THE COINVARIANT ALGEBRA OF THE SYMMETRIC GROUP AS A DIRECT SUM OF INDUCED MODULES

HIDEAKI MORITA AND TATSUHIRO NAKAJIMA

ABSTRACT. Let R_n be the coinvariant algebra of the symmetric group S_n . The algebra has a natural gradation. For a fixed ℓ $(1 \leq \ell \leq n)$, let $R_n(k; \ell)$ $(0 \leq k \leq \ell - 1)$ be the direct sum of all the homogeneous components of R_n whose degrees are congruent to k modulo ℓ . In this article, we will show that for each ℓ there exists a subgroup H_ℓ of S_n and a representation $\Psi(k; \ell)$ of H_ℓ such that each $R_n(k; \ell)$ is induced by $\Psi(k; \ell)$.

RÉSUMÉ. Soit R_n l'alègbre des coinvariants du groupe symétrique S_n . Cette algèbre a une graduation naturelle. Pour un entier ℓ $(1 \leq \ell \leq n)$ fixe, soit $R_n(k;\ell)$ $(0 \leq k \leq \ell - 1)$ la somme directe de toutes les composantes homogènes de R_n dont les degrés sont congrus à k modulo ℓ . Dans cet article, nous montrerons que pour chaque ℓ il existe un sous-groupe H_ℓ de S_n et une représentation $\Psi(k;\ell)$ de H_ℓ tel que $R_n(k;\ell)$ est induite par $\Psi(k;\ell)$.

1. INTRODUCTION

A partition of a positive integer n is a weakly decreasing sequence $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ of nonnegative integers with $\lambda_1 + \lambda_2 + \dots + \lambda_k = n$. We also denote the partition λ by $(1^{m_1}2^{m_2} \cdots n^{m_n})$, where m_i is the multiplicity of i in λ for $1 \leq i \leq n$. If λ is a partition of n, we simply write $\lambda \vdash n$. The Young diagram of a partition λ is a set of points

$$Y_{\lambda} = \{(i, j) \in \mathbf{Z}^2 | 1 \le j \le \lambda_i\}$$

in which we regard the coordinates increase from left to right, and from top to bottom. Let [n] denote the set of integers $\{1, 2, \ldots, n\}$. A standard tableau T of shape λ is a bijection $T: Y_{\lambda} \to [n]$ with the condition that the assigned numbers strictly increase along both the rows and the columns in Y_{λ} . We illustrate the Young diagram Y_{λ} and a standard tableau T for $\lambda = (3, 2, 2) \vdash 7$ in the following:

$$Y_{\lambda} = \begin{array}{cccc} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \end{array}, \qquad T = \begin{array}{cccc} 1 & 3 & 4 \\ 2 & 5 \\ 6 & 7 \end{array}$$

We denote by $STab(\lambda)$ the set of all the standard tableaux of shape λ .

For a standard tableau T of shape $\lambda \vdash n$, define the descent set Des(T) by

 $Des(T) := \{i \in [n-1] \mid i+1 \text{ is located in a lower row than } i \text{ in } T\}.$

We call the sum of the elements of D(T) the major index of T, and denote it by maj(T). In the preceding example, $Des(T) = \{1, 4, 5\}$ and maj(T) = 1 + 4 + 5 = 10.

Let S_n be the symmetric group of degree n, and

$$P_n = \mathbb{C}[x_1, x_2, \dots, x_n]$$

denote the polynomial ring with n variables over \mathbb{C} . As customary, S_n acts on P_n from the left as permutations of variables by setting

$$(wf)(x_1, x_2, \ldots, x_n) = f(x_{w(1)}, x_{w(2)}, \ldots, x_{w(n)})$$

where $w \in S_n$ and $f(x_1, x_2, \ldots, x_n) \in P_n$. Let $I_n = \bigoplus_{d \ge 0} I^d$ denote the graded S_n -stable ideal of P_n generated by the elementary symmetric functions. Hence the quotient algebra $R_n = P_n/I_n$ is also a graded S_n -module. We write its homogeneous decomposition as

$$R_n = \bigoplus_{d \ge 0} R_n^d$$

and call R_n the *coinvariant algebra* of S_n It is well known that the coinvariant algebra R_n affords the left regular representation of S_n .

