SATURATED SIMPLICIAL COMPLEXES (EXTENDED ABSTRACT)

VALERIY MNUKHIN

ABSTRACT. Among shellable complexes a certain class has maximal modular homology, and these are the so-called saturated complexes. We give a brief survey of their properties and characterize saturated complexes via p-ranks of incidence matrices and via structure of links.

RÉSUMÉ. Parmi les complexes analysables, une certaine catégorie, que l'on appelle les complexes saturés, a une homologie modulaire maximale; nous donnons un bref aperçu des propriétés des complexes analysables et décrivons les complexes saturés grâce aux p-rangs d'incidence des matrices et à la structure de leur liens.

1. Introduction

The standard homology for a simplicial complex Δ is concerned with the \mathbb{Z} -module $\mathbb{Z}\Delta$ with basis Δ and the boundary map

$$\tau \mapsto \sigma_1 - \sigma_2 + \sigma_3 - \ldots \pm \sigma_k$$

which assigns to the face τ the alternating sum of the co-dimension 1 faces of τ . This defines a homological sequence over \mathbb{Z} and hence over any domain with identity.

In [12] we started to investigate the same module with respect to a different homomorphism. This is the *inclusion map* $\partial : \mathbb{Z}\Delta \to \mathbb{Z}\Delta$ given by

$$\partial: \ \tau \mapsto \sigma_1 + \sigma_2 + \sigma_3 + \ldots + \sigma_k.$$

Clearly, $\partial^2 \neq 0$. However, when coefficients are taken modulo an integer p then a simple calculation shows that in fact $\partial^p = 0$. One may attempt therefore to build a generalized modular homology theory of simplicial complexes, in particular when p is a prime. This kind of homology appears to be mentioned first in W Mayer [9] in 1947, further historical remarks and references can be found in [1, 12]. More recent papers on nilpotent homomorphisms include Dubois-Violette [6] and Kapranov [8].

We showed in [12] that in general modular homology does not behave nicely: It is not homotopy invariant and there are shellable complexes with the same h-vector but with different modular homology. Nevertheless, homology of any shellable complex can be embedded into a well-understood module constructed purely from the shelling of the complex. It follows in particular that the modular Betti numbers for an arbitrary shellable complex are bounded by functions of its h-vector only.

Shellable complexes which attain these bounds are of special interest and are called *saturated*. Here we investigate conditions which guarantee saturation. Our main results are Theorems 4.1 and 5.3 which characterize saturated complexes via *p*-ranks of incidence matrices and via structure of links respectively. As a corollary we prove that rank-selected subcomplexes of a saturated complex are saturated.

2. Modular Homology of Shellable Complexes

Let F be a field, Ω be a finite set and k a non-negative integer. Let then M_k denote the F-vector space with k-element subsets of Ω as basis and put $M:=\bigoplus_{0\leq k}M_k$. The inclusion map is the linear map $\partial:M_k\to M_{k-1}$ defined on a basis by mapping each k-element subset of Ω to the sum of all its (k-1)-element subsets. If $\Delta\subseteq 2^{\Omega}$ is a simplicial complex, denote by M^{Δ} the subspace of M with basis Δ and let $M_k^{\Delta}:=M^{\Delta}\cap M_k$. Then ∂ restricts to maps $M_k^{\Delta}\to M_{k-1}^{\Delta}$ for all k, and so we can attach to the complex Δ the sequence

$$\mathcal{M}^{\Delta}: \quad 0 \stackrel{\partial}{\longleftarrow} M_0^{\Delta} \stackrel{\partial}{\longleftarrow} M_1^{\Delta} \stackrel{\partial}{\longleftarrow} \dots \stackrel{\partial}{\longleftarrow} M_{k-1}^{\Delta} \stackrel{\partial}{\longleftarrow} M_k^{\Delta} \stackrel{\partial}{\longleftarrow} \dots$$

of submodules of M.

