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Abstract

We find the size of the largest union of two chains in the lattice of
partitions of n under dominance order. We also present some partial
results and conjectures on chains and antichains in this lattice.

Nous trouvons la taille de la plus grande union de deux chaines
dans le treillis des partitions de n sous 'ordre partiel dominant. Nous
présentons aussi des résultats partiels et des conjectures sur les chaines
et antichaines de ce treillis.

1 Introduction

Let P, denote the poset of partitions of the positive integer n, ordered by
dominance (aka majorization), i.e. A < pif Aj4+Ag- -+ < pg+po+- - -+
for all k. This poset is a lattice, and is self-dual under conjugation. P, is not
graded for n > 7, since there exist saturated chains from {n} to {1"} of all
lengths from 2n — 3 to cn®? [2, 5].

Given any poset P, there exists a partition A(P) such that the sum of the
first k£ parts of A is the maximal number of elements in a union of k£ chains
in P. In fact, the conjugate of A has the same property with chains replaced
by antichains [1, 3, 4]. Let A¢(P) denote the kth part of this partition.

The length h(P,) of the longest chain in P, has been known for some

time [5]. If n = (m+1) +7,0 <7 <m, then h(P,) = =™ 4+ rm. In other

2 3
words, A1 (P,) = mST_m + rm + 1. Our main result is the following theorem.

Theorem 1. Forn > 16, \y(P,) = \(P,) — 6.

*This material is based upon work supported under a National Science Foundation
Graduate Research Fellowship.



Consider the subposet (), of P, consisting of the partitions that appear in
chains of length h(P,). Clearly @, is self-dual under conjugation, since con-
jugation takes a decreasing chain to an increasing chain of the same length.
It seems likely that @), is a graded lattice, but for our purposes it will suf-
fice to use a weaker statement, namely: for A € @Q,, define 7()\) to be the
length of the longest chain from {n} to A; then A # {1"},{n} is covered
by an element p such that r(u) = r(A) — 1 and covers an element v such
that 7(v) = r(A) + 1. In other words, every element of @, is on a fixed
level. Figure 1 shows an example of a poset ) with this property that is not
graded. Note that the top element is level 0, and the levels increase as we
move down.

Figure 1: A non-graded poset with well-defined levels.

The covering relation in P, comes in two flavors. Following the methods
of [5], we represent Ferrers diagrams with vertical parts, as illustrated in
Figure 2. We say A covers p by an H-step if there exists ¢ such that py; = A\;—1,
Wiv1 = Nix1 + 1, and pux = A for k # 4,724+ 1. In terms of Ferrers diagrams,
this corresponds to moving a box horizontally one space to the right (and
down some distance). The other flavor is a V-step, which is an H-step on the
conjugate, and corresponds to moving a box vertically one space down (and
right some distance). Chains from {n} to {1"} consisting of H-steps followed
by V-steps are maximal.

Figure 2: The partition {5,4,3,3,1}.

2 Down to work

The cases where n < 16 will be handled separately, so for now assume n > 16.
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We will prove Theorem 1 by showing that there exist two disjoint chains
in @, of lengths h(P,) and h(P,) —6. Since @, is a subposet of P, these are
also chains in P,. Since there are six elements of P, in saturated antichains
of size 1, this is clearly the maximum possible number of elements in two
chains, thus giving A\y(P,) exactly.

To that end, we seek two disjoint chains in @, from {n — 2,1,1} and
{n—3,3} to {2,2,2,1" %} and {3,1"73}. Let Q denote Q,, without the top
three and bottom three elements.

Lemma 1. If Q; has at least two elements on every level, then it has two
disjoint chains of mazimal length.

Proof: Clearly we can start two chains with the two elements in the top
level, so proceed by induction. The only potential problem is if we reach two
elements on level £ that both cover only one and the same element on level
k + 1. In that case, take a second element on level £ + 1 and a maximal
chain ending at it. This chain has a lowest point of intersection with one of
the two old chains, so just replace that old chain with the new one from that
point on. See Figure 3. U

Figure 3: Salvaging a dead end.

Since Q) is self-dual, it will suffice to show that the first half of its levels
have at least two elements. We do this by explicitly constructing two disjoint
chains to the halfway point. As a first approximation of these chains, take
the following construction.

