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Abstract. Let Rn be the coinvariant algebra of the symmetric group Sn. The algebra has
a natural gradation. For a fixed ` (1 ≤ ` ≤ n), let Rn(k; `) (0 ≤ k ≤ ` − 1) be the direct
sum of all the homogeneous components of Rn whose degrees are congruent to k modulo
`. In this article, we will show that for each ` there exists a subgroup H` of Sn and a
representation Ψ(k; `) of H` such that each Rn(k; `) is induced by Ψ(k; `).

RÉSUMÉ. Soit Rn l’alègbre des coinvariants du groupe symétrique Sn. Cette algèbre a une
graduation naturelle. Pour un entier ` (1 ≤ ` ≤ n) fixe, soit Rn(k; `) (0 ≤ k ≤ ` − 1) la
somme directe de toutes les composantes homogènes de Rn dont les degrés sont congrus à
k modulo `. Dans cet article, nous montrerons que pour chaque ` il existe un sous-groupe
H` de Sn et une représentation Ψ(k; `) de H` tel que Rn(k; `) est induite par Ψ(k; `).

1. Introduction

A partition of a positive integer n is a weakly decreasing sequence λ = (λ1, λ2, · · · , λk)
of nonnegative integers with λ1 + λ2 + · · · + λk = n. We also denote the partition λ by
(1m12m2 · · ·nmn), where mi is the multiplicity of i in λ for 1 ≤ i ≤ n. If λ is a partition of n,
we simply write λ ` n. The Young diagram of a partition λ is a set of points

Yλ = {(i, j) ∈ Z2|1 ≤ j ≤ λi},
in which we regard the coordinates increase from left to right, and from top to bottom. Let
[n] denote the set of integers {1, 2, . . . , n}. A standard tableau T of shape λ is a bijection
T : Yλ → [n] with the condition that the assigned numbers strictly increase along both the
rows and the columns in Yλ. We illustrate the Young diagram Yλ and a standard tableau T
for λ = (3, 2, 2) ` 7 in the following:

• • •
Yλ = • • ,

• •

1 3 4
T = 2 5 .

6 7

We denote by STab(λ) the set of all the standard tableaux of shape λ.
For a standard tableau T of shape λ ` n, define the descent set Des(T ) by

Des(T ) := {i ∈ [n− 1] | i + 1 is located in a lower row than i in T} .

We call the sum of the elements of D(T ) the major index of T , and denote it by maj(T ). In
the preceding example, Des(T ) = {1, 4, 5} and maj(T ) = 1 + 4 + 5 = 10.

Let Sn be the symmetric group of degree n, and

Pn = C[x1, x2, . . . , xn]
1
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denote the polynomial ring with n variables over C. As customary, Sn acts on Pn from the
left as permutations of variables by setting

(wf)(x1, x2, . . . , xn) = f(xw(1), xw(2), . . . , xw(n)) ,

where w ∈ Sn and f(x1, x2, . . . , xn) ∈ Pn. Let In = ⊕d≥0I
d denote the graded Sn-stable

ideal of Pn generated by the elementary symmetric functions. Hence the quotient algebra
Rn = Pn/In is also a graded Sn-module. We write its homogeneous decomposition as

Rn =
⊕

d≥0

Rd
n,

and call Rn the coinvariant algebra of Sn It is well known that the coinvariant algebra Rn

affords the left regular representation of Sn.
Let us consider, for each integer k = 0, . . . , n− 1, the direct sum Rn(k; n) of homogeneous

components of R whose degrees are congruent to k modulo n, i.e.,

Rn(k; n) =
⊕

d≡k mod n

Rd
n .

