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Abstract. We translate the concept of succession rule and the ECO method into matrix notation,
introducing the concept of a production matrix. Among other things, this allows us to combine

our method with other enumeration techniques using matrices, such as the method of Riordan

matrices. Moreover, we show that certain operations on production matrices correspond to well

known operations on the numerical sequences determined by them.

Nous transférons l’idée de règle de succession et la mèthode ECO dans la notation des ma-

trices, en introduisant l’idée de matrice de production. Entre autres choses, ça nous a permis de

concilier notre méthode avec d’autres techniques d’énumération qui utilisent des matrices, comme

la méthode des matrices de Riordan. En autre, nous montrons que certaines opérations sur les
matrices de production correspondent à des opérations bien connues sur les séquences numériques
qu’elles déterminant.

1. Introduction

A succession rule is a formal system that defines a non-decreasing sequence of positive integers.
Succession rules have been studied in various works, for example [BBDFGG] and [FPPR], and they
are directly related to an enumerative method called ECO method [BDLPP]. The aim of the present
paper is to provide a computational version of the ECO method and succession rules by encoding the
latter by matrices, called production matrices. Indeed any succession rule has a simple representation
in terms of production matrices, which allows us to use matrix notation to handle the rules from the
enumerative point of view. The idea of translating a combinatorial theory into a theory of infinite
matrices is actually a current trend in discrete mathematics. Riordan arrays [DS, R, SGWW, Sp],
recursive matrices [BBN], Aigner’s admissible matrices [A1, A2], to cite only a few, represent an
explicit justification of the previous statement. A comparison between the Riordan array theory and
the production matrices method is established; however it surely deserves to be further investigated.
In particular, the new concept of exponential Riordan matrix [DS] is studied for what concerns its
relations with the present topic. Another problem considered in the next pages is that of defining
operations on succession rules, reflecting well-known operations on the numerical sequences they
determine. It turns out that production matrices provide a very neat description of such operations;
several examples and applications are scattered throughout the text to illustrate this fact.

2. Basic definitions

A succession rule is a formal system consisting of an axiom (a), a ∈ N+, and a set of productions:

{(kt) (e1(kt))(e2(kt)) . . . (ekt
(kt)) : t ∈ N},



where ei : N+ −→ N+, which explains how to derive the successors (e1(k)), (e2(k)), . . . , (ek(k)) of
any given label (k), k ∈ N+. In general, for a succession rule Ω, we use the more compact notation:

(1) Ω :

{

(a)
(k) (e1(k))(e2(k)) . . . (ek(k)), for k ∈ N+.

The positive integers (a), (k), (ei(k)), are called labels of Ω. The rule Ω can be represented by
means of a generating tree, that is a rooted tree whose vertices are the labels of Ω; (a) is the label
of the root and each node labelled (k) has k sons labelled by e1(k), . . . , ek(k) respectively, according
to the production of (k) in (1). A succession rule Ω defines a sequence of positive integers (an)n≥0,
an being the number of the nodes at level n in the generating tree defined by Ω. By convention the
root is at level 0, so a0 = 1. The function fΩ(x) =

∑

n≥0 anxn is the generating function determined

by Ω. We refer to [BDLPP] for further details on these topics.
In this paper we propose a new approach for the study of succession rules, based on linear algebra

tools.
Instead of representing succession rules by generating trees, we represent them by infinite matrices

P = (pk,i)k,i≥0. Assume that the set of the labels of a succession rule is {(lk)}k, and in particular
that l0 is the label of the axiom. Then we define pk,i to be the number of labels li produced by label
lk. We call P the production matrix of the given succession rule. Observe that the first row of a
production matrix gives precisely the production of the axiom.

The labels do not occur explicitly in this matrix representation of the succession rule. However,
they are the row sums of the matrix. In particular, the label l0 of the axiom is the first row sum of
P .

Example. To the succession rule






(2)
(2) (3)2

(k) (3)(4) . . . (k)(k + 1)2,
(2)

there corresponds the production matrix

(3) P =











0 2 0 0 . . .

0 1 2 0 . . .