The left chain starts at {n—2,1,1}. At every step, we take the right-most
possible H-step, e.g. the next partition is {n—3,2,1}. The right chain starts
at {n — 3,3}. At every step, we take the left-most possible H-step, e.g. the
next partition is {n — 4,4}. The names come from the relative positions of
the chains when plotted, as in Figure 4. Both chains will eventually reach
{m,m—1,...,r+1,r,r,r—1,...,2,1}, which is at least the halfway point
[5], so the idea is to modify the left chain as little as possible to make it reach
the halfway point without intersecting the right chain.
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Once we’ve done that, we can apply Lemma 1 to get two disjoint chains
of length h(P,) — 6, then append the top and bottom three elements to one
of them two get the desired chains. The following proposition will be used
to prove several lemmas concerning the right chain.

Proposition 1. If A = {\;, Ay, ..., \¢} is in the right chain, then \;— X1 <
2 fori=1,2,...,k—2. In other words, only the last difference can be greater
than 2. Moreover, excluding the last difference, A cannot have more than one
difference equal to 2.

Proof: By construction, we are always doing the left-most possible H-step.
At first there is nothing to prove, since k = 2 through {%,2} or {2*, 21}
Think in terms of partition diagrams as in the definition of H-steps. If there
are no differences greater than 1 (excluding the last one), then push one box
from A\;_; to increase the last part (or from )\ increase the number of parts).

Now move to the left, pushing one box at a time until \; — A\;y; < 2 for

1=1,2,...,k — 2 again. Clearly we never get a difference greater than 2 or
more than one difference of 2 unless we had one before, so the result follows
by induction. O

3 Proof of Theorem 1

The proof comes in six cases, depending on r. We begin with general calcu-
lations that will be used in multiple cases. If A = {A1, Ao, A3, ...} is reachable
from {n} by only H-steps, such as the elements of the left and right chains,
then r(A) = Ao + 2A3 + 3\4 + - - -, since each box in A; had to be moved
horizontally 7 — 1 times.

Note that any A in the left chain with Ay — Ay > 2 is not in the right
chain by Proposition 1. This means that the left chain makes it safely to the
partition {m +r,m —1,m—2,...,2,1} at level mgT’m for r > 2. For r > 2,
we can continue safely to {m+2,m—1,m—-2,...,r—2,r—2,...,2 1} (using
both assertions in Proposition 1) for an additional m(r — 2) — (Tf) levels.
So we're done if 2(m(r — 2) — (’";2)) > rm. For r > 4, this comes down to

mz%:r—l—kﬁ. For r = 5, this means m > 6. In fact m = 5

also works, since we really just needed m(r —2) — (';2) > [%J For r > 5,
we just need m > r (since m must be an integer), but that’s as general as
possible since » < m. Thus we’ve established Theorem 1 when r > 5.

If r = 4, then the above construction gets us to one level shy of where

we need to be, since we only reach {m+2,m—1,m—2,...,3,2,2,1} safely.



Since h(P,) is always even when r is even, the middle level consists of self-
conjugate partitions. Note that not all self-conjugate partitions are in @),
but one will be if it is covered by an element of @, since by duality it
covers the conjugate of that element. Now we simply observe that {m +
2,m—1,m—2,...,3,2,2,1} covers the self-conjugate partition {m + 2, m —
1,m —2,...,3,2,1,1,1}. This partition cannot be in the right chain by
Proposition 1 (it is also not H-reachable from {n} [5]), so this establishes
Theorem 1 when r = 4.

If » = 0, then we safely reach {m +1,m — 2,m — 2,...,2,1}, one level
shy again. Once again, we simply observe that this covers the self-conjugate
partition {m+1,m —2,m —2,...,3,1,1,1}, which is not in the right chain
by Proposition 1, so this establishes Theorem 1 when r = 0.

The remaining cases each require a lemma to get past the shortfall in the
above argument.

If r = 1, then we safely reach {m +2,m —2,m —2,m —3,...,2,1}, but
in fact we can go further along the left chain.

Lemma 2. The partitions {m + 1,m — 1,m — 2,...,2,1} and {m,m —
1,..k+ Lk kk—2,...,2,1}, 5 < k < m, do not occur in the right
chain.

Proof: it {m+1,m —1,m —2,...,2,1} occurred in the right chain, then it
would have to be preceded by {m+2,m—2,m—2,...,2,1} or {m—+1,m, m—
3,...,2,1} (otherwise we couldn’t have done the left-most H-step), both of
which violate Proposition 1.