Since each homogeneous component Rd
n is Sn-invariant, these subspaces also afford represen-

tations of Sn, and the dimensions of these representations do not depend on k, i.e.,

dim Rn(k; n) = (n− 1)!

for all k = 0, . . . , n− 1.
In [KW], W. Kraskiewicz and J. Weymann consider these Sn-modules, and prove that each

Rn(k; n) is induced from a corresponding irreducible representation of a cyclic subgroup of
Sn (see also [G, Proposition 8.2] [R, Theorem 8.9]). Precisely, let γ be the cyclic permutation
(12 · · ·n), and Cn the subgroup of Sn generated by γ. The cyclic subgroup Cn of degree n
has n inequivalent irreducible representations

ψ(k) : Cn −→ C× , γ 7−→ ζk
n ,

where ζn is the primitive root of unity, and the following equivalence of Sn-modules holds
for each k = 0, . . . n− 1:

Rn(k; n) ∼=Sn IndSn
Cn

(
ψ(k)

)
.

(Remark : In fact, the number n by which we take modulo is the Coxeter number of Sn, i.e.,
the order of the Coxeter elements of the Coxeter group of type An−1. They also obtain similar
results for Coxeter groups of type Bn and Dn. Stembridge obtains more general results [S]. He
treats the Complex reflection groups G and shows that the coinvariant algebra of G has the
similar properties for the irreducible representation of the cyclic subgroup of G generated by
a Springer’s regular element [Sp]. We can easily see that the Coxeter elements are regular.)

They also prove that the multiplicity of a irreducible representation of Sn in Rd
n (d ≥ 0)

is described by the major index of standard tableaux. It is well known that the irreducible
representations of Sn are in one to one correspondence with the partitions of n. For λ ` n
let V λ denote the corresponding irreducible representation of Sn. They showed that the
multiplicity [ Rd

n : V λ ] of V λ on Rd
n equals the number of standard tableaux whose major

index are d :
[ Rd

n : V λ ] = ]{T ∈ STab(λ) | maj(T ) = d}.
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(See also [G, Theorem 8.6] [R, Theorem 8.8]. A different approach to the result of Kraskiewicz-
Weymann, using the multi major index, is discussed by A. Jöllenbeck and M. Schocker [JS].)
Combining these results, the multiplicities of the irreducible representation V λ on the in-
duced representations IndSn

Cn

(
ψ(k)

) ∼=Sn Rn(k; n) are easily follows :

[Rn(k; n) : V λ] = ]{T ∈ STab(λ) | maj(T ) ≡ k mod n}.
It should be mentioned here that a more refined result is obtained by R. Adin, F. Brenti

and Y. Roichman [ADR] recently. For each subset S ⊆ [n− 1], they construct an Sn-module
RS satisfying

Rd
n =

⊕
S

RS
n ,

where the direct sum is taken over the subsets S ⊆ [n−1] such that
∑

i∈S i = d, and describe
the multiplicities of irreducible constituents on RS

n as follows :

[ RS
n : V λ ] = ]{T ∈ STab(λ) | Des(T ) = S} .

They also consider an analogue of the theorem of Kraskiewicz and Weymann for the Weyl
groups of type B, and obtain a finer result on the irreducible decompositions of the coinvari-
ant algebras of type B than one already obtained by Stembridge in [S].

The aim of the present article is to achieve a generalization of the results of [KW] in
the following sense. Fix an integer ` ∈ [n]), and consider subspaces of Rn obtained by
gathering homogeneous components whose degrees are congruent modulo `. Precisely, for
each k = 0, . . . , `− 1 we will consider

Rn(k; `) =
⊕

d≡k mod `

Rd
n.

We can see that the dimension of the space Rn(k; `) is independent of k, i.e.,

dim Rn(k; `) =
n!

