existence of a telescoper). Let T'(n, k) be a hypergeometric
term of n and k, and (8) be an additive decomposition of T'(n,k). Let (4) be an RNF w.r.t.
k over K(n) of the k-certificate of Ta(n, k) with vo € K[n,k]. Then a telescoper for T'(n, k)
exists iff each factor of va(n, k) irreducible in Kn,k] is an integer-linear polynomial, i.e.,
iff To(n, k) is proper.

3. A LOWER BOUND FOR THE ORDER OF TELESCOPERS FOR A MINIMAL
k-NON-SUMMABLE TERM

Definition 3. A minimal k-non-summable hypergeometric term T (n, k) is a hypergeometric
term where the k-certificate of T has an RNF of the form (4), and for each irreducible p
such that p|ve, all three properties Pa, Pb, Pc hold.

For the remainder of this section, we assume T'(n, k) to be a minimal k-non-summable
hypergeometric term. Let us now introduce the notion of crushing operators.

Definition 4. Let M € K|[n, E,] be such that MT # 0, and there exists an RNF
BV,

v vh
of the k-certificate of the hypergeometric term MT such that each of the irreducible factors
of vl does not have at least one of the three properties Pa, Pb, Pc. Then M is a crushing

operator for T. The minimal crushing operator is a crushing operator of minimal possible
order.

(8) F'

Proposition 3. If L is a telescoper for T, then L is a crushing operator for T.
Proof: The claim follows from Proposition 1. -

Corollary 1. If there does not exist any crushing operator for T of order less than p, > 1,
then there does not exist any telescoper for T of order less than .

Hence, the problem of computing a lower bound for the order of the telescopers for T is
reduced to the problem of computing a lower bound for the order of the minimal crushing
operator for 7.

Theorem 3. Let the k-certificate of T has an RNF F(EV)/V of the form (4}). Let the
n-certificate A of T (E,T)/T = D(E,V)/V be as defined in Theorem 1. Suppose that
the polynomial vo € K[n,k| factors into a constant and integer-linear polynomials. Let
M € Kin,E,] be a crushing operator for T(n,k), ord M = p. Let p be an integer-linear
factor of va, degy, p = 1. Then

(i) There exists an integer h such that
(9) El'p| Epva - E2vy -+ Efvy - da - Epdy -+ - BEdy;

(ii) Let pp be the minimal value of p in (i) such that (9) is satisfied. Then the order of
the minimal crushing operator for T' is not less than p = maxy |, Pp.
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Proof:
(i): Let

M = a,(n)Ef + - -+ a1 (n)E, + ap(n), a;(n) € K[n).
Then

(Z am(n)A - E,A- E§_1A> T
Therefore, the k-certificate of MT is
(10) F—,
where

n)A-E,A---E" A

P
Z
P Emv
Z

~E™D

i E:Ln’l)l -dy - Epdy - E,T_ldl
a .

—0 m E,’L”vg . d2 . Endg e Errln—ld2

Rewrite R as

R = 7“_1’ r1, ro € K[n, k],
T2

—1
ro = vy Epvg -+ Efvg - dy - Epdy -+ Ef”“dy, 1 = 51 + 12 52,

where s3 is a polynomial from K|[n, k], and s1 = ag(n) - Eqvg - - - Efvg - dg - Epdy - - - EL1d,.
If p is not a factor of the denominator ry of R, then since vy is a factor of ry, p must
divide the numerator r; of R, i.e.,

p|(s1+vg82).

Since p is a factor of vy, this implies p|s;. Additionally, p does not divide ag(n) since
deg;, p = 1. Therefore,

() p| Envs - E2vy -+ Efvy - dy - Epdy - B dy.

If p is a factor of the denominator ro, then since M is a crushing operator for T', at least
one of the three properties Pa, Pb, Pc does not hold for p. Notice that the k-certificates
of T'in (4) and MT in (10) have the same kernel F. It follows from Lemma 1 that for the
integer-linear factor p of wo, properties Pb and Pc always hold. Consequently, property
Pa does not hold, i.e., there exists an h € Z\ {0} such that E'p divides ro. Additionally,
since 7' is a minimal k non-summable hypergeometric term, it follows from property Pa
that there does not exist an h € Z \ {0} such that E'p|vy. This gives

(2) E}ip| Eyva - Eqva -+~ Efvg - dy - Endy - Ef ' dy.

