THE COINVARIANT ALGEBRA OF THE SYMMETRIC GROUP AS A DIRECT SUM OF INDUCED MODULES

HIDEAKI MORITA AND TATSUHIRO NAKAJIMA

Abstract

Let R_{n} be the coinvariant algebra of the symmetric group S_{n}. The algebra has a natural gradation. For a fixed $\ell(1 \leq \ell \leq n)$, let $R_{n}(k ; \ell)(0 \leq k \leq \ell-1)$ be the direct sum of all the homogeneous components of R_{n} whose degrees are congruent to k modulo ℓ. In this article, we will show that for each ℓ there exists a subgroup H_{ℓ} of S_{n} and a representation $\Psi(k ; \ell)$ of H_{ℓ} such that each $R_{n}(k ; \ell)$ is induced by $\Psi(k ; \ell)$.

RÉSUMÉ. Soit R_{n} l'alègbre des coinvariants du groupe symétrique S_{n}. Cette algèbre a une graduation naturelle. Pour un entier $\ell(1 \leq \ell \leq n)$ fixe, soit $R_{n}(k ; \ell)(0 \leq k \leq \ell-1)$ la somme directe de toutes les composantes homogènes de R_{n} dont les degrés sont congrus à k modulo ℓ. Dans cet article, nous montrerons que pour chaque ℓ il existe un sous-groupe H_{ℓ} de S_{n} et une représentation $\Psi(k ; \ell)$ de H_{ℓ} tel que $R_{n}(k ; \ell)$ est induite par $\Psi(k ; \ell)$.

1. Introduction

A partition of a positive integer n is a weakly decreasing sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{k}\right)$ of nonnegative integers with $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}=n$. We also denote the partition λ by $\left(1^{m_{1}} 2^{m_{2}} \cdots n^{m_{n}}\right)$, where m_{i} is the multiplicity of i in λ for $1 \leq i \leq n$. If λ is a partition of n, we simply write $\lambda \vdash n$. The Young diagram of a partition λ is a set of points

$$
Y_{\lambda}=\left\{(i, j) \in \mathbf{Z}^{2} \mid 1 \leq j \leq \lambda_{i}\right\},
$$

in which we regard the coordinates increase from left to right, and from top to bottom. Let [n] denote the set of integers $\{1,2, \ldots, n\}$. A standard tableau T of shape λ is a bijection $T: Y_{\lambda} \rightarrow[n]$ with the condition that the assigned numbers strictly increase along both the rows and the columns in Y_{λ}. We illustrate the Young diagram Y_{λ} and a standard tableau T for $\lambda=(3,2,2) \vdash 7$ in the following:

$$
Y_{\lambda}=\begin{array}{lll}
\bullet & \bullet & \bullet \\
\bullet & \bullet
\end{array}, \quad T=\begin{array}{lll}
1 & 3 & 4 \\
2 & 5 & \\
6 & 7
\end{array} .
$$

We denote by $\operatorname{STab}(\lambda)$ the set of all the standard tableaux of shape λ.
For a standard tableau T of shape $\lambda \vdash n$, define the descent set $\operatorname{Des}(T)$ by

$$
\operatorname{Des}(T):=\{i \in[n-1] \mid i+1 \text { is located in a lower row than } i \text { in } T\} .
$$

We call the sum of the elements of $\mathrm{D}(T)$ the major index of T, and denote it by $\operatorname{maj}(T)$. In the preceding example, $\operatorname{Des}(T)=\{1,4,5\}$ and $\operatorname{maj}(T)=1+4+5=10$.

Let S_{n} be the symmetric group of degree n, and

$$
P_{n}=\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]
$$

denote the polynomial ring with n variables over \mathbb{C}. As customary, S_{n} acts on P_{n} from the left as permutations of variables by setting

$$
(w f)\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(x_{w(1)}, x_{w(2)}, \ldots, x_{w(n)}\right),
$$

where $w \in S_{n}$ and $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in P_{n}$. Let $I_{n}=\oplus_{d \geq 0} I^{d}$ denote the graded S_{n}-stable ideal of P_{n} generated by the elementary symmetric functions. Hence the quotient algebra $R_{n}=P_{n} / I_{n}$ is also a graded S_{n}-module. We write its homogeneous decomposition as

$$
R_{n}=\bigoplus_{d \geq 0} R_{n}^{d}
$$

and call R_{n} the coinvariant algebra of S_{n} It is well known that the coinvariant algebra R_{n} affords the left regular representation of S_{n}.