Let us consider, for each integer k = 0, ..., n-1, the direct sum $R_n(k; n)$ of homogeneous components of R whose degrees are congruent to k modulo n, i.e.,

$$R_n(k;n) = \bigoplus_{d \equiv k \mod n} R_n^d$$

Since each homogeneous component R_n^d is S_n -invariant, these subspaces also afford representations of S_n , and the dimensions of these representations do not depend on k, i.e.,

$$\dim R_n(k;n) = (n-1)!$$

for all k = 0, ..., n - 1.

In [KW], W. Kraskiewicz and J. Weymann consider these S_n -modules, and prove that each $R_n(k;n)$ is induced from a corresponding irreducible representation of a cyclic subgroup of S_n (see also [G, Proposition 8.2] [R, Theorem 8.9]). Precisely, let γ be the cyclic permutation $(12 \cdots n)$, and C_n the subgroup of S_n generated by γ . The cyclic subgroup C_n of degree n has n inequivalent irreducible representations

$$\psi^{(k)} : C_n \longrightarrow \mathbb{C}^{\times} , \quad \gamma \longmapsto \zeta_n^k ,$$

where ζ_n is the primitive root of unity, and the following equivalence of S_n -modules holds for each $k = 0, \ldots n - 1$:

$$R_n(k;n) \cong_{S_n} \operatorname{Ind}_{C_n}^{S_n} \left(\psi^{(k)} \right)$$
.

(*Remark* : In fact, the number n by which we take modulo is the *Coxeter number* of S_n , i.e., the order of the Coxeter elements of the Coxeter group of type A_{n-1} . They also obtain similar results for Coxeter groups of type B_n and D_n . Stembridge obtains more general results [S]. He treats the Complex reflection groups G and shows that the coinvariant algebra of G has the similar properties for the irreducible representation of the cyclic subgroup of G generated by a *Springer's regular element* [Sp]. We can easily see that the Coxeter elements are regular.)

They also prove that the multiplicity of a irreducible representation of S_n in R_n^d $(d \ge 0)$ is described by the major index of standard tableaux. It is well known that the irreducible representations of S_n are in one to one correspondence with the partitions of n. For $\lambda \vdash n$ let V^{λ} denote the corresponding irreducible representation of S_n . They showed that the multiplicity $[R_n^d: V^{\lambda}]$ of V^{λ} on R_n^d equals the number of standard tableaux whose major index are d:

$$[R_n^d: V^{\lambda}] = \sharp\{T \in \operatorname{STab}(\lambda) \mid \operatorname{maj}(T) = d\}$$

(See also [G, Theorem 8.6] [R, Theorem 8.8]. A different approach to the result of Kraskiewicz-Weymann, using the *multi major index*, is discussed by A. Jöllenbeck and M. Schocker [JS].) Combining these results, the multiplicities of the irreducible representation V^{λ} on the induced representations $\operatorname{Ind}_{C_n}^{S_n}(\psi^{(k)}) \cong_{S_n} R_n(k; n)$ are easily follows :

$$[R_n(k;n): V^{\lambda}] = \sharp \{ T \in \operatorname{STab}(\lambda) \mid \operatorname{maj}(T) \equiv k \mod n \}.$$

It should be mentioned here that a more refined result is obtained by R. Adin, F. Brenti and Y. Roichman [ADR] recently. For each subset $S \subseteq [n-1]$, they construct an S_n -module R_S satisfying

$$R_n^d = \bigoplus_S R_n^S \, ,$$

where the direct sum is taken over the subsets $S \subseteq [n-1]$ such that $\sum_{i \in S} i = d$, and describe the multiplicities of irreducible constituents on R_n^S as follows :

$$[R_n^S: V^{\lambda}] = \sharp \{T \in \operatorname{STab}(\lambda) \mid \operatorname{Des}(T) = S\}.$$

They also consider an analogue of the theorem of Kraskiewicz and Weymann for the Weyl groups of type B, and obtain a finer result on the irreducible decompositions of the coinvariant algebras of type B than one already obtained by Stembridge in [S].

The aim of the present article is to achieve a generalization of the results of [KW] in the following sense. Fix an integer $\ell \in [n]$), and consider subspaces of R_n obtained by gathering homogeneous components whose degrees are congruent modulo ℓ . Precisely, for each $k = 0, \ldots, \ell - 1$ we will consider

$$R_n(k;\ell) = \bigoplus_{d \equiv k \mod \ell} R_n^d$$

We can see that the dimension of the space $R_n(k; \ell)$ is independent of k, i.e.,