Throughout we suppose that p is a fixed prime and that F is a field of characteristic p. For any j and 0 < i < p consider the sequence

$$\dots \stackrel{\partial^*}{\longleftarrow} M_{i-p}^{\Delta} \stackrel{\partial^*}{\longleftarrow} M_{i-i}^{\Delta} \stackrel{\partial^*}{\longleftarrow} M_i^{\Delta} \stackrel{\partial^*}{\longleftarrow} M_{i+p-i}^{\Delta} \stackrel{\partial^*}{\longleftarrow} M_{i+p}^{\Delta} \stackrel{\partial^*}{\longleftarrow} \dots$$

in which ∂^* is the appropriate power of ∂ . This sequence is determined uniquely by any arrow $M_l^{\Delta} \leftarrow M_r^{\Delta}$ in it, and so is denoted by $\mathcal{M}_{(l,r)}^{\Delta}$. The unique arrow $M_a^{\Delta} \leftarrow M_b^{\Delta}$ in it for which $0 \le a+b < p$ is the *initial arrow*. We regard M_b^{Δ} as the 0-position of $\mathcal{M}_{(l,r)}^{\Delta}$ and while a may be negative b is always positive. The position of any other module in $\mathcal{M}_{(l,r)}^{\Delta}$ will be counted from this 0-position and (a,b) is referred to as the type of $\mathcal{M}_{(l,r)}^{\Delta}$.

As F has characteristic p>0 it follows immediately that $\partial^p=0$. In particular, in $\mathcal{M}_{(l,r)}^{\Delta}$ we have $(\partial^*)^2=0$ and so this sequence is homological. The homology at $M_{j-i}^{\Delta}\leftarrow M_{j}^{\Delta}\leftarrow M_{j+p-i}^{\Delta}$ is referred as the p-modular homology and is denoted by

$$H_{i,i}^{\Delta} := (\operatorname{Ker} \partial^i \cap M_i^{\Delta})/\partial^{p-i}(M_{i+p-i}^{\Delta}).$$

with the corresponding Betti number $\beta_{j,i}^{\Delta} := \dim H_{j,i}^{\Delta}$.

If $\mathcal{M}_{(l,r)}^{\Delta}$ has at most one non-vanishing homology then it is said to be almost exact and the only non-trivial homology then is denoted by $H_{(l,r)}^{\Delta}$. In general, when referring to a particular sequence $\mathcal{M}_{(l,r)}^{\Delta}$, the homology at position t is denoted by H_t^{Δ} and $\beta_t^{\Delta} := \dim H_t^{\Delta}$ is the corresponding Betti number. It is useful to allow the possibility $t = \infty$ so that an almost exact sequence $\mathcal{M}_{(l,r)}^{\Delta}$ is exact iff either $\beta_t^{\Delta} := \beta_{(l,r)}^{\Delta} = 0$ or $t = \infty$. Finally, if $\mathcal{M}_{(l,r)}^{\Delta}$ is almost exact for every choice of l and r, then \mathcal{M}^{Δ} is almost p-exact.

To formulate further results we shall need the following functions on sequences $\mathcal{M}_{(l,r)}^{\Delta}$: If Δ is any complex of dimension n-1 suppose that $\mathcal{M}_{(l,r)}^{\Delta}$ has type (a,b). We put

(1)
$$d_{(l,r)}^n := \begin{cases} \left\lfloor \frac{n-a-b}{p} \right\rfloor & \text{if } n-a-b \not\equiv 0 \pmod{p}, \\ \infty & \text{if } n-a-b \equiv 0 \pmod{p} \end{cases}$$

and let the weight of $\mathcal{M}_{(l,r)}^{\Delta}$ be the integer $0 < w \le p$ with $w \equiv l+r-n \pmod p$. It is useful to call the finite number $d := \min\{d_{(l,r)}^n, d_{(l,r)}^{n+1}\}$ the middle position or just the middle of $\mathcal{M}_{(l,r)}^{\Delta}$.

Now we are in position to formulate a result from [10] and [1] about the *p*-modular homology of the (n-1)-dimensional simplex Σ^n on n vertices. For this we shall throughout use the notation $\mathcal{M}_{(l,r)}^n := \mathcal{M}_{(l,r)}^{\Sigma^n}$ and $H_{(l,r)}^n := H_{(l,r)}^{\Sigma^n}$.