Let us consider, for each integer $k=0, \ldots, n-1$, the direct sum $R_{n}(k ; n)$ of homogeneous components of R whose degrees are congruent to k modulo n, i.e.,

$$
R_{n}(k ; n)=\bigoplus_{d \equiv k \bmod n} R_{n}^{d}
$$

Since each homogeneous component R_{n}^{d} is S_{n}-invariant, these subspaces also afford representations of S_{n}, and the dimensions of these representations do not depend on k, i.e.,

$$
\operatorname{dim} R_{n}(k ; n)=(n-1)!
$$

for all $k=0, \ldots, n-1$.
In [KW], W. Kraskiewicz and J. Weymann consider these S_{n}-modules, and prove that each $R_{n}(k ; n)$ is induced from a corresponding irreducible representation of a cyclic subgroup of S_{n} (see also [G, Proposition 8.2] [R, Theorem 8.9]). Precisely, let γ be the cyclic permutation $(12 \cdots n)$, and C_{n} the subgroup of S_{n} generated by γ. The cyclic subgroup C_{n} of degree n has n inequivalent irreducible representations

$$
\psi^{(k)}: C_{n} \longrightarrow \mathbb{C}^{\times}, \quad \gamma \longmapsto \zeta_{n}^{k},
$$

where ζ_{n} is the primitive root of unity, and the following equivalence of S_{n}-modules holds for each $k=0, \ldots n-1$:

$$
R_{n}(k ; n) \cong_{S_{n}} \operatorname{Ind}_{C_{n}}^{S_{n}}\left(\psi^{(k)}\right) .
$$

(Remark: In fact, the number n by which we take modulo is the Coxeter number of S_{n}, i.e., the order of the Coxeter elements of the Coxeter group of type A_{n-1}. They also obtain similar results for Coxeter groups of type B_{n} and D_{n}. Stembridge obtains more general results [S$]$. He treats the Complex reflection groups G and shows that the coinvariant algebra of G has the similar properties for the irreducible representation of the cyclic subgroup of G generated by a Springer's regular element $[\mathrm{Sp}]$. We can easily see that the Coxeter elements are regular.)

They also prove that the multiplicity of a irreducible representation of S_{n} in $R_{n}^{d}(d \geq 0)$ is described by the major index of standard tableaux. It is well known that the irreducible representations of S_{n} are in one to one correspondence with the partitions of n. For $\lambda \vdash n$ let V^{λ} denote the corresponding irreducible representation of S_{n}. They showed that the multiplicity [$R_{n}^{d}: V^{\lambda}$] of V^{λ} on R_{n}^{d} equals the number of standard tableaux whose major index are d :

$$
\left[R_{n}^{d}: V^{\lambda}\right]=\sharp\{T \in \operatorname{STab}(\lambda) \mid \operatorname{maj}(T)=d\} .
$$

(See also [G, Theorem 8.6] [R, Theorem 8.8]. A different approach to the result of KraskiewiczWeymann, using the multi major index, is discussed by A. Jöllenbeck and M. Schocker [JS].) Combining these results, the multiplicities of the irreducible representation V^{λ} on the induced representations $\operatorname{Ind}_{C_{n}}^{S_{n}}\left(\psi^{(k)}\right) \cong_{S_{n}} R_{n}(k ; n)$ are easily follows :

$$
\left[R_{n}(k ; n): V^{\lambda}\right]=\sharp\{T \in \operatorname{STab}(\lambda) \mid \operatorname{maj}(T) \equiv k \bmod n\}
$$