$$\dim R_n(k;\ell) = \frac{n!}{\ell}$$

for all $0 \leq k \leq \ell - 1$. In this article we will seek out a systematic realization of each submodule $R_n(k;\ell)$ as a S_n -module induced from a subgroup of S_n that is determined by ℓ . First we settle a subgroup H_ℓ of S_n for each $\ell \in [n]$, then construct a representation $\Psi(k;\ell)$ of H_ℓ for each $k = 0, \ldots, \ell - 1$. Finally, we will show that

$$R_n(k;\ell) \cong_{S_n} \operatorname{Ind}_{H_\ell}^{S_n}(\Psi(k;\ell))$$

for each ℓ and k. We will give here a more precise information. For an fixed ℓ , say $n = d\ell + r$ $(0 \le r \le \ell - 1)$. Then we can choose a subgroup H_{ℓ} of S_n isomorphic to a direct product of a cyclic groups of degree ℓ and the symmetric group of degree r:

$$H_{\ell} \cong C_{\ell} \times S_r$$
.

We construct a representation $\Psi(k; \ell)$ of H_{ℓ} , which is not necessarily irreducible, in a simple manner. Comparing their graded characters as polynomials in q modulo $q^{\ell} - 1$, we can verify that, for each k, the representation $R_n(k; \ell)$ of S_n is induced by the representation $\Psi(k; \ell)$ of H_{ℓ} . We can easily obtain the multiplicity $[R(k; \ell) : \psi^{\lambda}]$ of the irreducible representation V^{λ} $(\lambda \vdash n)$ in $R_n(k; \ell)$ as

$$[R_n(k;\ell):\psi^{\lambda}] = \sharp\{T \in \operatorname{STab}(\lambda) \mid \operatorname{maj}(T) \equiv k \mod \ell\}$$

by the theorem of Kraskiewicz and Weymann.

2. Coinvariant algebra and its graded character

Let $R_n = \bigoplus_{d \ge 0} R_n^d$ be the coinvariant algebra of S_n and its homogeneous decomposition. Let $\ell \in [n]$ be a fixed integer. For each $k = 0, 1, \ldots, \ell - 1$, define

$$R_n(k;\ell) := \bigoplus_{d \equiv k \bmod \ell} R_n^d ,$$

i.e.,

$$R_n = \bigoplus_{k=0}^{\ell-1} R_n(k;\ell) \; .$$

Let q be an indeterminate over \mathbb{C} . Define the graded character of R_n by

$$X_n(q) = \sum_{d \ge 0} q^d \chi^{n,d},$$

where $\chi^{n,d}$ is the character of the representation R_n^d of S_n . We denote by $X_{n,\rho}(q)$ and $\chi^{n,d}_{\rho}$ the value of $X_n(q)$ and $\chi^{n,d}$ at elements of cycle-type $\rho \vdash n$, respectively. Precisely, $X_{n,\rho}(q)$ is a polynomial in q whose coefficient in q^d is $\chi^{n,d}_{\rho}$.

The graded character of R_n evaluated at a partition $\rho = (1^{m_1} 2^{m_2} \cdots n^{m_n}) \vdash n$ is given by

$$X_{n,\rho}(q) = \frac{(1-q)(1-q^2)\cdots(1-q^n)}{(1-q)^{m_1}(1-q^2)^{m_2}\cdots(1-q^n)^{m_n}}$$

([Gr, Appendix], see also [G, Proposition 8.1]). By the formula for the graded character we obtain the following results, which play a key role in the proof of main theorem.

Proposition 1. Fix a integer $\ell \in [n]$. Let p be a divisor of ℓ , n = ep + s ($0 \le s \le p - 1$), and θ a primitive p-th root of unity. If $\lambda \vdash n$ satisfies

 $X_{n,\rho}(\theta) \neq 0,$

then $\rho = (1^{m_1} \cdots s^{m_s} p^e)$, where $m_1 + \cdots + sm_s = s$.

Proposition 2. Let $\ell \in [n]$ be a fixed integer. Then the dimension of $R_n(k; \ell)$ is independent of the choice of $k = 0, 1, ..., \ell - 1$, i.e., we have

$$\dim R_n(k;\ell) = \frac{n!}{\ell}$$

for all $k = 0, 1, \dots, \ell - 1$.

Proposition 3. Let n be a positive integer, and choose an integer ℓ $(1 \le \ell \le n)$. If $n = d\ell + r$ $(0 \le r < \ell)$, then we have

$$X_n(q) \equiv \operatorname{Ind}_{S_{d\ell} \times S_r}^{S_n} \left(X_{d\ell}(q) \, X_r(q) \right) \mod q^{\ell} - 1$$

Note that the polynomial $X_{n,\rho}(q)$ is also known as a *Green polynomial* $Q_{\rho}^{(1^n)}(q)$ of type A [Gr][Mac,III.7]. Translating Proposition 1 and Proposition 3 into the language of the Green polynomials, we obtain a formula for the Green polynomials at a root of unity (Cf. [LLT]).