Theorem 2.1. The sequence \mathcal{M}^n is almost p-exact. For any l, r with 0 < r - l < p the Betti number of $\mathcal{M}^n_{(l,r)}$ is

(2)
$$\beta_{(l,r)}^n := \left| \sum_{t=-\infty}^{+\infty} \binom{n}{l-pt} - \binom{n}{r-pt} \right|$$

at position $d_{(l,r)}^n$.

For p=3 the numbers $\beta^n_{(l,r)}$ could be 0 or 1 only, while for p=5 these are Fibonacci numbers. The structure of $H^n_{(l,r)}$ as a Sym(n)-module has been determined in [1] and [2].

The structure of modular homology of shellable complexes has been determined in [12]. Note that in this paper shellable complexes are always pure, see [3, 4] for standard notions of shellability and h-vector.

Theorem 2.2. Let Δ be an (n-1)-dimensional shellable complex with h-vector (h_0, \ldots, h_n) . For a fixed sequence $\mathcal{M}_{(l,r)}^{\Delta}$ let d be its middle position and let w be its weight. Then $H_t^{\Delta} = 0$ for t < d and for all $s \ge 0$ there is an embedding

(3)
$$H_{d+s}^{\Delta} \hookrightarrow \bigoplus_{j=w+(s-1)p+1}^{w+sp} \left[H_{(l-j,r-j)}^{n-j} \right]^{h_j}.$$

Note that in (3) we use the convention that $[H]^0$ is the zero module. The result of Theorem 2.2 cannot be improved in general: there are examples of 7-dimensional complexes with the same h-vector which have the same 3-modular homologies but different 5-modular homologies, see [12].

3. Saturated Complexes

The result of Theorem 2.2 motivates the following definition:

Definition 3.1. A shellable complex Δ is (l,r)-saturated in characteristic p if the embedding (3) is an isomorphism for all $s \geq 0$. The complex Δ is saturated if it is (l,r)-saturated for all (l,r).

Thus, saturation is defined with respect to a prime p and it is not clear if there are complexes which are saturated for some primes but not for others. Note that there are examples of complexes which are (l,r)-saturated for certain values of (l,r) but not for others

It follows immediately from Theorem 2.2 that for a fixed p the saturated complexes have the maximal possible modular homology, in the following sense:

Proposition 3.2. Let Δ' and Δ be shellable complexes of the same dimension and with the same h-vector. Suppose that Δ is (l,r)-saturated. Then the Betti numbers of $\mathcal{M}_{(l,r)}^{\Delta'}$ and $\mathcal{M}_{(l,r)}^{\Delta}$ satisfy $\beta_t^{\Delta'} \leq \beta_t^{\Delta}$ for all $t \in \mathbb{Z}$. Furthermore, Δ' is (l,r)-saturated if and only if $\beta_t^{\Delta'} = \beta_t^{\Delta}$ for each $t \in \mathbb{Z}$.

Thus, for a saturated complex all Betti numbers are determined entirely by the h-vector. For instance, if Δ is a 5-dimensional complex with $h = (h_0, h_1, \ldots, h_6)$ which is saturated for p = 3 then its Betti numbers are the following:

(l	,r)				
(1	.,2)	3	$\beta_{4,2} = h_1 + h_2;$		$\beta_{5,1} = h_4 + h_5$
(1	.,3)	1	$\beta_{3,2} = h_0;$	$\beta_{4,1} = h_2 + h_3;$	$\beta_{6,2} = h_5 + h_6$
(2	$^{2,3)}$	2	$\beta_{4,2} = h_1 + h_2;$ $\beta_{3,2} = h_0;$ $\beta_{3,1} = h_0 + h_1;$	$\beta_{5,2} = h_3 + h_4;$	$\beta_{6,1} = h_6$

If the same Δ is saturated for p=5 then its Betti numbers are the following:

(l,r)	w		
(1,2)	2	$\beta_{2,1} = 8h_0 + 3h_1;$	$\beta_{6,4} = h_3 + h_4 + h_5 + h_6$
(1,3)	3	$\beta_{3,2} = 13h_0 + 8h_1 + 3h_2;$	$\beta_{6,3} = h_4 + h_5 + h_6$
(1,4)	4	$\beta_{4,3} = 8h_0 + 8h_1 + 5h_2 + 2h_3;$	$\beta_{6,2} = h_5 + h_6$
(1,5)	5	$\beta_{5,4} = 3h_1 + 3h_2 + 2h_3 + h_4;$	$\beta_{6,1} = h_6$
(2,3)	4	$\beta_{3,1} = 5h_0 + 5h_1 + 3h_2 + h_3;$	
(2,4)	5	$\beta_{4,2} = 5h_1 + 5h_2 + 3h_3 + h_4;$	
(2,5)	1	$\beta_{2,2} = 8h_0;$	$\beta_{5,3} = 3h_2 + 3h_3 + 2h_4 + h_5$
(3,4)	1	$\beta_{3,4} = 5h_0;$	$\beta_{4,1} = 2h_2 + 2h_3 + h_4$
(3,5)	2	$\beta_{3,3} = 13h_0 + 5h_1;$	$\beta_{5,2} = 2h_3 + 2h_4 + h_5$
(4,5)	3	$\beta_{4,4} = 8h_0 + 5h_1 + 2h_2;$	$\beta_{5,1} = h_4 + h_5$

A number of examples of saturated complexes have been found in [12] and [13]:

EXAMPLE 1: Let Δ be a (n-1)-dimensional complex with m facets and with h-vector of the form $(1, m-1, 0, \ldots, 0)$. Every such Δ is saturated for every p. Moreover, every sequence $\mathcal{M}_{(l,r)}^{\Delta}$ is almost p-exact with homology

$$H^{\Delta}_{(l,r)} \simeq H^n_{(l,r)} \oplus \left[H^{n-1}_{(l-1,r-1)}\right]^{m-1}$$

in the middle. In particular, a simplex Σ^n is trivially saturated.

EXAMPLE 2: The (n-1)-dimensional hyperoctahedron or cross-polytope is obtained by performing successive suspensions over vertex pairs α_i , β_i , or alternatively, as the dual of the (n-1)-dimensional cube. It is shellable and it follows from results of [13] that it is saturated for all primes.

EXAMPLE 3: Finite Coxeter complexes and spherical buildings are saturated for every prime, see [13].

4. Saturated Complexes and Ranks of Incidence Matrices

Here we give an alternative definition of saturated complexes. Let $\mathrm{rk}_p^{\Delta}(s,t)$ be the *p*-rank of the incidence matrix of s-faces versus t-faces of a complex Δ . When Δ is a simplex Σ^n , we denote corresponding ranks by $\mathrm{rk}_p^n(s,t)$. It is well-known [7, 10, 15] that for s+t < n,

(4)
$$\operatorname{rk}_{p}^{n}(s,t) = \sum_{k=0}^{\infty} {n \choose s-pk} - {n \choose t-p-pk}$$

A similar relation holds for arbitrary shellable complexes:

Theorem 4.1. Let Δ be a shellable (n-1)-dimensional complex and p > 2 be a prime. Let $s < t \le n$ be non-negative integers such that t - s < p. If s + t < n then

(5)
$$\operatorname{rk}_{p}^{\Delta}(s,t) = \sum_{i=0}^{n} h_{i} \operatorname{rk}_{p}^{n-i}(s-i,t-i)$$

Moreover, a shellable complex Δ is saturated if and only if the relation (5) holds also for $s+t \geq n$.

Proof. First, let Δ be an arbitrary shellable complex with f-vector (f_0, f_1, \ldots, f_n) . In view of the condition 0 < t - s < p we may look at $\operatorname{rk}_p^{\Delta}(s,t)$ as the p-rank of the map $\partial^{t-s}: M_t^{\Delta} \to M_s^{\Delta}$. According to Theorem 2.2, in the sequence $\mathcal{M}_{(s,t)}^{\Delta}$ all homologies on the left from the middle are trivial. Equivalently (see [12, Corollary 5.6]), for s + t < n,

$$\operatorname{rk}_{p}^{\Delta}(s,t) = f_{s} - f_{t-p} + f_{s-p} - f_{t-2p} + f_{s-2p} - f_{t-2p} + \dots$$

The result follows now from the well-known formula

(6)
$$h_k = \sum_{i=0}^{n} (-1)^{i+k} f_i \binom{n-i}{k-i}.$$

after substituting it into (4).