It follows from (11) and (12) that (i) is satisfied.
(ii): The claim follows from the fact that for each factor p of vy, there does not exist any
crushing operator for 7" of order less than p,. -
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4. A GENERAL ALGORITHM

For a given hypergeometric term T'(n, k) of n and k, an algorithm to compute a lower
bound p for the order of the telescopers for T' consists of two steps. A check to determine
the existence of a telescoper for T' is performed in the first step. This is attained by first
applying to T'(n, k) the algorithm to solve the additive decomposition problem w.r.t. k to
construct two hypergeometric terms 77 (n, k), Ta(n, k) such that

(13) T(n.k) = (By — 1) Ti(n, k) + To(n, k),

and the k-certificate of Ty has an RNF of the form (4). If va does not factor into integer-
linear polynomials, then it follows from Theorem 2 that Z is not applicable to T, and there
is no need to compute a lower bound p. Otherwise, rewrite vy as a product of integer-linear
polynomials each of which is of the form (6). An algorithm, based on ged and resultant
computation, to check if vy € K|[n,k| factors into integer-linear polynomials, and if this
is the case, rewrite vy in the desired factored form is described in [6, 7]. Without loss of
generality, we can assume that ged(a, §) = 1, and g > 0.

In the second step, since T, is a minimal k-non-summable hypergeometric term, if fol-
lows from Proposition 3 that the existence of the crushing operators for 75 is guaranteed.
Additionally, all the hypotheses required for the computation of a lower bound p for the
order of the telescopers for T, exist. Hence, apply Theorem 3 to Ty(n,k) to compute a
lower bound p. It follows from Proposition 2 that one can use p as a lower bound for the
order of the telescopers for T.

For each integer-linear factor p of v9, deg;, p = 1, the second step requires the computation
of the minimal value of p in the pair (p,h), h € Z, p € N\ {0} such that

(i) El'p| Epvy - E2vy -+ Efvg, or
(ii) Elp|dy - Endy--- ES'dy.
Consider the following simple algorithm C';:

algorithm Cl;);
input: p=an+pk+7~, a, 8 € Z, ged(a,B) =1, 3>0,7 € K,

vy = [[i% (in + Bik + ), ou, Bi € Z, ged(aq, ) = 1, 3; > 0, v € K;
output : the minimal value of p € N\ {0} such that (i) is satisfied;

Pmin ‘= OC;
fori=1,2,...,m do
ifa=cq; and 8= 06; and v — ; € Z then
find the minimal p € N\ {0} and h € Z such that
ap — Bh =~ —y;
Pmin ‘= min{pmina P}§
fi;
od;

return p,in.

For a given integer-linear factor p of vg, deg, p = 1, the algorithm C{;) simply iterates
through each integer-linear polynomial ¢ of ve. If p — g = o € 7Z, then the algorithm solves
the diophantine equation ap — Sh = o, and chooses the minimal positive value of p. (Note
that since ged(a, 3) = 1, the solution is guaranteed to exist.)

An algorithm C{;) which finds the minimal value of p such that (ii) is satisfied can be
described in a very similar manner. Note that it follows from Theorem 1 that the polynomial
dy € K[n, k] in (7) factors into integer-linear polynomials.



THE ORDER OF TELESCOPERS FOR A HYPERGEOMETRIC TERM #1.7

By iterating through each factor p of vy, we obtain the requested lower bound pu. This
leads to the following algorithm which computes a lower bound for the order of the tele-
scopers for a given hypergeometric term T'(n, k).

algorithm LowerBound,;
input: a hypergeometric term T'(n,k) € K[n, k;
output :a lower bound g for the order of the telescopers for T

apply the algorithm to solve the additive decomposition problem
w.r.t. k to obtain Ti(n, k), Ta(n, k) in (13);
if T5 =0 then return O0; fi;
at this point, 75 has an RNF of the form (4);
if the polynomial vy(n, k) in (4) is written as
vy = [[;_1 pi where p; = (asn + Bik + i),
(67 ﬁz € Za ng(aivﬁi) = 17 ﬁ’L > 07 i € K then
if s = 0 then return 1; fi;
[ := — 00;
Rewrite dy as
dy = ngl q; where q; = (ajn + Bk + ;).
aj, /8] € Za ng(a]a/Bj) = 17 /8] > 0’ Y € Kﬂ
fori=1,2,...,sdo
if deg;, p; = 1 then
Panin 2= Ciy(pi, va);
Pomin 2= W] fmin, Cis) (pi, d2) };
p = max {fb, fmin };
fi;
od;
return yu;
else

return “Zeilberger’s algorithm is not applicable”;
fi;