Corollary 4. Let $n > \ell$ be positive integers, p a divisor of ℓ , and θ a primitive p-th root of unity. If we write $n = d\ell + r = ep + s$ $(0 \le r \le \ell - 1, 0 \le s \le p - 1)$, then

(a) $Q_{\rho}^{(1^n)}(\theta) = 0$ unless $\rho = (1^{m_1} \cdots s^{m_s} p^e)$ and $m_1 + 2m_2 + \cdots + sm_s = s$.

(b) If
$$\rho = (1^{m_1} \cdots s^{m_s} p^e)$$
,

$$Q_{\rho}^{(1^n)}(q) \equiv Q_{\rho^1}^{(1^{d\ell})}(q) \, Q_{\rho^2}^{(1^r)}(q) \, \text{mod } q^{\ell} - 1 \,,$$

where $\rho^1 = (p^{e-f}) \vdash d\ell$ and $\rho^2 = (1^{m_1} \cdots s^{m_s} p^f) \vdash r$.

3. Main result

Let n be a positive integer, and suppose that $n = d\ell + r$, where $0 \le r \le \ell - 1$.

First we consider the case of r = 0, that is $n = d\ell$. Let C_{ℓ} be the cyclic group of degree ℓ , and we embed C_{ℓ} into S_n by

$$C_{\ell} \cong \langle \gamma_1 \gamma_2 \cdots \gamma_d \rangle \subset S_n$$

where $\gamma_1 = (1, 2, \dots, \ell), \gamma_2 = (\ell + 1, \ell + 1, \dots, 2\ell), \dots, \gamma_d = ((d-1)\ell + 1, \dots, d\ell)$. The cyclic group C_ℓ has ℓ inequivalent irreducible representations $\psi^{(0)}, \dots, \psi^{(\ell-1)}$, i.e.,

$$\psi^{(k)} : C_{\ell} \longrightarrow \mathbb{C}^{\times}, \quad \gamma_1 \gamma_2 \cdots \gamma_d \longmapsto \zeta_{\ell}^k ,$$

where ζ_{ℓ} denotes a primitive ℓ -th root of unity. Let

$$\tau^{(k)} := \frac{1}{\ell} \sum_{i=0}^{\ell-1} \zeta_{\ell}^{-ik} (\gamma_1 \cdots \gamma_d)^i \quad (k = 1, 2, \dots, \ell) \,.$$

We can easily check that each $\tau^{(k)}$ is an idempotent by a direct calculation.

Let $\mathbb{C}[S_n]$ be the group algebra of S_n , and $\tau^{(k)}$ an idempotent of $\mathbb{C}[S_n]$ defined above. Consider the representation of S_n afforded by the left ideal $\mathbb{C}[S_n]\tau^{(k)}$, which is equivalent to the induced representation $\operatorname{Ind}_{C_\ell}^{S_n}(\psi^{(k)})$. Its character $\chi[\mathbb{C}[S_n]\tau^{(k)}]$ is given by $\Gamma_n\tau^{(k)}$, where Γ_n is an operator defined by

$$\Gamma_n : \mathbb{C}[S_n] \longrightarrow \mathbb{C}[S_n], \quad \rho \longmapsto \sum_{w \in S_n} w^{-1} \rho w$$

(see e.g., [G, Proposition 5.2] [R, Lemma 8.4]). Here we regard an element $\rho = \sum_{w \in S_n} \rho_w w \in \mathbb{C}[S_n]$ as a function on S_n that maps $w \in S_n$ to the coefficient ρ_w . Equivalently,

$$\operatorname{Ind}_{C_{\ell}}^{S_n}\left(\chi[\psi^{(k)}]\right) = \Gamma_n \tau^{(k)} ,$$

where $\chi \left[\psi^{(k)} \right]$ stands for the C_{ℓ} -character of $\psi^{(k)}$.

By Proposition 2, the dimension of the space

$$R_n(k;\ell) = \bigoplus_{d \equiv k \mod \ell} R_n^d$$

is constant with respect to $k = 0, ..., \ell - 1$. This fact seems to imply that every $R_n(k; \ell)$ $(k = 0, ..., \ell)$ are induced from the same dimensional representations of some subgroup of S_n . We verify in the following that a irreducible representation of C_ℓ yields each $R_n(k; \ell)$.