`

for all 0 ≤ k ≤ ` − 1. In this article we will seek out a systematic realization of each
submodule Rn(k; `) as a Sn-module induced from a subgroup of Sn that is determined by `.
First we settle a subgroup H` of Sn for each ` ∈ [n], then construct a representation Ψ(k; `)
of H` for each k = 0, . . . , `− 1. Finally, we will show that

Rn(k; `) ∼=Sn IndSn
H`

(Ψ(k; `))

for each ` and k. We will give here a more precise information. For an fixed `, say n = d`+r
(0 ≤ r ≤ `− 1). Then we can choose a subgroup H` of Sn isomorphic to a direct product of
a cyclic groups of degree ` and the symmetric group of degree r:

H`
∼= C` × Sr .

We construct a representation Ψ(k; `) of H`, which is not necessarily irreducible, in a simple
manner. Comparing their graded characters as polynomials in q modulo q`−1, we can verify
that, for each k, the representation Rn(k; `) of Sn is induced by the representation Ψ(k; `)
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of H`. We can easily obtain the multiplicity [R(k; `) : ψλ] of the irreducible representation
V λ (λ ` n) in Rn(k; `) as

[ Rn(k; `) : ψλ ] = ]{T ∈ STab(λ) | maj(T ) ≡ k mod `}
by the theorem of Kraskiewicz and Weymann.

2. Coinvariant algebra and its graded character

Let Rn = ⊕d≥0R
d
n be the coinvariant algebra of Sn and its homogeneous decomposition.

Let ` ∈ [n] be a fixed integer. For each k = 0, 1, . . . , `− 1, define

Rn(k; `) :=
⊕

d≡k mod `

Rd
n ,

i.e.,

Rn =
`−1⊕

k=0

Rn(k; `) .

Let q be an indeterminate over C. Define the graded character of Rn by

Xn(q) =
∑

d≥0

qdχn,d,

where χn,d is the character of the representation Rd
n of Sn. We denote by Xn,ρ(q) and χn,d

ρ

the value of Xn(q) and χn,d at elements of cycle-type ρ ` n, respectively. Precisely, Xn,ρ(q)
is a polynomial in q whose coefficient in qd is χn,d

ρ .
The graded character of Rn evaluated at a partition ρ = (1m12m2 · · ·nmn) ` n is given by

Xn,ρ(q) =
(1− q)(1− q2) · · · (1− qn)

(1− q)m1(1− q2)m2 · · · (1− qn)mn

([Gr, Appendix], see also [G, Proposition 8.1]). By the formula for the graded character we
obtain the following results, which play a key role in the proof of main theorem.

Proposition 1. Fix a integer ` ∈ [n]. Let p be a divisor of `, n = ep + s (0 ≤ s ≤ p − 1),
and θ a primitive p-th root of unity. If λ ` n satisfies

Xn,ρ(θ) 6= 0,

then ρ = (1m1 · · · smspe), where m1 + · · ·+ sms = s.

Proposition 2. Let ` ∈ [n] be a fixed integer. Then the dimension of Rn(k; `) is independent
of the choice of k = 0, 1, . . . , `− 1, i.e., we have

dim Rn(k; `) =
n!

`
for all k = 0, 1, . . . , `− 1.

Proposition 3. Let n be a positive integer, and choose an integer ` (1 ≤ ` ≤ n). If n = d`+r
(0 ≤ r < `), then we have

Xn(q) ≡ IndSn
Sd`×Sr

(Xd`(q) Xr(q)) mod q` − 1 .
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Note that the polynomial Xn,ρ(q) is also known as a Green polynomial Q
(1n)
ρ (q) of type A

[Gr][Mac,III.7]. Translating Proposition 1 and Proposition 3 into the language of the Green
polynomials, we obtain a formula for the Green polynomials at a root of unity (Cf. [LLT]).

Corollary 4. Let n > ` be positive integers, p a divisor of `, and θ a primitive p-th root of
unity. If we write n = d` + r = ep + s (0 ≤ r ≤ `− 1, 0 ≤ s ≤ p− 1), then

(a) Q
(1n)
ρ (θ) = 0 unless ρ = (1m1 · · · smspe) and m1 + 2m2 + · · ·+ sms = s.