Note that instead of rewriting dy as a product of integer-linear polynomials, and using
it in the call C;) (pi,ds) in LowerBound, it is possible to use a simpler polynomial which is
a divisor of dy. For a given f € K[n, k] and ¢ € Q, there exists an algorithm [7] (called wc)
to extract the maximal factor w € K|[n, k] from f where w can be written in the form

H(k +cn+), vi € K.
1
Hence, for each factor p = (an + Bk + ) of va, we call we with de and a/f as input. This
also helps reduce the number of integer-linear factors of do to be compared with p.
Example 1 Consider the hypergeometric term
1

(bn+2k+1)(=3n+5k+5)
(T is also a rational function of n and k.) Applying the algorithm to solve the additive
decomposition problem yields two hypergeometric terms T3 (n, k) = 0 and Ty (n, k) = T'(n, k)
in (13). Since T is a rational function, the polynomial v9 in (4), and subsequently ds in (7)
can be readily rewritten as

veo=Bn+2k+1)(-3n+5k+5), do = 1.
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Since vy can be written as a product of integer-linear polynomials, it follows from algorithm
Lower Bound that Z is applicable to T, and the two possible values for the integer-linear
factor p are

pr=5n+2k+1, po =—3n+5k+5.

When p =p; =5n+ 2k + 1, the diophantine equation to be solved is 5 p — 2 h = 0, which
yields (p1,h1) = (2,5) as the solution. When p = po = —3n + 5k + 5, the diophantine
equation to be solved is —3p — 5h = 0, which yields (pa,hy) = (5, —3) as the solution.
Therefore, a lower bound p for the order of the telescopers for T is p = max{2,5} = 5.
Note that invoking Z on T results in the minimal telescoper L of order 6 where

L= (31n+181) E,5 + (31n + 150) E,° — (31n + 26) E, — (31n — 5).

Example 2 Consider the class of hypergeometric terms of the form

1
- (a1n + bik + ¢1) (agn + bok + c2)V’
where a1, b1, ag, by € Z, ged(ai,b1) = 1, by # 0, a1 # az or by # be. Without loss of
generality, we can assume that by > 0. Applying the algorithm to solve the additive de-
composition problem yields two hypergeometric terms T1(n, k) = 0 and Ty(n, k) = T(n, k)
in (13), and the polynomial vg in (4) is

(14)

an —+ blk +c1,
which is also the only possible value of p. Subsequently, the value of dy in (7) is

dgz(a2n+bgk+02—l—l)---(aQn—l—ka—l—ag—l—cQ) if ag > 0,
dy— 1 it ay — 0,
d2:(a2n+b2k+02+a2+1)---(a2n—|—b2k—|—02) if ag < O.

Since a; # as or by # bs, there does not exist any integer h such that E,Z’p |da -
Endg---Eﬁ_ldg. When p = ain + b1k 4+ ¢1, the diophantine equation to be solved is
a1p — bih = 0, which yields (p1,h1) = (b1,a1) as the solution. Therefore, a lower bound p
for the order of the telescopers for T is u = by.

In summary, for the class of hypergeometric terms of the form (14), the polynomial factor
(a1n+ b1k + c1) is the dominant factor. It determines the lower bound (which is b;) for the
order of the minimal telescoper for T. As an example, the computed lower bound for the

minimal telescoper for
1

(n—9k—2)(2n+k+3)!

is 9, while the order of the minimal telescoper for T is 10. By first computing this lower
bound, we can safely avoid the computation of a telescoper of order less than 9 (in addition
to the assurance that the telescopers for T do exist). On the other hand, if b; = 1, then
the computed lower bound p equals 1, i.e., the lowest possible value for pu. As an example,
the computed lower bound for the minimal telescoper for

_ 1

C(ntk+1D(n+5k+2)!

T:

is 1, while the order of the minimal telescoper for T is 6.

Notice that when the factorial term (agn + bok + ¢2)! in (14) equals 1, we have b; as a
lower bound for the order of the minimal telescoper for T. This lower bound also equals the
order of the minimal telescoper for T' (see [8]).
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5. IMPLEMENTATION

The algorithm to compute a lower bound for the order of the telescopers and related
functionalities are implemented in Maple 7 [11]. These functions are merged into the
module HypergeometricSum [9]. They include:

1) AdditiveDecomposition solves the additive decomposition problem;
p

(2) IsZApplicable determines the applicability of Zeilberger’s algorithm;

(3) LowerBound computes a lower bound for the order of the telescopers.