It should be mentioned here that a more refined result is obtained by R. Adin, F. Brenti and Y. Roichman $[\mathrm{ADR}]$ recently. For each subset $S \subseteq[n-1]$, they construct an S_{n}-module R_{S} satisfying

$$
R_{n}^{d}=\bigoplus_{S} R_{n}^{S},
$$

where the direct sum is taken over the subsets $S \subseteq[n-1]$ such that $\sum_{i \in S} i=d$, and describe the multiplicities of irreducible constituents on R_{n}^{S} as follows :

$$
\left[R_{n}^{S}: V^{\lambda}\right]=\sharp\{T \in \operatorname{STab}(\lambda) \mid \operatorname{Des}(T)=S\}
$$

They also consider an analogue of the theorem of Kraskiewicz and Weymann for the Weyl groups of type B, and obtain a finer result on the irreducible decompositions of the coinvariant algebras of type B than one already obtained by Stembridge in $[\mathrm{S}]$.

The aim of the present article is to achieve a generalization of the results of [KW] in the following sense. Fix an integer $\ell \in[n]$), and consider subspaces of R_{n} obtained by gathering homogeneous components whose degrees are congruent modulo ℓ. Precisely, for each $k=0, \ldots, \ell-1$ we will consider

$$
R_{n}(k ; \ell)=\bigoplus_{d \equiv k \bmod \ell} R_{n}^{d}
$$

We can see that the dimension of the space $R_{n}(k ; \ell)$ is independent of k, i.e.,

$$
\operatorname{dim} R_{n}(k ; \ell)=\frac{n!}{\ell}
$$

for all $0 \leq k \leq \ell-1$. In this article we will seek out a systematic realization of each submodule $R_{n}(k ; \ell)$ as a S_{n}-module induced from a subgroup of S_{n} that is determined by ℓ. First we settle a subgroup H_{ℓ} of S_{n} for each $\ell \in[n]$, then construct a representation $\Psi(k ; \ell)$ of H_{ℓ} for each $k=0, \ldots, \ell-1$. Finally, we will show that

$$
R_{n}(k ; \ell) \cong \cong_{S_{n}} \operatorname{Ind}_{H_{\ell}}^{S_{n}}(\Psi(k ; \ell))
$$

for each ℓ and k. We will give here a more precise information. For an fixed ℓ, say $n=d \ell+r$ $(0 \leq r \leq \ell-1)$. Then we can choose a subgroup H_{ℓ} of S_{n} isomorphic to a direct product of a cyclic groups of degree ℓ and the symmetric group of degree r :

$$
H_{\ell} \cong C_{\ell} \times S_{r}
$$

We construct a representation $\Psi(k ; \ell)$ of H_{ℓ}, which is not necessarily irreducible, in a simple manner. Comparing their graded characters as polynomials in q modulo $q^{\ell}-1$, we can verify that, for each k, the representation $R_{n}(k ; \ell)$ of S_{n} is induced by the representation $\Psi(k ; \ell)$
of H_{ℓ}. We can easily obtain the multiplicity $\left[R(k ; \ell): \psi^{\lambda}\right]$ of the irreducible representation $V^{\lambda}(\lambda \vdash n)$ in $R_{n}(k ; \ell)$ as

$$
\left[R_{n}(k ; \ell): \psi^{\lambda}\right]=\sharp\{T \in \operatorname{STab}(\lambda) \mid \operatorname{maj}(T) \equiv k \bmod \ell\}
$$

by the theorem of Kraskiewicz and Weymann.

2. Coinvariant algebra and its graded character

Let $R_{n}=\oplus_{d \geq 0} R_{n}^{d}$ be the coinvariant algebra of S_{n} and its homogeneous decomposition. Let $\ell \in[n]$ be a fixed integer. For each $k=0,1, \ldots, \ell-1$, define

$$
R_{n}(k ; \ell):=\bigoplus_{d \equiv k \bmod \ell} R_{n}^{d}
$$

i.e.,

$$
R_{n}=\bigoplus_{k=0}^{\ell-1} R_{n}(k ; \ell)
$$

Let q be an indeterminate over \mathbb{C}. Define the graded character of R_{n} by

$$
X_{n}(q)=\sum_{d \geq 0} q^{d} \chi^{n, d}
$$

where $\chi^{n, d}$ is the character of the representation R_{n}^{d} of S_{n}. We denote by $X_{n, \rho}(q)$ and $\chi_{\rho}^{n, d}$ the value of $X_{n}(q)$ and $\chi^{n, d}$ at elements of cycle-type $\rho \vdash n$, respectively. Precisely, $X_{n, \rho}(q)$ is a polynomial in q whose coefficient in q^{d} is $\chi_{\rho}^{n, d}$.