Proposition 5. Let n be a positive integer and ℓ a divisor of n. Write $d = n/\ell$. Let $\gamma_i = ((i-1)\ell + 1, (i-1)\ell + 2, ..., i\ell) \in S_n$ (i = 1, ..., d) be a cyclic permutation, C_ℓ the cyclic subgroup of S_n generated by $\gamma_1 \cdots \gamma_d$, and $\psi^{(k)}$ $(k = 0, ..., \ell - 1)$ its irreducible representation. Then, we have an isomorphism of S_n -modules

$$R_n(k;\ell) \cong_{S_n} \operatorname{Ind}_{C_\ell}^{S_n} (\psi^{(k)}) \quad (k=0,1,\ldots,\ell-1).$$

Next we consider the case of $n = d\ell + r$ and $r \neq 0$. For each $\ell = 1, 2, ..., n$, we define a subgroup H_{ℓ} of S_n by

$$H_{\ell} = \langle \gamma_1 \gamma_2 \cdots \gamma_d \rangle \times S_r$$
$$\cong C_{\ell} \times S_r ,$$

where γ_i is the cyclic permutation $((i-1)\ell+1, (i-1)\ell+2, \dots, i\ell)$, and the symmetric group S_r of degree r is identified as a subgroup $\{w \in S_n \mid w(i) = i \text{ for all } i = 1, 2, \dots, n-r\}$ of S_n .

For each $k = 0, 1, \ldots, \ell - 1$, we construct a representation $\Psi(k; \ell)$ of H_{ℓ} as follows :

$$\Psi(k;\ell) := \bigoplus_{\lambda \vdash r} \bigoplus_{T \in \operatorname{STab}(\lambda)} \psi^{(k-\operatorname{maj}(T))} \otimes V^{\lambda} ,$$

where $\overline{k - \operatorname{maj}(T)} = k - \operatorname{maj}(T) \mod \ell$, and $\psi^{(i)}$ $(i = 0, \ldots, \ell)$ and V^{λ} $(\lambda \vdash r)$ are the irreducible representations of C_{ℓ} and S_r , respectively. Then it can be seen that the degree of $\Psi(k; \ell)$ does not depend on k and hence so does deg $\operatorname{Ind}_{H_{\ell}}^{S_n}(\Psi(k; \ell))$. Actually, since dim $V^{\lambda} = \sharp \operatorname{STab}(\lambda)$ and $\sum_{\lambda \vdash r} \sharp \operatorname{STab}(\lambda)^2 = r!$, we have

$$\deg \Psi(k;\ell) = \sum_{\lambda \vdash r} \sum_{T \in \operatorname{STab}(\lambda)} \deg \left(\psi^{(\overline{k} - \operatorname{maj}(T))} \otimes V^{\lambda} \right)$$
$$= \sum_{\lambda \vdash r} \sum_{T \in \operatorname{STab}(\lambda)} \sharp \operatorname{STab}(\lambda) = r! ,$$

and deg $\operatorname{Ind}_{H_{\ell}}^{S_n}(\Psi(k;\ell)) = r!n!/r!\ell = n!/\ell$, which coincides with the dimension of $R_n(k;\ell)$. Moreover, we show that these two representations are equivalent.

Theorem 6 (Main result). Let n be a positive integer. Fix an integer $\ell \in [n]$ and write $n = d\ell + r \ (0 \le r \le \ell)$. Let $H_{\ell} \cong C_{\ell} \times S_r$ be the subgroup of S_n and $\Psi(k; \ell) \ (k = 0, 1, ..., \ell-1)$ its representations defined by

$$\Psi(k;\ell) := \bigoplus_{\lambda \vdash r} \bigoplus_{T \in \mathrm{STab}(\lambda)} \psi^{(\overline{k}-\mathrm{maj}(T))} \otimes V^{\lambda} ,$$

where $\psi^{(i)}$ and V^{λ} stand for the irreducible representations of C_{ℓ} and S_r , respectively. Then, for $k = 0, 1, \ldots, \ell - 1$, there is an isomorphism

$$R_n(k;\ell) \cong_{S_n} \operatorname{Ind}_{H_\ell}^{S_n}(\Psi(k;\ell))$$
.

as an S_n -module.

When r = 0 or 1, H_{ℓ} is a cyclic group and $\Psi(k; \ell)$ is irreducible. In this case, the generator of H_{ℓ} coincides with a regular element of S_n defined by Springer [Sp].