Now let Δ be saturated, so that its Betti numbers are defined by (3). For $s+t \geq n$ we need to take these into account when evaluating rank:

(7)
$$\operatorname{rk}_{p}^{\Delta}(s,t) = \sum_{k=0} (f_{s-kp} - f_{t-p-kp}) - (\beta_{s-kp,p-t+s}^{\Delta} - \beta_{t-p-kp,t-s}^{\Delta}).$$

Also

(8)
$$\operatorname{rk}_{p}^{n}(s,t) = \sum_{k=0}^{\infty} {n \choose s-pk} - {n \choose t-p-pk} \pm \beta_{(s,t)}^{n},$$

where the sign of Betti number is determined by its position in the sequence $\mathcal{M}^n_{(s,t)}$. Now put (6) and (8) into right-hand side of (5). After transforming dimensions into positions we obtain (7). Thus, for saturated Δ the relation (5) holds also for $s + t \geq n$.

Finally, since Betti numbers are completely determined by ranks, (5) implies saturation of Δ in view of Proposition 3.2.

We note that by using the r-step modular homology [1] it can be shown that the condition t - s < p in Theorem 4.1 is redundant.

5. Combinatorial Characterization of Saturated Complexes

Two previous definitions of saturated complexes were algebraic. Now we shall state a combinatorial description of saturated complexes. We show that certain conditions on the links of the complex imply saturation.

Let Γ be an (n-1)-dimensional complex and let $\Delta = \Gamma \stackrel{k}{\cup} \Sigma^n$ be obtained by gluing Σ^n onto Γ along some k facets of Σ^n .

Definition 5.1. We say that $\Delta := \Gamma \stackrel{k}{\cup} \Sigma^n$ is (l,r)-saturated over Γ , if Δ has the same homologies as Γ in all positions but $u := d^{n+k}_{(l,r)}$, where $H^{\Delta}_u \simeq H^{\Gamma}_u \oplus H^{n-k}_{(l-k,r-k)}$. We say that Δ is saturated over Γ , if Δ is (l,r)-saturated over Γ for all (l,r).

Proposition 5.2. Let Γ be (l,r)-saturated. Then $\Delta = \Gamma \stackrel{k}{\cup} \Sigma^n$ is (l,r)-saturated iff Δ is (l,r)-saturated over Γ .

In particular, a shellable complex Δ is (l,r)-saturated if and only if Δ has a shelling $\Delta_1, \Delta_2, \ldots, \Delta_m = \Delta$ in which Δ_i is (l,r)-saturated over Δ_{i-1} for every $2 < i \le m$.

Let σ denote the vertex set of Σ^n and let $\Delta = \Gamma \stackrel{k}{\cup} \Sigma^n$. Then the restriction res (σ) is the set of all vertices $\beta \in \sigma$ such that $\sigma \setminus \{\beta\}$ is contained in Γ , see Björner [5]. So res (σ) is a (k-1)-face of Σ^n and one may regard it as the 'outer face' under gluing. Its complement $t(\sigma) := \sigma \setminus \text{res}(\sigma)$ is the 'inner face' under gluing. If x is a face of Δ then the subcomplex

 $\operatorname{star}_{\Delta}(x)$ is generated by all facets that contain x and $\operatorname{link}_{\Delta}(x)$ is the subcomplex of all faces of $\operatorname{star}_{\Delta}(x)$ that do not contain x. So the dimension of $\operatorname{link}_{\Delta}(x)$ is n-|x|-1.

The next result gives combinatorial characterization of saturated complexes. Note that its sufficiency has been proved in [13].

Theorem 5.3. Let Γ be a complex and let $\Delta = \Gamma \stackrel{k}{\cup} \Sigma^n$. Then Δ is saturated over Γ if and only if res (σ) is a 1-cycle of Δ relative to link $\Gamma(t(\sigma))$.

Note that when saying that $\operatorname{res}(\sigma)$ is a 1-cycle of Δ relative to $\operatorname{link}_{\Gamma}(t(\sigma))$ we mean, as usual, that there is some $f \in M_k^{\Gamma} \subset M^{\Delta}$ such that $\operatorname{supp}(f) \cap t(\sigma) = \emptyset, \ f \cup t(\sigma) \in M^{\Gamma}$ and $\partial(\operatorname{res}(\sigma) + f) = 0$.