(b) If ρ = (1m1 · · · smspe),

Q(1n)
ρ (q) ≡ Q

(1d`)

ρ1 (q) Q
(1r)

ρ2 (q) mod q` − 1 ,

where ρ1 = (pe−f ) ` d` and ρ2 = (1m1 · · · smspf ) ` r.

3. Main result

Let n be a positive integer, and suppose that n = d` + r, where 0 ≤ r ≤ `− 1.
First we consider the case of r = 0, that is n = d`. Let C` be the cyclic group of degree `,

and we embed C` into Sn by

C`
∼= 〈γ1γ2 · · · γd〉 ⊂ Sn ,

where γ1 = (1, 2, . . . , `), γ2 = (`+1, `+1, . . . , 2`), . . . , γd = ((d−1)`+1, . . . , d`). The cyclic
group C` has ` inequivalent irreducible representations ψ(0), . . . , ψ(`−1), i.e.,

ψ(k) : C` −→ C× , γ1γ2 · · · γd 7−→ ζk
` ,

where ζ` denotes a primitive `-th root of unity. Let

τ (k) :=
1

`

`−1∑
i=0

ζ−ik
` (γ1 · · · γd)

i (k = 1, 2, . . . , `) .

We can easily check that each τ (k) is an idempotent by a direct calculation.
Let C[Sn] be the group algebra of Sn, and τ (k) an idempotent of C[Sn] defined above.

Consider the representation of Sn afforded by the left ideal C[Sn]τ (k), which is equivalent to
the induced representation IndSn

C`

(
ψ(k)

)
. Its character χ[C[Sn]τ (k)] is given by Γnτ

(k), where
Γn is an operator defined by

Γn : C[Sn] −→ C[Sn] , ρ 7−→
∑
w∈Sn

w−1ρw

(see e.g., [G, Proposition 5.2] [R, Lemma 8.4]). Here we regard an element ρ =
∑

w∈Sn
ρw w ∈

C[Sn] as a function on Sn that maps w ∈ Sn to the coefficient ρw. Equivalently,

IndSn
C`

(
χ[ψ(k)]

)
= Γnτ (k) ,

where χ
[
ψ(k)

]
stands for the C`-character of ψ(k).

By Proposition 2, the dimension of the space

Rn(k; `) =
⊕

d≡k mod `

Rd
n
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is constant with respect to k = 0, . . . , ` − 1. This fact seems to imply that every Rn(k; `)
(k = 0, . . . , `) are induced from the same dimensional representations of some subgroup of
Sn. We verify in the following that a irreducible representation of C` yields each Rn(k; `).

Proposition 5. Let n be a positive integer and ` a divisor of n. Write d = n/`. Let
γi = ((i − 1)` + 1, (i − 1)` + 2, . . . , i`) ∈ Sn (i = 1, . . . , d) be a cyclic permutation, C`

the cyclic subgroup of Sn generated by γ1 · · · γd, and ψ(k) (k = 0, . . . , ` − 1) its irreducible
representation. Then, we have an isomorphism of Sn-modules

Rn(k; `) ∼= Sn IndSn
C`

(
ψ(k)

)
(k = 0, 1, . . . , `− 1) .

Next we consider the case of n = d` + r and r 6= 0. For each ` = 1, 2, . . . , n, we define a
subgroup H` of Sn by

H` = 〈γ1γ2 · · · γd〉 × Sr

∼= C` × Sr ,

where γi is the cyclic permutation ((i−1)`+1, (i−1)`+2, . . . , i`), and the symmetric group
Sr of degree r is identified as a subgroup {w ∈ Sn | w(i) = i for all i = 1, 2, . . . , n− r} of Sn.