The following Corollary follows trivially from Theorem 6 and the Theorem of Kraskiewicz-Weymann.

Corollary 7. The multiplicity of the irreducible representation V^{λ} in $R_n(k; \ell)$ is equal to the number of standard Young tableaux of shape λ with major index congruent to k modulo ℓ , that is,

 $[R_n(k;\ell): V^{\lambda}] = \sharp \{T \in \operatorname{STab}(\lambda) : \operatorname{maj}(T) \equiv k \mod \ell \}.$

Example 8. In the case of n = 5 and $\ell = 3$, the subgroup H_3 is $\langle (123) \rangle \times \langle (45) \rangle$, which is isomorphic to $C_3 \times S_2$. Then we have

$$R^{(5)}(k;3) \cong_{S_5} \operatorname{Ind}_{H_3}^{S_5} \left(\psi^{(k)} \otimes V^{(2)} \right)$$

for each k = 0, 1, 2.

If we consider the case n = 11 and $\ell = 4$ (thus r = 3), then the subgroup H_4 is $\langle (1234)(5678) \rangle \times \langle (9,10), (10,11) \rangle$ isomorphic to $C_4 \times S_3$. Hence, for each $R^{(11)}(k;4)$ (k = 0, 1, 2, 3) is isomorphic to the representation induced by

$$\begin{split} \Psi(0;4) &= (\psi^{(0)} \otimes V^{(3)}) \oplus (\psi^{(3)} \otimes V^{(2,1)}) \oplus (\psi^{(2)} \otimes V^{(2,1)}) \oplus (\psi^{(1)} \otimes V^{(1,1,1)}) , \\ \Psi(1;4) &= (\psi^{(1)} \otimes V^{(3)}) \oplus (\psi^{(0)} \otimes V^{(2,1)}) \oplus (\psi^{(3)} \otimes V^{(2,1)}) \oplus (\psi^{(2)} \otimes V^{(1,1,1)}) , \\ \Psi(2;4) &= (\psi^{(2)} \otimes V^{(3)}) \oplus (\psi^{(1)} \otimes V^{(2,1)}) \oplus (\psi^{(0)} \otimes V^{(2,1)}) \oplus (\psi^{(3)} \otimes V^{(1,1,1)}) , \\ \Psi(3;4) &= (\psi^{(3)} \otimes V^{(3)}) \oplus (\psi^{(2)} \otimes V^{(2,1)}) \oplus (\psi^{(1)} \otimes V^{(2,1)}) \oplus (\psi^{(0)} \otimes V^{(1,1,1)}) . \end{split}$$

References

- [ADR] R. Adin, F. Brenti and Y. Roichman, Descent representations and multivariated statistics, preprint, 2001.
- [G] A. M. Garsia, Combinatorics of the free Lie algebra and the symmetric group, in Analysis, et cetera..., Jürgen Moser Festschrift. Academic Press, New York, 1990, pp. 309–382.
- [Gr] J. A. Green, The character of the finite general linear groups, *Trans. Amer. Math. Soc.*, **80** (1955), 402-447.
- [JS] A. Jöllenbeck and M. Shocker, Cyclic characters of symmetric groups, J. Alg. Combin. 12 (2000), 155-161.
- [KW] W. Kraskiewicz and J. Weymann, Algebra of coinvariants and the action of Coxeter elements, Bayreuth. Math. Schr. 63 (2001), 265–284.
- [LLT] A. Lascoux, B. Leclerc and J. -Y. Thibon, Green polynomials and Hall-Littlewood functions at roots of unity, Euroup. J. Combin. 15 (1994), 173–180.
- [Mac] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Oxford University Press, 1995.
- [R] C. Reutenauer, *Free Lie Algebras*, Oxford University Press, Oxford, 1993.
- [Sp] T. A. Springer, Regular elements of finite reflection groups, *Invent. Math.* **25** (1974), 159–198.
- [S] J. R. Stembridge, On the eigenvalues of representations of reflection groups and wreath products, *Pacific J. Math.* 140 (1989), 359–396.

H. MORITA: SCHOOL OF SCIENCE, TOKAI UNIVERSITY, HIRATSUKA 259-1292, JAPAN *E-mail address*: moritah@msg.biglobe.ne.jp

T. NAKAJIMA: FACULTY OF ECONOMICS, MEIKAI UNIVERSITY, URAYASU 279-8550, JAPAN *E-mail address*: tatsu@ka2.so-net.ne.jp