The function LowerBound has the calling sequence
LowerBound(T', n, k, E,,, Zpair);

where T' is a hypergeometric term of n and k, and F,, denotes the shift operator w.r.t. n.
(E,, and Zpair are optional arguments.) If the non-existence of a Z-pair (L,G) for T is
guaranteed, then LowerBound returns the conclusive error message “Zeilberger’s algorithm
is not applicable.” Otherwise, the output is a non-negative integer p denoting the value
of the computed lower bound for the order of L. In this case, if the optional arguments
E, and Zpair (each of which can be any unassigned name) are given, then the function
Zeilberger [9] is invoked starting with g as a lower bound for the order of L, and Zpair
will be assigned to the computed Z-pair (L, G).

Note that there exist different Maple implementations of Z such as zeil in the EKHAD
package [13], and sumrecursion in the sumtools package. A Mathematica implementation
is presented in [12]. Since the terminating condition that allows a hypergeometric term to
have a Z-pair is unknown at the time these functions were implemented, an upper bound
for the order of the recurrence operator L in the Z-pair (L,G) needs to be specified in
advance (for instance, the default values are 6 for the parameter MAXORDER in zeil, and
5 for the global parameter ‘sum/zborder‘ in sumrecursion). As a consequence, when
given a hypergeometric term T'(n, k) as input, (1) these programs might fail even if a Z-pair
exists, i.e., the maximum order of L is not set “high enough”, or (2) they simply “waste”
CPU time trying to find a Z-pair when no such Z-pair exists. The function LowerBound,
on the other hand, first determines the applicability of Z to T'(n, k). If the existence of a
Z-pair is guaranteed, then it computes a lower bound pu for the order of L, and if requested,
calls Z using p as the starting value for the order of L, instead of 0. Since the existence of
a Z-pair is guaranteed, there is no need to set an upper bound for the order of L.

Example 3 Consider the hypergeometric term

T k) = G5 = 1)(711— Sk +1) (22—2k> (2;)

We first apply LowerBound to 7. The optional arguments are provided so that the minimal
Z-pair can be computed. The time and space required are recorded *.
T := binomial (2*n-2*k,n-k)*binomial (2*k,k)/
((2%k-1)*(n-8xk+1)) :
tl := time(): bl := kernelopts(bytesused):
LowerBound(T,n,k,En, ’Zpair’) ;

>
>
>
>

8
printf(‘time taken: %a seconds, memory used: %a bytes\n‘,
time()-t1, kernelopts(bytesused)-bl);
time taken: 30.740 seconds, memory used: 124111132 bytes

\4

LAl the reported timings were obtained on a 400Mhz SUN SPARC SOLARIS with 1Gb RAM.
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In this example the computed lower bound equals the order of the minimal telescoper L
for T, and the function Zeilberger is called using this lower bound as the starting value
for the order of L. We now apply Zeilberger directly to T
> Zeilberger(T,n,k,En):

Error, (in Zeilberger) No recurrence of order 6 was found

The function Zeilberger tries to compute the minimal Z-pair (L, G) for T starting with
the value of 0 for the order p of L. It reaches the default value for the upper bound for p,
and returns the above inconclusive error message. If one sets the upper bound to a “high
enough” value, then Zeilberger will succeed in computing the minimal Z-pair.
> tl := time(): bl := kernelopts(bytesused):

_MAXORDER := 8:

Zeilberger(T,n,k,En):

printf(‘time taken: Ja seconds, memory used: %a bytes\n‘,
time()-t1, kernelopts(bytesused)-bl);

time taken: 45.260 seconds, memory used: 174678848 bytes

Example 4 Consider the hypergeometric term

1 2n
T(n,k) = —— .
(n, k) nk+1<2k>

It takes LowerBound 0.62 seconds and 3,045 kilobytes to return the error message “Error,
(in LowerBound) Zeilberger’s algorithm is not applicable”. The function recognizes that
the polynomial va(n, k) in (4) is (nk + 1) which does not factor into a product of integer-
linear polynomials, and returns the conclusive answer quickly. On the other hand, it takes
Zeilberger 33.95 seconds and 166,396 kilobytes to return the error message “Error, (in
Zeilberger) No recurrence of order 6 was found”. The function does not know if a Z-pair
(L,G) for T exists. It tries to compute one and returns an inconclusive answer. Since there
does not exist a Z-pair for T, the higher the value of the upper bound for the order of L is
set, the more time and memory are wasted.
In this example T is not a proper term, and Z is not applicable to 7.