The graded character of R_{n} evaluated at a partition $\rho=\left(1^{m_{1}} 2^{m_{2}} \cdots n^{m_{n}}\right) \vdash n$ is given by

$$
X_{n, \rho}(q)=\frac{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}{(1-q)^{m_{1}}\left(1-q^{2}\right)^{m_{2}} \cdots\left(1-q^{n}\right)^{m_{n}}}
$$

([Gr, Appendix], see also [G, Proposition 8.1]). By the formula for the graded character we obtain the following results, which play a key role in the proof of main theorem.

Proposition 1. Fix a integer $\ell \in[n]$. Let p be a divisor of $\ell, n=e p+s(0 \leq s \leq p-1)$, and θ a primitive p-th root of unity. If $\lambda \vdash n$ satisfies

$$
X_{n, \rho}(\theta) \neq 0
$$

then $\rho=\left(1^{m_{1}} \cdots s^{m_{s}} p^{e}\right)$, where $m_{1}+\cdots+s m_{s}=s$.
Proposition 2. Let $\ell \in[n]$ be a fixed integer. Then the dimension of $R_{n}(k ; \ell)$ is independent of the choice of $k=0,1, \ldots, \ell-1$, i.e., we have

$$
\operatorname{dim} R_{n}(k ; \ell)=\frac{n!}{\ell}
$$

for all $k=0,1, \ldots, \ell-1$.
Proposition 3. Let n be a positive integer, and choose an integer $\ell(1 \leq \ell \leq n)$. If $n=d \ell+r$ $(0 \leq r<\ell)$, then we have

$$
X_{n}(q) \equiv \operatorname{Ind}_{S_{d \ell} \times S_{r}}^{S_{n}}\left(X_{d \ell}(q) X_{r}(q)\right) \quad \bmod q^{\ell}-1
$$

Note that the polynomial $X_{n, \rho}(q)$ is also known as a Green polynomial $Q_{\rho}^{\left(1^{n}\right)}(q)$ of type A [Gr][Mac,III.7]. Translating Proposition 1 and Proposition 3 into the language of the Green polynomials, we obtain a formula for the Green polynomials at a root of unity (Cf. [LLT]).

Corollary 4. Let $n>\ell$ be positive integers, p a divisor of ℓ, and θ a primitive p-th root of unity. If we write $n=d \ell+r=e p+s(0 \leq r \leq \ell-1,0 \leq s \leq p-1)$, then
(a) $Q_{\rho}^{\left(1^{n}\right)}(\theta)=0$ unless $\rho=\left(1^{m_{1}} \cdots s^{m_{s}} p^{e}\right)$ and $m_{1}+2 m_{2}+\cdots+s m_{s}=s$.
(b) If $\rho=\left(1^{m_{1}} \cdots s^{m_{s}} p^{e}\right)$,

$$
Q_{\rho}^{\left(1^{n}\right)}(q) \equiv Q_{\rho^{1}}^{\left(1^{d \ell}\right)}(q) Q_{\rho^{2}}^{\left(1^{r}\right)}(q) \bmod q^{\ell}-1
$$

where $\rho^{1}=\left(p^{e-f}\right) \vdash d \ell$ and $\rho^{2}=\left(1^{m_{1}} \cdots s^{m_{s}} p^{f}\right) \vdash r$.