0 1 1 2 . . .
...

...
...

...
. . .











.

Writing the succession rule as

(2) (2)0(3)2

(3) (2)0(3)1(4)2

(4) (2)0(3)1(4)1(5)2

. . . . . . . . . . . . . . . . . . . ,

the matrix P is nothing but the matrix of the exponents (where an exponent is zero if and only if
the label it refers to does not appear in the production).

In the generating tree at level zero we have only one node with label l0(= 2). This is represented
by the row vector r0 =

(

1 0 0 0 0 0 0 . . .
)

.

At the next levels of the generating tree the distribution of the labels l1, l2, ... is given by the row
vectors



r1 = r0P =
(

0 2 0 0 0 0 0 . . .
)

r2 = r1P =
(

0 2 4 0 0 0 0 . . .
)

r3 = r2P =
(

0 6 8 8 0 0 0 . . .
)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Stacking these row matrices, we obtain the matrix

AP =















1 0 0 0 0 0 . . .

0 2 0 0 0 0 . . .

0 2 4 0 0 0 . . .

0 6 8 8 0 0 . . .
...

...
...

...
...

...
. . .















.

The row sums of the above matrix are 1, 2, 6, 22, 90, 394, 1806, . . ., i.e. the large Schröder numbers
(A006318 in [Sl]). This is the sequence corresponding to the succession rule of our example. We also
recall that matrices like AP (where the entry (n, k) gives the number of nodes labelled lk at level n

of the generating tree) were also studied in [MV], where they have been called AGT matrices. In
general, we will refer to AP as the ECO matrix induced by P .

Remarks. Let P be the production matrix of a given succession rule Ω. Throughout the whole
paper we will denote by u> the infinite row vector (1, 0, 0, . . . , 0, . . .) and by e the column vector
(1, 1, 1, . . .)>.

The following facts are easy to verify; we state them without any further explanation.

(i) The labels of the nodes of the generating tree corresponding to Ω are the row sums of P .
If two row sums happen to be equal, then, as labels, they will be considered to be distinct.
This can be achieved by using, for example, distinguishing subscripts; in the vocabulary of
succession rules, these are called colored succession rules (see [FPPR]).

(ii) The distribution of the nodes having various labels at the various levels is given by the ECO
matrix

AP =









u>

u>P

u>P 2

...









(indeed, we have r0 = u>, r1 = r0P = u>P, r2 = r1P = u>P 2, . . .). The same thing
can be expressed in a concise way by the matrix equality

(4) DAP = AP P,

where D = (δi,j+1)i,j≥0 (δ is the usual Kronecker delta). In some works [Sh] the matrix P

is also called the Stieltjes transform matrix of AP .
(iii) The sequence an induced by the succession rule is given by an = u>Pne.
(iv) The bivariate generating function of the matrix AP is

G(t, z) = u>(I − zP )−1











1
t

t2

...











.



(v) The generating function of the sequence corresponding to the succession rule is fP (z) =
u>(I − zP )−1e.

(vi) The exponential generating function of the sequence corresponding to the succession rule is
FP (z) = u> exp(zP )e.

Example. We intend to find the sequence determined by the production matrix

(5) P =















0 1 0 0 0 . . .

0 1 1 0 0 . . .

0 0 2 1 0 . . .

0 0 0 3 1 . . .
...

...
...

...
...

. . .















.

Simple computations show that the first row of exp(zP ) is
(

1 ez − 1 1
2! (e

z − 1)2 1
3! (e

z − 1)3 . . .
)

.

For the exponential generating function induced by P we obtain GP (z) = eez−1. The correspond-
ing sequence is 1,1,2,5,15,52,203,876,... (A000110 in [Sl]; Bell numbers).

3. Operations on production matrices

In this section we will define some operations to be performed on production matrices in order to
describe usual operations on numerical sequences. Several ideas developed in this section have been
suggested by [FPPR, PPR]; we provide their translation into the vocabulary of production matrices
with a probably more rigorous presentation.

In the sequel we will write P −→ a0, a1, a2, ... to mean that (an)n≥0 is the numerical sequence
determined by the production matrix P . Similar expressions (like P −→ (an)n≥0, P −→ fP (z) =
∑

n anzn) are intended similarly.

