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Abstract

Zeilberger’s algorithm, also known as the method of creative telescop-
ing, generates a sequence of systems of linear algebraic equations until
a system with a special property appears, provided that such a system
exists. We show how the values computed during the investigation of the
(J -1)-th system can be used to accelerate the investigation of the J -th
system.

Résumé

L’algorithme de Zeilberger, parfois aussi appelé “méthode de télescopage
créatif”, génère successivement des systèmes d’équations algébriques
linéaires jusqu’à ce que le système possède une propriété voulue (en sup-
posant qu’un tel système existe). Nous montrons comment les valeurs
calculées pour générer le (J -1)-ème système peuvent être utilisées pour
accélérer la génération du J -ème système.

1 Introduction

Zeilberger’s algorithm (we name it hereafter as Z for short) has a wide range of
applications which include verification of combinatorial identities, finding closed
forms of definite sums of hypergeometric terms, and asymptotic estimates [8, 7].

Let F (n, k) be a hypergeometric term (or a term for short) whose certificates
F (n + 1, k)/F (n, k) and F (n, k + 1)/F (n, k) are rational functions of n and k
over a field K of characteristic 0. Z tries to find

A0(n), . . . , AJ(n) ∈ K(n), AJ(n) 6= 0, (1)
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such that for a term S(n, k),

AJ(n)F (n+J, k)+ · · ·+A1(n)F (n+1, k)+A0(n)F (n, k) = S(n, k+1)−S(n, k).
(2)

The value of J ∈
�

such that (1) and (2) hold must be as small as possible.
If those J and A0, . . . , AJ do not exist for a given term F (n, k) then Z does

not terminate. In [1, 2] a necessary and sufficient condition for the termination
of Z on a given term is presented.

Z uses an item-by-item examination on the values of J . It starts with 0
and keeps on incrementing J until it is successful in finding the A0, . . . , AJ such
that (2) holds. (A direct algorithm is known only for the case when F (n, k) is
a rational function [5, 6].) For a particular value of J under investigation, Z
constructs a system of linear algebraic equations whose coefficients are in K(n),
and the right-hand side contains the parameters A0, . . . , AJ . Z then checks if it
is possible to find (1) such that the system is compatible (see [8, 7] for details).
This check is expensive if the value of J is large. Even when we know a non-
trivial lower bound J0 for J (see [3]), we can still waste a lot of time on the
fruitless examination at steps J0, J0 + 1, . . . , J − 1.

The examination done at each step is independent of that at other steps.
However, the systems on consecutive steps bear similarities, and it would be
logical to try to take advantage of this. It is shown in this paper that after
we considered the system corresponding to step (J − 1) and found that the
system is not compatible, we can use some intermediate results of this step in
order to simplify the system corresponding to step J (here “simplify” means
the elimination of the parameters A0, . . . , AJ−1 in a number of equations of the
J-th system).

Throughout the paper, K is a field of characteristic zero,
�

is the set of
nonnegative integers. The symbols En, Ek denote the shift operators w.r.t. n
and k, respectively, defined by EnF (n, k) = F (n+1, k), EkF (n, k) = F (n, k+1).

2 J-parameterized systems

2.1 J-solvability

Let
Mx = u (3)

be a system of linear algebraic equations where M is a ν × κ matrix whose
entries are in a field Λ, and u is a column vector whose ν entries are in a Λ-
linear space U . We call a column y ∈ Uκ a simplificator of (3) if the first entry
of the column u −My is zero, and assign the height of a simplificator y the
number of all initial entries of u −My that are equal to zero. Evidently, each
simplificator of height ν is a solution of (3).

For any J ≥ 0, we use the notation ΓJ,Λ for the Λ-space of linear forms in
A0, . . . , AJ

R0A0 + · · ·+RJAJ , R0, . . . , RJ ∈ Λ. (4)

If entries of u are in ΓJ,Λ, then we call system (3) a J-parameterized system.
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Let (3) be a J-parameterized system, J ≥ 0. The J-increment of this sys-
tem is the number σ of all initial components of u which do not depend on
A0, . . . , AJ−1.

We call a J-parameterized system J-solvable if there exist A∗

0 , . . . , A
∗

J ∈ Λ
such that

• A∗

J 6= 0 ,

• if A0 = A∗

0, . . . , AJ = A∗

J , then (3) is compatible .