3. Main result

Let n be a positive integer, and suppose that $n=d \ell+r$, where $0 \leq r \leq \ell-1$.
First we consider the case of $r=0$, that is $n=d \ell$. Let C_{ℓ} be the cyclic group of degree ℓ, and we embed C_{ℓ} into S_{n} by

$$
C_{\ell} \cong\left\langle\gamma_{1} \gamma_{2} \cdots \gamma_{d}\right\rangle \subset S_{n}
$$

where $\gamma_{1}=(1,2, \ldots, \ell), \gamma_{2}=(\ell+1, \ell+1, \ldots, 2 \ell), \ldots, \gamma_{d}=((d-1) \ell+1, \ldots, d \ell)$. The cyclic group C_{ℓ} has ℓ inequivalent irreducible representations $\psi^{(0)}, \ldots, \psi^{(\ell-1)}$, i.e.,

$$
\psi^{(k)}: C_{\ell} \longrightarrow \mathbb{C}^{\times}, \quad \gamma_{1} \gamma_{2} \cdots \gamma_{d} \longmapsto \zeta_{\ell}^{k},
$$

where ζ_{ℓ} denotes a primitive ℓ-th root of unity. Let

$$
\tau^{(k)}:=\frac{1}{\ell} \sum_{i=0}^{\ell-1} \zeta_{\ell}^{-i k}\left(\gamma_{1} \cdots \gamma_{d}\right)^{i} \quad(k=1,2, \ldots, \ell)
$$

We can easily check that each $\tau^{(k)}$ is an idempotent by a direct calculation.
Let $\mathbb{C}\left[S_{n}\right]$ be the group algebra of S_{n}, and $\tau^{(k)}$ an idempotent of $\mathbb{C}\left[S_{n}\right]$ defined above. Consider the representation of S_{n} afforded by the left ideal $\mathbb{C}\left[S_{n}\right] \tau^{(k)}$, which is equivalent to the induced representation $\operatorname{Ind}_{C_{\ell}}^{S_{n}}\left(\psi^{(k)}\right)$. Its character $\chi\left[\mathbb{C}\left[S_{n}\right] \tau^{(k)}\right]$ is given by $\Gamma_{n} \tau^{(k)}$, where Γ_{n} is an operator defined by

$$
\Gamma_{n}: \mathbb{C}\left[S_{n}\right] \longrightarrow \mathbb{C}\left[S_{n}\right], \quad \rho \longmapsto \sum_{w \in S_{n}} w^{-1} \rho w
$$

(see e.g., [G, Proposition 5.2] [R, Lemma 8.4]). Here we regard an element $\rho=\sum_{w \in S_{n}} \rho_{w} w \in$ $\mathbb{C}\left[S_{n}\right]$ as a function on S_{n} that maps $w \in S_{n}$ to the coefficient ρ_{w}. Equivalently,

$$
\operatorname{Ind}_{C_{\ell}}^{S_{n}}\left(\chi\left[\psi^{(k)}\right]\right)=\Gamma_{n} \tau^{(k)},
$$

where $\chi\left[\psi^{(k)}\right]$ stands for the C_{ℓ}-character of $\psi^{(k)}$.
By Proposition 2, the dimension of the space

$$
R_{n}(k ; \ell)=\bigoplus_{d \equiv k \bmod \ell} R_{n}^{d}
$$

is constant with respect to $k=0, \ldots, \ell-1$. This fact seems to imply that every $R_{n}(k ; \ell)$ $(k=0, \ldots, \ell)$ are induced from the same dimensional representations of some subgroup of S_{n}. We verify in the following that a irreducible representation of C_{ℓ} yields each $R_{n}(k ; \ell)$.

Proposition 5. Let n be a positive integer and ℓ a divisor of n. Write $d=n / \ell$. Let $\gamma_{i}=((i-1) \ell+1,(i-1) \ell+2, \ldots, i \ell) \in S_{n}(i=1, \ldots, d)$ be a cyclic permutation, C_{ℓ} the cyclic subgroup of S_{n} generated by $\gamma_{1} \cdots \gamma_{d}$, and $\psi^{(k)}(k=0, \ldots, \ell-1)$ its irreducible representation. Then, we have an isomorphism of S_{n}-modules

$$
R_{n}(k ; \ell) \cong S_{n} \operatorname{Ind}_{C_{\ell}}^{S_{n}}\left(\psi^{(k)}\right) \quad(k=0,1, \ldots, \ell-1)
$$

Next we consider the case of $n=d \ell+r$ and $r \neq 0$. For each $\ell=1,2, \ldots, n$, we define a subgroup H_{ℓ} of S_{n} by

$$
\begin{aligned}
H_{\ell} & =\left\langle\gamma_{1} \gamma_{2} \cdots \gamma_{d}\right\rangle \times S_{r} \\
& \cong C_{\ell} \times S_{r},
\end{aligned}
$$

where γ_{i} is the cyclic permutation $((i-1) \ell+1,(i-1) \ell+2, \ldots, i \ell)$, and the symmetric group S_{r} of degree r is identified as a subgroup $\left\{w \in S_{n} \mid w(i)=i\right.$ for all $\left.i=1,2, \ldots, n-r\right\}$ of S_{n}.

