SATURATED SIMPLICIAL COMPLEXES
(EXTENDED ABSTRACT)

VALERIY MNUKHIN

ABSTRACT. Among shellable complexes a certain class has maximal modular homology,
and these are the so-called saturated complexes. We give a brief survey of their properties
and characterize saturated complexes via p-ranks of incidence matrices and via structure
of links.

RESUME. Parmi les complexes analysables, une certaine catégorie, que 1’'on appelle les
complexes saturés, a une homologie modulaire maximale; nous donnons un bref apergu
des propriétés des complexes analysables et décrivons les complexes saturés grace aux
p-rangs d’incidence des matrices et a la structure de leur liens.

1. INTRODUCTION

The standard homology for a simplicial complex A is concerned with the Z-module ZA
with basis A and the boundary map

T+ 01— 09+ 03—...%E0

which assigns to the face 7 the alternating sum of the co-dimension 1 faces of 7. This
defines a homological sequence over Z and hence over any domain with identity.

In [12] we started to investigate the same module with respect to a different homomor-
phism. This is the inclusion map 9 : ZA — ZA given by

0 : T+ 01 +09+03+ ...+ 0.

Clearly, 0% # 0. However, when coefficients are taken modulo an integer p then a simple
calculation shows that in fact 07 = 0. One may attempt therefore to build a generalized
modular homology theory of simplicial complexes, in particular when p is a prime. This kind
of homology appears to be mentioned first in W Mayer [9] in 1947, further historical remarks
and references can be found in [1, 12]. More recent papers on nilpotent homomorphisms
include Dubois-Violette [6] and Kapranov [8].

We showed in [12] that in general modular homology does not behave nicely: It is not
homotopy invariant and there are shellable complexes with the same h-vector but with
different modular homology. Nevertheless, homology of any shellable complex can be em-
bedded into a well-understood module constructed purely from the shelling of the complex.
It follows in particular that the modular Betti numbers for an arbitrary shellable complex
are bounded by functions of its h-vector only.

Shellable complexes which attain these bounds are of special interest and are called
saturated. Here we investigate conditions which guarantee saturation. Our main results
are Theorems 4.1 and 5.3 which characterize saturated complexes via p-ranks of incidence
matrices and via structure of links respectively. As a corollary we prove that rank-selected
subcomplexes of a saturated complex are saturated.
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2. MODULAR HOMOLOGY OF SHELLABLE COMPLEXES

Let F' be a field, 2 be a finite set and k£ a non-negative integer. Let then M} denote the
F-vector space with k-element subsets of {2 as basis and put M := @o< Mj. The inclusion
map is the linear map 9 : My — M), defined on a basis by mapping each k-element subset
of Q to the sum of all its (k — 1)-element subsets. If A C 2 is a simplicial complex, denote
by M? the subspace of M with basis A and let MkA := M? N M. Then O restricts to
maps M kA — kAf1 for all k, and so we can attach to the complex A the sequence

MA 0l md Lo A D
of submodules of M.

Throughout we suppose that p is a fixed prime and that F'is a field of characteristic p.

For any j and 0 < ¢ < p consider the sequence
o* o*

A O A A O A A
Mjfp Mjfi ¢ M] Mj+p i ‘ MJ+IJ

o*
«—

in which 0* is the appropriate power of 9. This sequence is determined uniquely by any
arrow M, A M A in it, and so is denoted by M2 ) The unique arrow M A M; A in it

for which 0 < a+ b < p is the initial arrow. We regard Mb as the 0-position of M(l r) and
while a may be negative b is always positive. The position of any other module in ./\/l(l v
will be counted from this 0-position and (a,b) is referred to as the type of M2 (1)

As F has characteristic p > 0 it follows immediately that 9? = 0. In particular, in M(AM)
we have (9*)2 = 0 and so this sequence is homological. The homology at M f; — M ]-A —