2.2 J-solvability recognition, irregular equations, and

simplificators

Suppose the recognition of the J-solvability of system (3) is carried out by an
elimination process. During this process we can get an equation of the form

0 = R̃0A0 + · · ·+ R̃JAJ . (5)

Such an equation is called

• trivial if R̃0 = · · · = R̃J = 0 ;

• irregular if (R̃0 = · · · = R̃J−1 = 0 and R̃J 6= 0) or if (R̃1 = · · · = R̃J = 0
and R̃0 6= 0) ;

• regular otherwise .

During the elimination process we build up a trapezoidal system W of regular
equations each of which is of the form (5).

At the current step of the elimination process, suppose that W already had λ
regular equations, and the current step produces another regular equation. Then
we eliminate the λ unknowns in this equation. Only if it remains regular, we
include it into W and increase λ by 1. If this equation becomes irregular, then
the original system is not J-solvable.

Suppose we have carried out a few stages of this elimination process.

Proposition 2.1 The original system is a fortiori not J-solvable if one of the
following two events happens at the current step of the elimination process:

(a) an irregular equation appears ;

(b) W contains λ equations, λ < J , and we recognize that it is impossible to
get J −λ additional regular equations for the remaining of the elimination
process .

Proof:

(a) by definition of J-solvability ;

(b) due to the fact that the A0, . . . , AJ should be uniquely defined up to a
factor from K(n).
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It is quite often possible to construct a simplificator of a J-parameterized
system during its J-solvability recognition. The value of constructing such a
simplificator is explained in the next subsection.

Although the equations might change their orderings during the elimination
process, we assign to each equation a label which is the number of this equation
in the original system, and hence are still able to keep track of its position
during the process. This elimination process results in systems V and W . The
system W was introduced right before Proposition 2.1; the system V consists
of the equations which are obtained during the elimination process, and which
are not of the form (5).

If W is compatible with AJ 6= 0, A0 6= 0, then the original system is J-
solvable. Otherwise, it is not J-solvable. In the latter case, we can try to
construct a simplificator of the system as follows.

(i) Find the maximalN such that the equations labeled by 1, . . . , N are in V ;

(ii) for all i = 1, . . . , N , the unknown xi was eliminated by an equation labeled
by a j, 1 ≤ j ≤ N .

As a consequence, we have a system V ′, which is a subsystem of V , of equations
labeled by 1, . . . , N . V ′ is in trapezoidal form, and by using V ′ we can easily
represent x1, . . . , xN via xN+1, . . . , xκ, A0, . . . , AJ . Set xN+1 = · · · = xκ = 0 in
this representation. Evidently, this way we get the vector (x1, . . . , xκ)T that is
a simplificator of height ≥ N of the original system.

2.3 Systems generated by Z

Z generates a sequence of systems

MJx = uJ , J = 0, 1, . . . (6)

where the field Λ in Section 2.1 isK(n), and the J-th system is J-parameterized.
The main goal of the algorithm is to find the minimal J ≥ 0 such that the system
MJx = uJ is J-solvable, and to find the corresponding values of A0, . . . , AJ

∈ K(n). (The vector solution x helps determine the term S(n, k) in (2).)

In Section 3 we will prove the following theorem.

Theorem 2.2 Suppose it was recognized that the system from the sequence (6)
with i = J−1 is not (J−1)-solvable and additionally, suppose that a simplificator
yJ−1 of height HJ−1 for this system was computed. Then the vector yJ−1 can
be transformed into a vector y′J−1 of a suitable dimension such that if σJ is the
J-increment of the system MJx = uJ then the J-increment of the system

MJx = uJ −MJ y
′

J−1 (7)

is equal to σJ +HJ−1.