For each $k=0,1, \ldots, \ell-1$, we construct a representation $\Psi(k ; \ell)$ of H_{ℓ} as follows :

$$
\Psi(k ; \ell):=\bigoplus_{\lambda \vdash r} \bigoplus_{T \in \operatorname{STab}(\lambda)} \psi^{(\overline{k-\operatorname{maj}(T)})} \otimes V^{\lambda}
$$

where $\overline{k-\operatorname{maj}(T)}=k-\operatorname{maj}(T) \bmod \ell$, and $\psi^{(i)}(i=0, \ldots, \ell)$ and $V^{\lambda}(\lambda \vdash r)$ are the irreducible representations of C_{ℓ} and S_{r}, respectively. Then it can be seen that the degree of $\Psi(k ; \ell)$ does not depend on k and hence so does $\operatorname{deg} \operatorname{Ind}_{H_{\ell}}^{S_{n}}(\Psi(k ; \ell))$. Actually, since $\operatorname{dim} V^{\lambda}=\sharp \operatorname{STab}(\lambda)$ and $\sum_{\lambda \vdash r} \sharp \operatorname{STab}(\lambda)^{2}=r$!, we have

$$
\begin{aligned}
\operatorname{deg} \Psi(k ; \ell) & =\sum_{\lambda \vdash r} \sum_{T \in \operatorname{STab}(\lambda)} \operatorname{deg}\left(\psi^{(\overline{k-\operatorname{maj}(T)})} \otimes V^{\lambda}\right) \\
& =\sum_{\lambda \vdash r} \sum_{T \in \operatorname{STab}(\lambda)} \sharp \operatorname{STab}(\lambda)=r!,
\end{aligned}
$$

and $\operatorname{deg} \operatorname{Ind}_{H_{\ell}}^{S_{n}}(\Psi(k ; \ell))=r!n!/ r!\ell=n!/ \ell$, which coincides with the dimension of $R_{n}(k ; \ell)$. Moreover, we show that these two representations are equivalent.

Theorem 6 (Main result). Let n be a positive integer. Fix an integer $\ell \in[n]$ and write $n=d \ell+r(0 \leq r \leq \ell)$. Let $H_{\ell} \cong C_{\ell} \times S_{r}$ be the subgroup of S_{n} and $\Psi(k ; \ell)(k=0,1, \ldots, \ell-1)$ its representations defined by

$$
\Psi(k ; \ell):=\bigoplus_{\lambda \vdash r} \bigoplus_{T \in \operatorname{STab}(\lambda)} \psi^{(\overline{k-\operatorname{maj}(T)})} \otimes V^{\lambda}
$$

where $\psi^{(i)}$ and V^{λ} stand for the irreducible representations of C_{ℓ} and S_{r}, respectively. Then, for $k=0,1, \ldots, \ell-1$, there is an isomorphism

$$
R_{n}(k ; \ell) \cong_{S_{n}} \operatorname{Ind}_{H_{\ell}}^{S_{n}}(\Psi(k ; \ell))
$$

as an S_{n}-module.

When $r=0$ or $1, H_{\ell}$ is a cyclic group and $\Psi(k ; \ell)$ is irreducible. In this case, the generator of H_{ℓ} coincides with a regular element of S_{n} defined by Springer [Sp].

The following Corollary follows trivially from Theorem 6 and the Theorem of KraskiewiczWeymann.