Proposition 3.1. If P −→ fP (z) and k is a positive integer, then kP −→ fP (kz).

Proof. Using generating functions we have fkP (z) = u>(I − zkP )−1e = fP (kz). �

Proposition 3.2. If P −→ (an)n≥0, then

M
def
= P + I −→

(

n
∑

k=0

(

n

k

)

ak

)

n≥0

,

the binomial transform of (an).

Proof. Expanding the binomial we obtain

u>(P + I)ne =
n
∑

k=0

(

n

k

)

u>P ke =
n
∑

k=0

(

n

k

)

ak. �

Proposition 3.3. If P −→ a0, a1, a2, ... , then P q −→ a0, aq, a2q, a3q, ... . In particular, P 2 −→
a0, a2, a4, ... .

Proof. Let A and B be the matrices induced by P and P q, respectively. Then the rows of B

are u>, u>P q, u>P 2q, . . ., which are rows 1, q + 1, 2q + 1, . . . of the matrix A. Consequently, the row
sums of B are a0, aq, a2q, a3q, . . .. �



Often in the sequel we will deal with two numerical sequences, and we would like to describe what
happens to production matrices when we consider usual algebraic operations on the sequences. To
do so, we need to tackle a technical problem. If the production matrices of the sequences under
consideration are both infinite, it could be meaningless to consider block matrices in which some
of the blocks are the production matrices above. For example, if P and Q are infinite production

matrices, then the expression

(

0 P

0 Q

)

does not define a matrix (not even an infinite one), because

of the presence of the infinite matrix P as a block in the upper part of the array. We will make up
for this predicament by reshuffling the lines of the two production matrices. Observe that a sequence
defined by a given production matrix P is determined up to a permutation of its rows, provided
that:

(1) the first row remains fixed,
(2) every permutation of the rows is followed by the same permutation of the columns.

Proposition 3.4. If P −→ 1, a1, a2, . . . , and Q −→ 1, b1, b2, . . . , then

(6) M
def
=





0 u>P u>Q

0 P 0
0 0 Q



 −→ 1, a1 + b1, a2 + b2, . . . .

Proof. Taking into account that u>Mk =
(

0 u>P k u>Qk
)

, for the matrix AM induced by M

we obtain

AM =











1 0 0
0 u>P u>Q

0 u>P 2 u>Q2

...
...

...











.

From here it follows at once that the row sums of AM are 1, a1 + b1, a2 + b2, . . . . �

Proposition 3.5. If P −→ a0, a1, a2, . . . , and Q −→ b0, b1, b2, . . . , then

M
def
=

(

P eu>Q

0 Q

)

−→ c0, c1, c2, . . . ,

where (cn) is the convolution of the sequences (an) and (bn).

Proof. We have

(I − zM)−1 =

(

(I − zP )−1 (I − zP )−1eu>[(I − zQ)−1 − I]
? ?

)

,

where the entries not shown are irrelevant. Now,

fM (z) = u>(I − zM)−1e

=
(

u> 0
)

(

(I − zP )−1 (I − zP )−1eu>[(I − zQ)−1 − I]
? ?

)(

e

e

)

= u>(I − zP )−1eu>(I − zQ)−1e = fP (z)fQ(z). �



Example. Taking for both P and Q the matrix

(

0 1
1 1

)

, we obtain the production matrix









0 1 0 1
1 1 0 1
0 0 0 1
0 0 1 1









that induces the convolution of the Fibonacci sequence with itself, i.e. 1, 2, 5, 10, 20, 38, 71, 130,. . .
(A001629 in [Sl]).

Corollary 3.1. If P −→ a0, a1, a2, . . . , then

M
def
=

(

1 u>P

0 P

)

−→ a0, a0 + a1, a0 + a1 + a2, . . . ,

the sequence of the partial sums of (an).