For each k = 0, 1, . . . , `− 1, we construct a representation Ψ(k; `) of H` as follows :

Ψ(k; `) :=
⊕

λ`r

⊕

T∈STab(λ)

ψ(k−maj(T )) ⊗ V λ ,

where k −maj(T ) = k − maj(T ) mod `, and ψ(i) (i = 0, . . . , `) and V λ (λ ` r) are the
irreducible representations of C` and Sr, respectively. Then it can be seen that the degree
of Ψ(k; `) does not depend on k and hence so does deg IndSn

H`
(Ψ(k; `)). Actually, since

dim V λ = ] STab(λ) and
∑

λ`r ]STab(λ)2 = r!, we have

deg Ψ(k; `) =
∑

λ`r

∑

T∈STab(λ)

deg
(
ψ(k−maj(T )) ⊗ V λ

)

=
∑

λ`r

∑

T∈STab(λ)

]STab(λ) = r! ,

and deg IndSn
H`

(Ψ(k; `)) = r!n!/r!` = n!/`, which coincides with the dimension of Rn(k; `).
Moreover, we show that these two representations are equivalent.

Theorem 6 (Main result). Let n be a positive integer. Fix an integer ` ∈ [n] and write
n = d`+r (0 ≤ r ≤ `). Let H`

∼= C`×Sr be the subgroup of Sn and Ψ(k; `) (k = 0, 1, . . . , `−1)
its representations defined by

Ψ(k; `) :=
⊕

λ`r

⊕

T∈STab(λ)

ψ(k−maj(T )) ⊗ V λ ,

where ψ(i) and V λ stand for the irreducible representations of C` and Sr, respectively. Then,
for k = 0, 1, . . . , `− 1, there is an isomorphism

Rn(k; `) ∼=Sn IndSn
H`

(Ψ(k; `)) .

as an Sn-module.
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When r = 0 or 1, H` is a cyclic group and Ψ(k; `) is irreducible. In this case, the generator
of H` coincides with a regular element of Sn defined by Springer [Sp].

The following Corollary follows trivially from Theorem 6 and the Theorem of Kraskiewicz-
Weymann.

Corollary 7. The multiplicity of the irreducible representation V λ in Rn(k; `) is equal to
the number of standard Young tableaux of shape λ with major index congruent to k modulo
`, that is,

[Rn(k; `) : V λ] = ]{T ∈ STab(λ) : maj(T ) ≡ k mod `} .

Example 8. In the case of n = 5 and ` = 3, the subgroup H3 is 〈(123)〉 × 〈(45)〉, which is
isomorphic to C3 × S2. Then we have

R(5)(k; 3) ∼=S5 IndS5
H3

(
ψ(k) ⊗ V (2)

)

for each k = 0, 1, 2.
If we consider the case n = 11 and ` = 4 (thus r = 3), then the subgroup H4 is

〈(1234)(5678)〉 × 〈(9, 10), (10, 11)〉 isomorphic to C4 × S3. Hence, for each R(11)(k; 4) (k =
0, 1, 2, 3) is isomorphic to the representation induced by

Ψ(0; 4) = (ψ(0) ⊗ V (3))⊕ (ψ(3) ⊗ V (2,1))⊕ (ψ(2) ⊗ V (2,1))⊕ (ψ(1) ⊗ V (1,1,1)) ,

Ψ(1; 4) = (ψ(1) ⊗ V (3))⊕ (ψ(0) ⊗ V (2,1))⊕ (ψ(3) ⊗ V (2,1))⊕ (ψ(2) ⊗ V (1,1,1)) ,

Ψ(2; 4) = (ψ(2) ⊗ V (3))⊕ (ψ(1) ⊗ V (2,1))⊕ (ψ(0) ⊗ V (2,1))⊕ (ψ(3) ⊗ V (1,1,1)) ,

Ψ(3; 4) = (ψ(3) ⊗ V (3))⊕ (ψ(2) ⊗ V (2,1))⊕ (ψ(1) ⊗ V (2,1))⊕ (ψ(0) ⊗ V (1,1,1)) .
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