MA Z

4p—i is referred as the p-modular homology and is denoted by

i A i A
ng- (Kerd' N M:) /0P~ (M3, ;)

with the corresponding Betti number ﬁjA’i := dim Hfz
If M(Alr) has at most one non-vanishing homology then it is said to be almost exact and
the only non-trivial homology then is denoted by H @T). In general, when referring to a

particular sequence M(Al,r)v the homology at position ¢ is denoted by H LA and ﬁtA = dim H, tA
is the corresponding Betti number. It is useful to allow the possibility ¢ = oo so that an
almost exact sequence M(AIT) is exact iff either B2 = ﬁ( r = =0 or t = co. Finally, if ./\/l(l r)

is almost exact for every choice of [ and r, then M2 is almost p-ezact.
To formulate further results we shall need the following functions on sequences M(Alr):

If A is any complex of dimension n — 1 suppose that M(Al,'r) has type (a,b). We put

(1) g L"%H’J if n—a—0#0(modp),
() oo if n—a—b=0 (modp)

and let the weight of M(Al’r) be the integer 0 < w < p with w =1+ 7 —n (modp) . It
is useful to call the finite number d := min{ i d"H} the middle position or just the
middle of M(Al’r).

Now we are in position to formulate a result from [10] and [1] about the p-modular

homology of the (n —1)-dimensional simplex X™ on n vertices. For this we shall throughout

use the notation M?l,r) = M(l’;) and H(l 5 = H(?Z)
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Theorem 2.1. The sequence M™ is almost p-exact. For any I, with 0 < r —1 < p the

Betti number of M?l ) 18
+oo
Z n . n
<l - pt) (7’ - pt> ‘

t=—o00

(2) 56,7‘) =

at position d?l,r) .

For p = 3 the numbers 58 " could be 0 or 1 only, while for p = 5 these are Fibonacci

numbers. The structure of Hy ) as a Sym(n)-module has been determined in [1] and [2].

The structure of modular homology of shellable complexes has been determined in [12].
Note that in this paper shellable complexes are always pure, see [3, 4] for standard notions
of shellability and h-vector.

Theorem 2.2. Let A be an (n—1)-dimensional shellable complex with h-vector (hg,. . .,hy).
For a fized sequence M(A”) let d be its middle position and let w be its weight. Then HtA =0
fort < d and for all s > 0 there is an embedding

w++sp

. h.
(3) N <> B L
j=w+(s=1)p+1

Note that in (3) we use the convention that [H] is the zero module. The result of
Theorem 2.2 cannot be improved in general: there are examples of 7-dimensional complexes
with the same h-vector which have the same 3-modular homologies but different 5-modular
homologies, see [12].

3. SATURATED COMPLEXES

The result of Theorem 2.2 motivates the following definition:

Definition 3.1. A shellable complex A is (I, 7)-saturated in characteristic p if the embed-
ding (3) is an isomorphism for all s > 0. The complex A is saturated if it is (I, r)-saturated
for all (I,7).

Thus, saturation is defined with respect to a prime p and it is not clear if there are
complexes which are saturated for some primes but not for others. Note that there are
examples of complexes which are (I,r)-saturated for certain values of (I,r) but not for
others.

It follows immediately from Theorem 2.2 that for a fixed p the saturated complexes have
the maximal possible modular homology, in the following sense:

Proposition 3.2. Let A’ and A be shellable complexes of the same dimension and with
the same h-vector. Suppose that A is (I,r)-saturated. Then the Betti numbers of M(Allr)

and M(Alr) satisfy ﬁtA/ < ﬂtA for allt € Z. Furthermore, A’ is (I, r)-saturated if and only if

By ' :ﬁtA for each t € 7.