VvV V V

Example 5 Consider the hypergeometric term

(n+k+2)! (n+k+1)! (n+k)!
n?24+k+2)(k+3)! M2+k+1)2+k)! (n+7k—2)k!
> T := 1/(n"2+2+k) *(n+2+k) ! /(3+k) ! -1/ (n"2+k+1) * (n+1+k) ! / (2+k) !+
> 1/ (n+7*k-2) * (n+k) ! /k!:

We first compute an RNF of the k-certificate of T :

> IsHypergeometricTerm(T,k, ’Rk’):

> (z,f1,f2,v1,v2) := RationalCanonicalForm[1] (Rk,k):
> v2;

T(n, k) =

7 7

Note that the polynomial vo has irreducible factors that are not integer-linear. We now
apply LowerBound to 7. The optional arguments are provided so that the computation of
the minimal Z-pair is carried out. infolevel is used to show the main steps of the function.
> t1 := time(): bl := kernelopts(bytesused):
> LowerBound(T,n,k,En,’Zpair’);

LowerBound: “check for the applicability of Zeilberger’s algorithm”

LowerBound: “Zeilberger’s algorithm is applicable”

(ln—l—k—g> (n? +k+2) (n* +k+1)
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LowerBound: “apply Theorem 3 to compute a lower bound”

LowerBound: “v2 = (n+7%k-2)”

LowerBound: “the candidate set for p is {n+7*k-2}”

LowerBound: “p = n+7*k-2"

LowerBound: “find the minimal positive integer r and integer h such that
E_k"h p divides En v_2 . En"2v_2 ... En°r v_2”

LowerBound: “find the minimal positive integer r and integer h such that
E_kx"h p divides d_2. En d_2 ...E.n"{r-1} d_2"

7

> printf(‘time taken: ja seconds, memory used: %a bytes\n‘,
time()-t1, kernelopts(bytesused)-bl);
time taken: 18.070 seconds, memory used: 69908612 bytes

It is shown above that the additive decomposition of T" yields T in (13) where the polyno-
mial vg in (4) is integer-linear (n + 7k — 2). Finally, we apply Zeilberger directly to 7.
Note the difference in the time and space required to complete each function.
> tl := time(): bl := kernelopts(bytesused):
> _MAXORDER := 7:
> Zeilberger(T,n,k,En):
> printf(‘time taken: %a seconds, memory used: %a bytes\n®,
time()-t1, kernelopts(bytesused)-bl);
time taken: 3294.680 seconds, memory used: 5936292572 bytes

In this example T is not a proper term. However, Z is applicable to T.

Example 6 For a given hypergeometric term T'(n, k), instead of applying Z to T, we
suggest that Z be applied to the minimal k-non-summable hypergeometric term Th(n, k) in
the decomposition (13). Following Proposition 2, the required Z-pair for T'(n, k) can then
be easily obtained from the computed Z-pair for T5(n, k). This in general helps reduce the
size of the problem to be solved. As an example, for b € N\ {0}, j € {1,3}, let

1

Ti(n, k) = (nk —1)(n —bk —2)7(2n+k + 3)!

1
(n—0bk—2)2n+k+3)

T2 (’I’L, k) =
Consider the hypergeometric term
T(?’L, k) = (Ek - 1) Tl(n7 k) + TQ(n7 k)

Since T} ~ T, T is a hypergeometric term. We apply the functions Zeilberger (Z)
and LowerBound (LB) to 7. LowerBound is called with the optional arguments so that the
minimal Z-pair for T can be computed (it follows from Example 2 that the computed lower
bound is |b].) Table 1 shows the time and space requirement. As one can easily notice, as
b and/or j increase, the relative performance of Zeilberger (compared to LowerBound)
quickly worsens.

ACKNOWLEDGEMENTS

The authors wish to express their thanks to K.O. Geddes of the University of Waterloo
for his support.



#1.12 S. A. ABRAMOV AND H. Q. LE

[

(10]
(11]
(12]

[13]
(14]

(15]

[16]

TABLE 1. Time and space requirements for LowerBound and Zeilberger.

Timing (seconds) | Memory (kilobytes)

1o LB Z LB z
11 6.49 5.35 | 27,838 24,702
2| 834 34.64 | 33,066 142,889
1]3]11.13 124.53 | 44233 535,736
4 | 14.46 570.02 | 56,410 1,882,730
5 25.79 2999.22 | 97,506 6,536,309
11]14.64 16.40 | 62,566 73,830
21724 228.59 | 68,304 770,529
313]20.15 1,286.51 | 78,701 3,074,051
4124.08 877108 | 91,844 10,766,646
5|38.60 77,663.68 | 139,823 33,423,168
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