An increase of the J-increment of a system from the sequence (6) by using
the system (7) reduces the work on the system since it simplifies the right-hand
side of a number of equations of the system (the coefficients of A0, . . . , AJ−1

vanishes). If the system (7) is not J-solvable, then we find a simplificator for
it and transform the system MJ+1x = uJ+1, increasing its J+1-increment as
a consequence. The process is repeated until we reach a J ∈ � such that the
corresponding J-parameterized systems (6) is J-solvable, provided that such a J
exists.
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3 Step-by-step examination in Z

3.1 A review on the item-by-item examination

For a term F (n, k) and for a particular value of J ∈ � , set

TJ(n, k) = AJ (n)F (n+ J, k) + · · ·+ A1(n)F (n+ 1, k) +A0(n)F (n, k) (8)

where the Ai(n) ∈ K(n) are unknowns. Since F is a term, TJ is also a term [8].
Z now attempts to compute the Ai in (8) and a term S such that (2) holds.
This is done by using a variant of Gosper’s algorithm [4]. Given the term TJ

in (8), the algorithm determines if there exists a term SJ such that

TJ = (Ek − 1)SJ , (9)

and computes SJ if such a term exists. Gosper’s algorithm first transforms (9)
into the problem of computing a rational solution x(k) with coefficients which
are elements of K(n) of

TJ (n, k + 1)

TJ (n, k)
x(k + 1) − x(k) = 1. (10)

The algorithm then transforms (10) into the problem of computing a polynomial
solution of a first-order linear recurrence equation with polynomial coefficients
and polynomial right hand side (12). The procedure can be summarized as
follows.

1. Compute a PNFk of the k-certificate TJ(n, k + 1)/TJ(n, k). This results
in a triple (aJ , bJ , cJ), aJ , bJ , cJ ∈ K(n)[k] \ {0} such that

TJ(n, k + 1)

TJ(n, k)
=
aJ

bJ
·
EkcJ
cJ

, gcd(aJ , E
h
k bJ) = 1 for all h ∈ � . (11)

See [7] for a description of such a construction.

2. Find a polynomial solution y(k) of the linear recurrence

aJ(k) y(k + 1) − bJ(k − 1) y(k) = cJ(k) (12)

provided that such a solution exists.

If it does, then set

LJ = AJ(n)EJ
n + · · ·+A1(n)En + A0(n), (13)

SJ =
bJ(k − 1) y(k)

cJ(k)
TJ . (14)

The computed Z-pair (LJ , SJ) defined in (13) and (14) is the output from Z.
The recurrence operator LJ is called a telescoper for the input term F .

The search for a polynomial solution y(k) of (12) can be done using the
method of undetermined coefficients. First one computes an upper bound d for
the degree of the polynomial y(k). Then one substitutes a generic polynomial
of degree d for y(k) into (12), equates the coefficients of like powers in k. This
results in a J-parameterized system. The problem is now reduced to determining
if this J-parameterized system is J-solvable. If it is, then compute a solution
of the system. Note that this enables one to compute not only a polynomial
solution y(k) in (12), but also the unknowns Ai in (8).
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3.2 Equalities for first-order operators

Let v, w, p, q be polynomials in k. We consider the following two types of oper-
ators:

G v(k)

w(k)

=
v(k)

w(k)
Ek − 1, (15)

Gv(k),w(k) = v(k)Ek −w(k − 1). (16)

Let (a, b, c) be a PNFk of

v(k)

w(k)
=
TJ (n, k + 1)

TJ (n, k)
∈ K(n, k).

For any y(k) ∈ K[n, k], set x(k) = (b(k − 1) y(k))/c(k). Then by (15), the
relation G v(k)

w(k)

x(k) = 1 is equivalent to (12). Additionally, it follows from (16)

that
Ga(k),b(k)y(k) = a(k) y(k + 1) − b(k − 1)

which is the left hand side of (12). For this reason, the operator Ga,b is called
the Gosper’s form of the operator G v

w
.

It is simple to check that the following relations are valid:

G v(k)

w(k)

= Gv(k),w(k) ◦
1

w(k − 1)
, (17)

G v(k)p(k+1)

w(k)p(k)

=
1

p(k)
Gv(k),w(k) ◦

p(k)

w(k − 1)
=

1

p(k)
G v(k)

w(k)

◦ p(k), (18)

G v(k)q(k)

w(k)q(k+1)

= q(k)Gv(k),w(k) ◦
1

q(k)w(k − 1)
= q(k)G v(k)

w(k)

◦
1

q(k)
. (19)

By (17) and (18), the equality

G v(k)

w(k)

=
1

c(k)
Ga(k),b(k) ◦

c(k)

b(k − 1)
(20)

is also valid.