Proof. Just observe that the sequence of the partial sums of a sequence an is the convolution of
that sequence with the sequence (1, 1, 1, . . .), the latter having (1) as its production matrix. �

Example. We take the production matrix P given in (??), inducing the Fibonacci sequence. Then

M =





1 0 1
0 0 1
0 1 1





induces the sequence of partial sums 1, 2, 4, 7, 12, 20, 33, 54, 88, 143,. . . (A000071 in [Sl]). Note
that these are the Fibonacci numbers minus 1.

Proposition 3.6. If P −→ a0, a1, a2, . . . , and Q −→ b0, b1, b2, . . . , then P ⊗ Q −→
a0b0, a1b1, a2b2, . . . , where ⊗ denotes Kronecker product.

Proof. We recall some simple properties of the Kronecker product, namely that (U ⊗ V )n =
Un ⊗ V n and that the first row sum of a Kronecker product U ⊗ V is the product of the first row
sum of U and the first row sum of V . Now, if (cn)n≥0 is the sequence induced by P ⊗ Q, then

cn = u>(P ⊗ Q)ne = u>(Pn ⊗ Qn)e = (u>Pne)(u>Qne) = anbn. �

Example. Taking P =

(

0 1
1 1

)

and Q =

(

1 1
2 1

)

, the production matrices of the Fibonacci and

Pell sequences, respectively, we obtain that

P ⊗ Q =









0 0 1 1
0 0 2 1
1 1 1 1
2 1 2 1









is the production matrix of the Hadamard (componentwise) product 1, 2, 10, 36, 145, 560, 2197,
8568, . . . of the Fibonacci and Pell sequences (A001582 in [Sl]).

Proposition 3.7. If P −→ fP (z) , then

M
def
=

(

0 u>

0 P + eu>

)

−→
1

1 − zfP

.



Proof. Standard computation yields

(I − zM)−1 =

(

1 zu>(I − zP − zeu>)−1

? ?

)

,

where the entries not shown are irrelevant. Denoting X = (I − zP )−1, Y = (I − zP − zeu>)−1,

we have fP (z) = u>Xe, fM (z) = 1+ zu>Y e and X(I − zP ) = I, I + zeu>Y = (I − zP )Y . Now

zfP (z)fM (z) = zu>Xe(1 + zu>Y e) = zu>X(I + zeu>Y )e = zu>X(I − zP )Y e = zu>Y e,

i.e. zfP (z)fM (z) = fM (z) − 1, which is equivalent to the assertion of the theorem. �

The next result uses the techniques developed throughout the paper to provide a new class of
operations on production matrices (and so also on succession rules).

Proposition 3.8. Let b, c, and r be nonnegative integers. If P −→ fP (z) , then

M
def
=

(

b ru>

ce P

)

−→
1 + rzfP (z)

1 − bz − rcz2fP (z)
.

Proof. Let

(I − zM)−1 =

(

α y>

? ?

)

,

where the entries not shown are irrelevant. A relatively simple computation gives

α =
1

1 − bz − rcz2fP (z)
, y> =

rz

1 − bz − rcz2fP (z)
u>(I − zP )−1.

Now,

fM (z) = α + y>e =
1 + rzfP (z)

1 − bz − rcz2fP (z)
. �

The above theorem has numerous applications.
Example. Consider the production matrix

M =











2 1 0 . . .

2 1 1 . . .

2 1 1 . . .
...

...
...

. . .











.

It can be written as M =

(

2 u>

2e P

)

, where

P =











1 1 0 . . .

1 1 1 . . .

1 1 1 . . .
...

...
...

. . .











.

However, it is known that P induces the generating function C(z)−1
z

of the Catalan numbers,

where C(z) = 1−
√

1−4z
2z

. Now, taking b = 2, c = 2, r = 1, and fP (z) = C(z)−1
z

in Theorem 3.8, after

some elementary computations we obtain fM (z) = 1−
√

1−4z

2z
√

1−4z
, the generating function of the sequence

(

2n−1
n

)

of half the central binomial coefficients.



The following, immediate corollary of Proposition 3.8 provides sequences for production matrices
having a certain form.