If{mm-—1,...;k+ 1,k k,k—2,...,2,1} occurred in the right chain,
then it would have to be preceded by {m,m—1,..., k+1,k, k,k—1,k—4,k—
4,...,2,1} (note this works even for £ = m) which violates Proposition 1
unless £ — 4 = 0, hence the need for £ > 5, or by {m,m — 1,...,k +
1,k+1,k—1,k—2,...,2,1}. In this case, we can recursively work our
way back to {m +1,m —1,m —2,...,2,1}, which is not in the right chain
since it would have to be preceded by {m + 2,m — 2,m — 2,...,2,1} or
{m+1,m,m —3,...,2,1}, both of which violate Proposition 1. O

Now apply Lemma 2 to extend the left chain safely to {m,m—1,...,5,5,
3,2,1}, which occurs at level W. Since h(P,) = ﬂfm, it suffices if
m3+5m—24 > m3+2m, or m > 8. m = 7 also works since h(Pyg) = 119 and
we reach level 59. The case m = 6, n = 22 can be dealt with individually.
The left chain gets to {6, 5,5, 3,2, 1} at level 37, but intersects the right chain
at level 38 with {6,5,4,4,2,1}. However, the right chain reaches {6, 5, 4,4, 3}
at level 37, which also covers the self-conjugate partition {5, 5,5, 4, 3}, so this
establishes Theorem 1 when r = 1.



If r = 2, then we safely reach {m +2,m —1,m —2,m —3,...,2,1}, but
in fact we can go further along the left chain.

Lemma 3. The partitions {m+1,m,m—2,m—3,...,2,1} and {m+1,m—
I,m—2,...k+1,kkk—2,...,21}, 1 <k <m—1, do not occur in the
right chain.

Proof: If {m+1,m,m —2,m —3,...,2,1} occurred in the right chain, then
it would have to be preceded by {m + 2,m — 1,m — 2,m — 3,...,2,1},
{m+1,m+1,m-3,m-3,...,2, 1}, or {m+1,m,m—1,m—4,m—4,...,2,1},
all of which violate Proposition 1. Note that we are tacitly assuming that
m > 4, but that’s fine since n > 16, so m > 5.

Since {m+1,m—1,m—2,...,k+1,k,k,k—2,...,2,1} has two differences
of size 2 for k > 2, Proposition 1 takes care of those cases (note k =m — 1
means the partition is {m+1,m—-1,m—-1,m-3,...,2,1}). f {m+1,m—
1,m —2,...,3,2,2} occurred in the right chain, then it would have to be
preceded by {m+2,m—-2,m—2,...,3,2,2} or {m+1,m,m-3,...,3,2,2},

both of which violate Proposition 1. £ = 1 is similar. O
Now apply Lemma 3 to extend the left chain safely to {m+1,m—1,m—
2,...,2,1,1}, which occurs at level T’ﬁ%. Since h(P,) = mSJg‘r’m, this estab-

lishes Theorem 1 when r = 2.

Finally, if » = 3, we safely reach {m +2,m—1,m—2,...,2,1,1}. Now
we just modify Lemma 3. Note we could also show that the right chain has
no elements ending in 1,1 until it’s too late, but this method is cleaner.

Lemma 4. The partitions {m +1,m,m — 2,...,2,1,1} and {m + 1,m —
I,m—2,...k+1,kkk—2,...,2,1,1}, 4 <k <m—1 do not occur in the
right chain.

Proof: Exactly the same as Lemma 3, since the second 1 at the end never

comes into play. O
Now apply Lemma 4 to extend the left chain safely to {m+1,m—1,m—

. 3
2,...,5,4,4,2,1,1}, which occurs at level W. Since h(P,) = ™5™,

it suffices if m3 + 11m — 18 > m3 + 8m, or m > 6. When m = 5, we get
to level 27, and h(P5) = 55, so this case is fine as well. This establishes
Theorem 1 when r = 3, and thus completes the proof. O

4 Smaller cases and related questions

The smaller n for which A\o(P,) = A;(P,) — 6 are 10, 13, 14, and 15. Figure 4
shows Q1. Since there are levels of size 1 in the middle, P;g cannot possibly
have two chains of the desired lengths.
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Figure 4: Elements of P;g on maximal chains.