Thus, for a saturated complex all Betti numbers are determined entirely by the h-vector.
For instance, if A is a 5-dimensional complex with h = (hg, hq,..., hg) which is saturated
for p = 3 then its Betti numbers are the following;:
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(I,r) |w

(1,2) | 3 || Ba2 = h1 + ha; B51 = ha + hs
(1,3) | 1 || B3,2 = ho; Ba1 = ho + ha; B6,2 = hs + he
(2,3) |2 || B3 = ho + hi; B2 = h3 + hy; Be,1 = he

If the same A is saturated for p = 5 then its Betti numbers are the following:

(I,r) |w

(1,2) | 2 || B2,1 = 8ho + 3ha; Be,a = h3 + ha+ hs + hg
(1,3) 3 ,8372 = 13hg + 8h1 + 3hs; ﬁ6’3 = hyg + hs + hg
(1,4) | 4 || Ba,3 = 8hg + 8hy + Bha + 2hs; B6,2 = hs + hg
(1,5) | 5 || B54 = 3h1 + 3ha + 2h3 + hy; Bs1 = he
(2,3) | 4 || B3,1 = Bho + 5hy + 3ha + hs;

(2,4) | 5 || Ba2 = Sh1 + Sho + 3hs + ha;

(2,5) | 1 || B2,2 = 8hg; Bs,3 = 3ha + 3h3 + 2hy + hs
(3:4) | 1 || B34 = Shy; B11 = 2hg + 2hs + hy
(3,5) 2 ﬂ373 = 13ho + 5hq; ﬁ572 = 2h3 + 2hy + hsy
(4,5) | 3 || Baa = 8ho + 5hy + 2hy; P51 =hy+ hs

A number of examples of saturated complexes have been found in [12] and [13]:
EXAMPLE 1:  Let A be a (n — 1)-dimensional complex with m facets and with h-vector
of the form (1, m — 1, 0,..., 0). Every such A is saturated for every p. Moreover, every
sequence M(Al,r) is almost p-exact with homology

A 1 m—1

Hy = Hig @ [Hi )|
in the middle. In particular, a simplex X" is trivially saturated.
ExAaMPLE 2:  The (n — 1)-dimensional hyperoctahedron or cross-polytope is obtained by
performing successive suspensions over vertex pairs «;, J;, or alternatively, as the dual of
the (n — 1)-dimensional cube. It is shellable and it follows from results of [13] that it is
saturated for all primes.
ExaMpPLE 3:  Finite Coxeter complexes and spherical buildings are saturated for every
prime, see [13].

4. SATURATED COMPLEXES AND RANKS OF INCIDENCE MATRICES

Here we give an alternative definition of saturated complexes. Let rkﬁ(s, t) be the p-rank
of the incidence matrix of s-faces versus t-faces of a complex A. When A is a simplex X",
we denote corresponding ranks by rkp(s,?). It is well-known [7, 10, 15] that for s +t < n,

(4) g (s,0) = ) (s ’ pk> - <t e pk>

k=0
A similar relation holds for arbitrary shellable complexes:

Theorem 4.1. Let A be a shellable (n — 1)-dimensional complex and p > 2 be a prime.
Let s <t <n be non-negative integers such that t — s < p. If s+t <n then

(5) rkD(s,t) = > hakl (s —i,t — i)
=0

Moreover, a shellable complex A is saturated if and only if the relation (5) holds also for
s+t>n.
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Proof.  First, let A be an arbitrary shellable complex with f-vector (fo, f1,..., fn).
In view of the condition 0 < ¢t — s < p we may look at rkpA(s, t) as the p-rank of the map

o= MtA — MSA. According to Theorem 2.2, in the sequence ./\/l(As ) all homologies on
the left from the middle are trivial. Equivalently (see [12, Corollary 5.6]), for s + ¢ < n,

rkpA(S7t) = fs - ft—p + fs—p - ft—2p + f.s—2p - ft—2p + ...
The result follows now from the well-known formula
n .
6 he =S (=1)itkg (T,
©) = (T
1=0
after substituting it into (4).

Now let A be saturated, so that its Betti numbers are defined by (3). For s +¢ > n we
need to take these into account when evaluating rank:

(7) I‘kpA(S, t) = Z(fs_kp - ft—p—kp) - (ﬁsA—kp,p—zH-S - ﬁﬁp—kp,t—s)‘
k=0

Also

) ol kzo (8 - pk) (t - pk) e

where the sign of Betti number is determined by its position in the sequence M?s.t). Now

put (6) and (8) into right-hand side of (5). After transforming dimensions into positions
we obtain (7). Thus, for saturated A the relation (5) holds also for s +t > n.
Finally, since Betti numbers are completely determined by ranks, (5) implies saturation
of A in view of Proposition 3.2. O
We note that by using the r-step modular homology [1] it can be shown that the condition
t — s < p in Theorem 4.1 is redundant.