Corollary 3.2. Let P be an infinite production matrix of the form

P =

(

b ru>

ce P

)

,

where b, c, r are nonnegative integers. Then the induced generating function fP (z) satisfies the
quadratic equation

rcz2f2
P − (1 − bz − rz)fP + 1 = 0.

Examples.
b=0, c=1, r=1 yields 1,1,2,4,9,21,51,127,... (the Motzkin numbers), A001006;
b=1, c=1, r=1 yields 1,2,5,14,42,132,429,1430,... (the Catalan numbers), A000108;
b=1, c=1, r=2 yields 1,3,11,45,197,903,4279,20793,... (the little Schroder numbers), A001003;
b=2, c=1, r=1 yields 1,3,10,36,137,543,2219,9285,... (number of restricted hexagonal polyominoes

with n cells), A002212;
Remark. We would like to point out that Corollary 3.2 can be used also for finding production

matrices for certain sequences. Namely, if the generating function f of a sequence satisfies a quadratic
equation that can be identified with rcz2f2 − (1 − bz − rz)f + 1 = 0 for some nonnegative integers
b, c, and r, then the production matrix P follows at once. For example, the generating function of
the little Schröder numbers satisfies the equation 2z2f2 − (1− 3z)f + 1 = 0. Consequently, we look
for nonnegative integers b, c, r such that rc = 2, b + r = 3. We obtain two solutions b = 1, c = 1,
r = 2 and b = 2, c = 2, r = 1, leading to two production matrices:











1 2 0 0 . . .

1 1 2 0 . . .

1 1 1 2 . . .
...

...
...

...
. . .











and











2 1 0 0 . . .

1 2 1 0 . . .

1 1 2 1 . . .
...

...
...

...
. . .











.

4. Riordan production matrices

An infinite lower triangular matrix A is called a Riordan matrix if its column k (k = 0, 1, 2, ...)
has generating function d(z)(zh(z))k, where d(z) and h(z) are formal power series with d(0) 6= 0. If,
in addition, h(0) 6= 0, then A is said to be a proper Riordan matrix. We may write A = (d(z), h(z)).

Riordan matrices were first introduced in [SGWW]. Proper Riordan matrices are characterized
by the following fundamental property [R, Sp]: if A = (d(z), h(z)) = (dn,k), then there exist unique
sequences α = (α0, α1, α2, ...) (α0 6= 0) and ζ = (ζ0, ζ1, ζ2, ...) such that

(i) every element in column 0 can be expressed as a linear combination of all the elements in
the preceding row, the coefficients being the elements of the sequence ζ, i.e.

(7) dn+1,0 = ζ0dn,0 + ζ1dn,1 + ζ2dn,2 + ... ;

(ii) every element dn+1,k+1, not lying in column 0 or row 0, can be expressed as a linear com-
bination of the elements of the preceding row, starting from the preceding column on, the
coefficients being the elements of the sequence α, i.e.

(8) dn+1,k+1 = α0dn,k + α1dn,k+1 + α2dn,k+2 + ... .



Conversely, the existence of such sequences α and ζ ensure that the matrix A is a proper Riordan
matrix.

By abuse of notation, by α, ζ we shall denote also the generating functions of these sequences.
The sequences α and ζ will be called the α-sequence and the ζ-sequence of the Riordan matrix.

At this stage, it is natural to investigate the relationship between our theory of production
matrices and the theory of Riordan matrices. It turns out that, if the ECO matrix AP , induced by
a production matrix P , is Riordan, then the matrix P has a very simple structure.

Proposition 4.1. Let P be an infinite production matrix and let AP be the matrix induced by P .
Then AP is a proper Riordan matrix if and only if P is of the form

(9) P =















ζ0 α0 0 0 0 . . .

ζ1 α1 α0 0 0 . . .

ζ2 α2 α1 α0 0 . . .

ζ3 α3 α2 α1 α0 . . .
...

...
...

...
...

. . .















.

Moreover, columns 0 and 1 of the matrix P are the ζ- and α-sequences, respectively, of the proper
Riordan matrix AP .

The above theorem, formulated in terms of succession rules, is the main result of [MV]. Because
of the above property, a production matrix P having the form (9) will be called a Riordan production
matrix.