More generally, Table 1 shows the partitions of chain lengths for P,, 1 <
n < 14. It is interesting to note that in all of these cases, the elements added
between A;_1(P,) and Ag(P,) form a chain that is added to the previous
k —1 chains (and similarly for antichains). This is not the case for arbitrary
posets, such as Figure 5. The proof of Theorem 1 shows this is the case for
every P, when k = 2; it would be interesting to know if it holds for all &.

Figure 5: A poset P such that the largest chain is not one of the largest two
chains. A(P) = {4, 2}.

A(P)

{1}

{2}

{3}

{5}

{7}

19,2}

{12,3}

{15, 7}

{18,9,3}

10 | {21,15,4,2}

11 | {25,18,10,3}

12 | {29,21,13,10,4}
13 | {33,27,18,14,6,3}
14 | {37,31,24,19,15,6, 3}

© 00~ O ULk W -3

Table 1: Known values of A\(P,).

While the proof of Theorem 1 is constructive in the cases where h(P,)
is even, so that the middle level consists of self-conjugate partitions, it is
not constructive when h(P,) is odd, since in those cases the proof relies on
Lemma 1. It would be interesting to give an explicit construction of two
long chains in those cases. Note also that Lemma 1 does not generalize in
the most obvious way for finding three chains, due to posets such as the one
shown in Figure 6.
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Figure 6: A graded poset with three elements on every level but no three
disjoint chains of maximal length.

Conjecture 1. For large n, \;(P,) — X\iz1(P,) depends only on i.

Note that Proposition 1 holds for the left chain if we exclude the first
difference instead of the last, so a partition with a difference of 3 or two
differences of 2 in the middle will not be on either chain. We can try to
exploit this to construct a third disjoint chain to the middle level, starting at
{n—5,4, 1}, by keeping the second difference greater than or equal to 3, and
similarly for k£ chains by keeping a different difference large in each one. If r
is even, so that we can extend the chains by conjugation, then this will give
us k disjoint chains that end on the conjugates of their starting points. By
an analogous calculation to the proof of Theorem 1 for » > 5, this works for
getting three chains when m > r —1+ -2 proving that As(P,) — A3(P,) = 6
when r > 8 is even and m is suffiently large. The smallest example isn = 117,
with m = 14 and r = 12. Note that \;(P,) — \j11(P,) need not always be
6. It appears that the fourth chain starts just one level further down, so we
conjecture that \3(P,) — A\y(P,) = 2 for large n.

Let M be the transition matrix from the bases {e,} to {my} of homo-
geneous symmetric functions of degree n. Since My, > 0 iff p < X, it is a
theorem of Gansner and Saks that a generic matrix with the same 0 entries
will have jordan blocks whose sizes are exactly the parts of A(P,) (see [1]).
Using Table 1 and Maple, one can verify that M is sufficiently generic at
least for n < 13.

Another open problem is to find the size a(n) of the largest antichain in
P,. Let p(n) be the number of partitions of n. There is the obvious up-
per bound a(n) < p(n). By Dilworth’s theorem, a(n) > p(n)/(h(P,) + 1),
so we have Q(n_f’/ze’r\/m) < a(n) < O(n_le“\/m). It would be in-
teresting to find a constructive proof that a(n) is at least as large as the
lower bound. In addition to the values of a(n) implied by Table 1, we
can see that a(15) = 9. Moreover, A\g(Pi5) = 2, with the long antichains
being 718,62215, 5415, 532213, 525, 4431, 442221,433311, 3% and their conju-
gates. One can also verify that a(16) = 10, with A\jo(Pis) = 5. The sequence
of a(n)’s is number A076269 in [6].

One construction that shows a(n) has a lower bound of the form e®v»
is as follows. Begin with the antichain 7321%, 722221, 651°, 642211, 63322,



553111, 55222, 54421, 4444 in Pig. Let v + Tn denote a partition v from
the list with 7n added to each part. Consider v to have 7 parts, so some of
them might be 0. Then {v + Tn,v+7(n—1),...,v + 7,v} is a partition of
N =16(n + 1) + 49722 = 2952 L O(n). There are 9"** choices for the v’s,
yielding an antichain of size 9"*! in Py. This yields a lower bound for a(n)
of e®V"™ where ¢ = In9,/2/49 = 0.4439.... By starting with a 28-element
antichain in P5; where each v has at most 9 parts, and largest part at most

8, one can similarly get ¢ = ln% = 0.555.... This is still a long way from

m\/2/3 = 2.565 ..., but at least it’s constructive.
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