5. COMBINATORIAL CHARACTERIZATION OF SATURATED COMPLEXES

Two previous definitions of saturated complexes were algebraic. Now we shall state a
combinatorial description of saturated complexes. We show that certain conditions on the
links of the complex imply saturation.

k
Let I be an (n — 1)-dimensional complex and let A =T" U X" be obtained by gluing X"
onto I' along some k facets of X",

k
Definition 5.1. We say that A := ' U 2™ is (I,r)-saturated over T, if A has the same
homologies as I in all positions but u := d?lt])“, where H> ~ HI' & H(TZL:Z k)" We say that

Ais saturated over T'; if A is (I,r)-saturated over T" for all (I,r).

k
Proposition 5.2. Let I' be (I,r)-saturated. Then A =T U X" is (I,r)-saturated iff A is
(I, 7)-saturated over T.

In particular, a shellable complex A is (I,r)-saturated if and only if A has a shelling
Aq, Ag,. .., Ay, = A in which A; is (I, r)-saturated over A; ; for every 2 < i < m.

Let o denote the vertex set of XY™ and let A =T 6 X", Then the restriction res(o) is the
set of all vertices 3 € o such that o \ {3} is contained in I", see Bjérner [5]. So res(o) is a
(k — 1)-face of X™ and one may regard it as the ‘outer face’ under gluing. Its complement
t(o) := o \ res(o) is the ‘inner face’ under gluing. If x is a face of A then the subcomplex
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stara(z) is generated by all facets that contain = and linka(z) is the subcomplex of all
faces of stara (z) that do not contain z. So the dimension of linka (z) is n — |z| — 1.

The next result gives combinatorial characterization of saturated complexes. Note that
its sufficiency has been proved in [13].

k
Theorem 5.3. Let " be a complex and let A =T U X™. Then A is saturated over T if
and only if res(o) is a 1-cycle of A relative to linkp(t(o)).

Note that when saying that res(o) is a 1-cycle of A relative to linkp(t(o)) we mean, as
usual, that there is some f € M} C M such that supp(f) Nt(c) =0, fUt(c) € M and
d(res(o) + f) =0.

There is a simple geometrical condition which implies saturation.

Definition 5.4. Let A be a pure (n—1)-dimensional complex with facets o1, ...,0,,. Then
A is null over F' with respect to 0, or just null for short, if there are non-zero ¢1,...,¢n € F
such that d(c1o1 + ... + ¢mom) = 0.

We say that a complex is 2-colourable if its facets can be 2-coloured in such a way that
facets with a common co-dimension 1 face have different colours. Further, in a pseudoman-
ifold without boundary, see Definition 3.15 in [14], each co-dimension 1 face is contained
in exactly 2 facets. Therefore a 2-colourable pseudomanifold without boundary is null:
Choose all ¢; = +1, suitably according to the 2-colouring. In particular, even cyclic graphs
are null over every field, and odd cyclic graphs are null only over fields of characteristic 2.

k
Corollary 5.5. Let T' be a complex and let A = T U [o] for some k > 1. Suppose that
linka (t(0)) is null. (In particular, suppose that linka(t(o)) is a 2-colourable triangulation

of a sphere, or a 2-colourable pseudomanifold without boundary.) Then A is saturated over
.

The next result follows from Theorem 5.3:

Theorem 5.6. Let A be a pure (n—1)-dimensional completely balanced complex. For every
R C {0,...,n — 1} let AR be the type-selected subcomplex. If A is saturated then Ap is
also saturated.

In particular, let P be a poset of a finite rank with saturated order complex A(P). Then
all rank-selected subcomplexes A(P)g are saturated.
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