In the case of a given Riordan production matrix P , having (ζn)n≥0 and (αn)n≥0 as its first two
columns, one can easily determine the bivariate generating function G(t, z) of the matrix AP induced
by P and then, obviously, also the generating function fP (z) of the sequence induced by P . For this
result we use some known properties of Riordan matrices (see [Sp]).

Proposition 4.2. Let P be a Riordan production matrix and let ζ(z) and α(z) be the generating
functions of its first two columns, respectively. Then the bivariate generating function G(t, z) of the
matrix AP induced by P and the generating function fP (z) of the sequence induced by P are given
by

(10) GP (t, z) =
d(z)

1 − tzh(z)
, fP (z) =

d(z)

1 − zh(z)
,

where h(z) and d(z) are determined from the equations

(11) h(z) = α(zh(z)), d(z) =
1

1 − zζ(zh(z))
.

Example. Consider the Riordan production matrix

P =











3 1 0 0 0 . . .

7 3 1 0 0 . . .

15 7 3 1 0 . . .
...

...
...

...
...

. . .











.

Note that the row sums of P , i.e. the labels of the generating tree, are the Eulerian numbers
4,11,26,57,120,... (A000295 in [Sl]). We have α(z) = 1

(1−z)(1−2z) and α − zζ = 1. Then, recalling



some known results from the theory of Riordan matrices [Sp], AP is the Riordan matrix (d(z), h(z))
such that h = 1

(1−zh)(1−2zh) , d = h. Let us denote by fP the generating function of the sequence

determined by P . From the last theorem we get fP = h
1−zh

. Eliminating d and h from the last

three equalities, we obtain (1 + zfP )3 = fP (1 − zfP ). The substitution K = z + z2fP leads to
the equation K3 = (K − z)(2z − K), which is the equation giving the generating function for the
number of noncrossing connected graphs. The sequence corresponding to fP starts 1,4,23,156,1162,...
(A007297 in [Sl]).

5. Exponential Riordan production matrices

In this section we outline the main result concerning exponential Riordan matrices as they are
exposited in [DS], and then we study this concept from the point of view of production matrices.
For the case of tridiagonal matrices, see also [A1, A2, PW].

Let d(z), h(z) be two formal power series such that d(0) 6= 0 6= h(0). An exponential Riordan
(briefly, eR) matrix is an infinite lower triangular array A = (an,k)n,k≥0 whose k-th column has
exponential generating function Ck(z) = 1

k!d(z)(zh(z))k. We will use the notation A = [d(z), h(z)]
to denote the eR matrix determined by d(z), h(z). In [DS] it is shown that eR matrices form a group
(with respect to the usual multiplication operation), whose identity element is [1, z]. Looking at the
above definition, one could expect many similarities with the theory of (classical) Riordan matrices.
From the point of view of the present work, one of the main analogies with the ordinary case is the
possibility of expressing every entry of an eR matrix as a linear combination of the elements of the
preceding row. More precisely, we have the following result [DS].

Proposition 5.1. The infinite array A = (an,k)n,k≥0 is an eR matrix if and only if there exist two
formal power series c(y) =

∑

j≥0 cjy
j, r(y) =

∑

j≥0 rjy
j such that, for any n, k, we have

(12) an+1,k =
∑

i≥k−1

an,ipi,k,

where pi,k = i!
k! (ci−k + kri−k+1).

The sequences (cn)n≥0, (rn)n≥0 are called respectively the c-sequence and the r-sequence of A.
There is a clear analogy with the α-sequence and the ζ-sequence of the classical case. However,
whereas for an ordinary Riordan matrix the coefficients of the linear combinations in (8) do not
depend on the column index, in the exponential case they do, as it is clear from formula (12).

Proof (sketch). Let A = [d(z), h(z)] be an eR matrix and let c(y), r(y) be two formal power series
satisfying:

(13) r(h(z)) = (zh(z))′, c(zh(z)) =
d′(z)

d(z)
.