There is a simple geometrical condition which implies saturation.

Definition 5.4. Let Δ be a pure (n-1)-dimensional complex with facets $\sigma_1, \ldots, \sigma_m$. Then Δ is null over F with respect to ∂ , or just null for short, if there are non-zero $c_1, \ldots, c_m \in F$ such that $\partial(c_1\sigma_1 + \ldots + c_m\sigma_m) = 0$.

We say that a complex is 2-colourable if its facets can be 2-coloured in such a way that facets with a common co-dimension 1 face have different colours. Further, in a pseudomanifold without boundary, see Definition 3.15 in [14], each co-dimension 1 face is contained in exactly 2 facets. Therefore a 2-colourable pseudomanifold without boundary is null: Choose all $c_i = \pm 1$, suitably according to the 2-colouring. In particular, even cyclic graphs are null over every field, and odd cyclic graphs are null only over fields of characteristic 2.

Corollary 5.5. Let Γ be a complex and let $\Delta = \Gamma \overset{\kappa}{\cup} [\sigma]$ for some $k \geq 1$. Suppose that $\operatorname{link}_{\Delta}(t(\sigma))$ is null. (In particular, suppose that $\operatorname{link}_{\Delta}(t(\sigma))$ is a 2-colourable triangulation of a sphere, or a 2-colourable pseudomanifold without boundary.) Then Δ is saturated over Γ .

The next result follows from Theorem 5.3:

Theorem 5.6. Let Δ be a pure (n-1)-dimensional completely balanced complex. For every $R \subseteq \{0, \ldots, n-1\}$ let Δ_R be the type-selected subcomplex. If Δ is saturated then Δ_R is also saturated.

In particular, let P be a poset of a finite rank with saturated order complex $\Delta(P)$. Then all rank-selected subcomplexes $\Delta(P)_R$ are saturated.

References

- [1] S Bell, P Jones and IJ Siemons, On modular homology in the Boolean Algebra II, Journal of Algebra, 199 (1998), 556–580.
- [2] P Jones and I J Siemons, On modular homology in the Boolean Algebra III, Journal of Algebra, 243 (2001), 409–426.
- [3] A Björner, Topological methods, in: Handbook of Combinatorics, Chapter 34, (eds RL Graham, M Grötschel and L Lovász), North-Holland, 1995.
- [4] A Björner, The homology and shellability of matroids and geometric lattices, in: Matroid Applications (ed. by N. White), Cambridge University Press, 1991, 226–283.
- [5] A Björner, Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings, *Adv. Math.*, **52**(1984), 173–212.
- [6] M Dubois-Violette, $d^N = 0$: Generalized homology, K-Theory, 14 (1998), 104-118.
- P Frankl, Intersection theorems and mod p rank of inclusion matrices, J. Comb. Theory, A54 (1990), 85-94.
- [8] M M Kapranov, On the q-analogue of homological algebra, Cornell University Reprint, 1991.
- [9] W Mayer, A new homology theory, Annalen der Mathematik, 48 (1947) 370–380 and 594–605.

- [10] VB Mnukhin and IJ Siemons, The modular homology of inclusion maps and group actions, J. Comb. Theory, A74 (1996) 287–300.
- [11] VB Mnukhin and IJ Siemons, On the modular homology in the Boolean algebra, Journal of Algebra, 179 (1996) 191–199.
- [12] VB Mnukhin and IJ Siemons, On modular homology of simplicial complexes: Shellability, J. Comb. Theory, A93 (2001), 350–370.
- [13] VB Mnukhin and IJ Siemons, On modular homology of simplicial complexes: Saturation, J. Comb. Theory, in press.
- [14] RP Stanley, Combinatorics and Commutative Algebra, (Progress in Mathematics, 41), Birkhäuser Boston 2nd ed., 1996.
- [15] RM Wilson, A diagonal form for the incidence matrix of t-subsets versus k-subsets. European Journal of Combinatorics, 11(1990) 609–615.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, UNIVERSITY OF THE SOUTH PACIFIC, SUVA, FIJI ISLANDS

E-mail address: Mnukhin_V@usp.ac.fj