Corollary 7. The multiplicity of the irreducible representation V^{λ} in $R_{n}(k ; \ell)$ is equal to the number of standard Young tableaux of shape λ with major index congruent to k modulo ℓ, that is,

$$
\left[R_{n}(k ; \ell): V^{\lambda}\right]=\sharp\{T \in \operatorname{STab}(\lambda): \operatorname{maj}(T) \equiv k \bmod \ell\} .
$$

Example 8. In the case of $n=5$ and $\ell=3$, the subgroup H_{3} is $\langle(123)\rangle \times\langle(45)\rangle$, which is isomorphic to $C_{3} \times S_{2}$. Then we have

$$
R^{(5)}(k ; 3) \cong \cong_{S_{5}} \operatorname{Ind}_{H_{3}}^{S_{5}}\left(\psi^{(k)} \otimes V^{(2)}\right)
$$

for each $k=0,1,2$.
If we consider the case $n=11$ and $\ell=4$ (thus $r=3$), then the subgroup H_{4} is $\langle(1234)(5678)\rangle \times\langle(9,10),(10,11)\rangle$ isomorphic to $C_{4} \times S_{3}$. Hence, for each $R^{(11)}(k ; 4) \quad(k=$ $0,1,2,3)$ is isomorphic to the representation induced by

$$
\begin{gathered}
\Psi(0 ; 4)=\left(\psi^{(0)} \otimes V^{(3)}\right) \oplus\left(\psi^{(3)} \otimes V^{(2,1)}\right) \oplus\left(\psi^{(2)} \otimes V^{(2,1)}\right) \oplus\left(\psi^{(1)} \otimes V^{(1,1,1)}\right), \\
\Psi(1 ; 4)=\left(\psi^{(1)} \otimes V^{(3)}\right) \oplus\left(\psi^{(0)} \otimes V^{(2,1)}\right) \oplus\left(\psi^{(3)} \otimes V^{(2,1)}\right) \oplus\left(\psi^{(2)} \otimes V^{(1,1,1)}\right), \\
\Psi(2 ; 4)=\left(\psi^{(2)} \otimes V^{(3)}\right) \oplus\left(\psi^{(1)} \otimes V^{(2,1)}\right) \oplus\left(\psi^{(0)} \otimes V^{(2,1)}\right) \oplus\left(\psi^{(3)} \otimes V^{(1,1,1)}\right), \\
\Psi(3 ; 4)=\left(\psi^{(3)} \otimes V^{(3)}\right) \oplus\left(\psi^{(2)} \otimes V^{(2,1)}\right) \oplus\left(\psi^{(1)} \otimes V^{(2,1)}\right) \oplus\left(\psi^{(0)} \otimes V^{(1,1,1)}\right) . \\
\text { REFERENCES }
\end{gathered}
$$

[ADR] R. Adin, F. Brenti and Y. Roichman, Descent representations and multivariated statistics, preprint, 2001.
[G] A. M. Garsia, Combinatorics of the free Lie algebra and the symmetric group, in Analysis, et cetera..., Jürgen Moser Festschrift. Academic Press, New York, 1990, pp. 309-382.
[Gr] J. A. Green, The character of the finite general linear groups, Trans. Amer. Math. Soc., 80 (1955), 402-447.
[JS] A. Jöllenbeck and M. Shocker, Cyclic characters of symmetric groups, J. Alg. Combin. 12 (2000), 155-161.
[KW] W. Kraskiewicz and J. Weymann, Algebra of coinvariants and the action of Coxeter elements, Bayreuth. Math. Schr. 63 (2001), 265-284.
[LLT] A. Lascoux, B. Leclerc and J. -Y. Thibon, Green polynomials and Hall-Littlewood functions at roots of unity, Euroup. J. Combin. 15 (1994), 173-180.
[Mac] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Oxford University Press, 1995.
[R] C. Reutenauer, Free Lie Algebras, Oxford University Press, Oxford, 1993.
[Sp] T. A. Springer, Regular elements of finite reflection groups, Invent. Math. 25 (1974), 159-198.
[S] J. R. Stembridge, On the eigenvalues of representations of reflection groups and wreath products, Pacific J. Math. 140 (1989), 359-396.
H. Morita: School of Science, Tokai University, Hiratsuka 259-1292, Japan

E-mail address: moritah@msg.biglobe.ne.jp
T. Nakajima: Faculty of Economics, Meikai University, Urayasu 279-8550, Japan

E-mail address: tatsu@ka2.so-net.ne.jp