Then it can be shown [DS] that the generic element an+1,k of A can be expressed as a linear
combination of the elements of the above row, and the coefficients of such a combination can be
determined from (13). Observe that we can arrange these coefficients in an infinite matrix P =
(pi,j)i,j≥0, so that formula (12) can be rewritten as the matrix equality AP = DA, where, as in
formula (4), D = (δi,j+1)i,j≥0 (δ is the usual Kronecker delta). The matrix P is “almost” lower
triangular, meaning that pi+1,i = r0, whereas, for k ≥ 2, pi+k,i = 0.

Conversely, suppose we are given an infinite “almost” lower triangular matrix P , in the sense
explained before. If n ≥ −1, we will denote by diag(n) the sequence (pn+k,k)k≥0. Assume that, for



n ≥ 0, diag(n) is an arithmetic progression with first term cn and ratio rn+1, provided that we divide

its k-th term by k · (k + 1) · . . . · (k + n − 1) (so that the sequence
(

(k−1)!pn+k,k

(n+k−1)!

)

k≥0
is the desired

arithmetic progression). Moreover, suppose that diag(−1) is the constant sequence r0. Under these
hypotheses, it is clear that pi,j = i!

j! (ci−j + jri−j+1).

If we denote c(y) =
∑

n≥0 cnyn, r(y) =
∑

n≥0 rnyn, then we can consider the system of differential

equations (13). Solving it with the initial condition d(0) = d0,0, we obtain the two formal power
series d(z), h(z). Then the eR matrix [d(z), h(z)] is precisely the matrix A from which we started. �

If the matrix P has nonnegative integer entries, then it can be viewed as a production matrix.
In such a case it will be called an exponential Riordan production matrix. Clearly, in order that
[d(z), h(z)] be an ECO matrix, we have to set d(0) = 1 as the remaining initial condition of the
system (13).

From the expression of the entries pn,k of P given in the statement of Proposition 5.1 it is quite
easy to determine the bivariate generating function of P , which is

(14) ϕP (t, z) =
∑

n,k

pn,ktk
zn

n!
.

Observe that ϕP has been defined to be ordinary with respect to the variable t (tracking the
rows of P ) and exponential with respect to the variable z (tracking the columns of P ). By simply
replacing the values of the pn,k’s in (14) we immediately obtain:

ϕP (t, z) =
∑

n,k

n!

k!
(cn−k + krn−k+1)t

k zn

n!

=
∑

n,k

tkzk

k!
cn−kzn−k +

∑

n,k

tkzk

k!
krn−k+1z

n−k

=
∑

k

tkzk

k!
·
∑

n

cnzn + t
∑

k

tkzk

k!
·
∑

n

rnzn = etz(c(z) + tr(z)).

Clearly, setting t = 1 gives the exponential generating function of the row sums of P . If P is an
eR production matrix, these are the labels of the succession rule induced by P , and their exponential
generating function is ϕP (1, z) = ez(c(z) + r(z)).

Example. Let P be the matrix of the falling factorials:














1 1 0 0 0 . . .

2 2 1 0 0 . . .

6 6 3 1 0 . . .

24 24 12 4 1 . . .
...

...
...

...
...

. . .















.

Clearly pi,j = (i+1)!
j! = (i + 1)i−j+1, where by (n)k we denote the usual falling factorials. It

is immediate to check that P is an eR production matrix, and precisely the one determined by
c(y) = 1

(1−y)2 , r(y) = 1
1−y

.

Solving the system (13) in this special case gives h(z) = 1−
√

1−2z
z

, d(z) = 1√
1−2z

, so that

AP =
[

1√
1−2z

, 1−
√

1−2z
z

]

. Using the definition of eR matrix, AP turns out to be



AP =















1 0 0 0 . . .

1 1 0 0 . . .

3 3 1 0 . . .

15 15 6 1 . . .
...

...
...

...
. . .















.

The rows of AP are the coefficients of the Bessel polynomials (see A001497 in [Sl]; the sequence
of the row sums of AP is A001515). The exponential generating function of the labels (=row sums

of P ) is ez(c(z) + r(z)) = (2−z)ez

(1−z)2 , which gives rise to sequence A000522 in [Sl].
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