3.3 Gosper’s equations in Z

The goal of this section is to establish relations between GaJ (k),bJ(k) and
GaJ+1(k),bJ+1(k) (Proposition 3.1).

At step J of the item-by-item examination, Z tries to compute a telescoper
LJ of the form (13) for a given term F (n, k). The k-certificate of the term
TJ(n, k) = LJ F can be written in the form

vJ(n, k)

wJ(n, k)
=
ϕJ(n, k)

ψJ(n, k)

pJ(A0, . . . , AJ , n, k+ 1)

pJ(A0, . . . , AJ , n, k)
(21)

where ϕJ(n, k) and ψJ (n, k) do not depend on A0, . . . , AJ ; pJ ∈ ΓJ,K(n,k);
vJ , wJ ∈ K[n, k].

Let s1(n, k), s2(n, k) be relatively prime polynomials such that

F (n, k)

F (n− 1, k)
=
s1(n, k)

s2(n, k)
.
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Then we can derive the following recurrences:

pJ+1(A0, . . . , AJ+1, n, k) = pJ(A0, . . . , AJ , n, k) s2(n + J + 1, k) +

AJ+1

J+1
∏

i=1

s1(n + i, k), (22)

ϕJ+1(n, k) = ϕJ(n, k) s2(n+ J + 1, k), (23)

ψJ+1(n, k) = ψJ(n, k) s2(n+ J + 1, k + 1). (24)

(They are similar to (6.3.3)–(6.3.8) in [7].) Let

aJ (k)

bJ (k)

ξJ(k + 1)

ξJ (k)

be a PNFk of
ϕJ

ψJ

. It follows from (23) and (24) that

ϕJ+1(n, k)

ψJ+1(n, k)
=

ϕJ(n, k)

ψJ(n, k)

s2(n+ J + 1, k)

s2(n+ J + 1, k+ 1)

=
aJ(k)ξJ (k + 1)

bJ(k)ξJ(k)

s2(n+ J + 1, k)

s2(n + J + 1, k+ 1)
. (25)

It then follows that1

GϕJ+1(k)

ψJ+1(k)

(19)
= s2(n+ J + 1, k)G aJ(k)ξJ (k+1)

bJ (k)ξJ (k)

◦
1

s2(n+ J + 1, k)

(18)
=

s2(n+ J + 1, k)

ξJ(k)
G aJ (k)

bJ (k)

◦
ξJ (k)

s2(n+ J + 1, k)
(26)

(17)
=

s2(n+ J + 1, k)

ξJ(k)
GaJ (k),bJ(k) ◦

ξJ(k)

s2(n+ J + 1, k)bJ(k − 1)
.

Additionally,

GϕJ+1(k)pJ+1(k+1)

ψJ+1(k)pJ+1(k)

(18)
=

1

pJ+1(k)
GϕJ+1(k)

ψJ+1(k)

◦ pJ+1(k). (27)

Consequently, the substitution of the right side of
(17)
= in (26) into (27) yields

GϕJ+1(k)pJ+1(k+1)

ψJ+1(k)pJ+1(k)

=
s2(n+J+1, k)

pJ+1(k)ξJ (k)
GaJ (k),bJ(k) ◦

pJ+1(k)ξJ(k)

s2(n+J+1, k)bJ(k−1)
. (28)

Up to this point, we have represented

GϕJ+1(k)pJ+1(k+1)

ψJ+1(k)pJ+1(k)

(29)

in terms of GaJ (k),bJ(k). In order to establish relations between GaJ (k),bJ(k)

and GaJ+1(k),bJ+1(k), we now represent (29) in terms of GaJ+1(k),bJ+1(k) where
aJ+1(k), bJ+1(k) are such that

aJ+1(k)

bJ+1(k)

cJ+1(k + 1)

cJ+1(k)

1The relation A
(N)
= B means that the right hand side B is derived from the left hand

side A using relation (N).
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is a PNFk of vJ+1(k)/wJ+1(k). Following notation in (21), we have

vJ+1(k)

wJ+1(k)
=
ϕJ+1(n, k)

ψJ+1(n, k)

pJ+1(A0, . . . , AJ+1, n, k+ 1)

pJ+1(A0, . . . , AJ+1, n, k)
,

and a PNFk of ϕJ+1(k)/ψJ+1(k):

aJ+1(k)

bJ+1(k)

ξJ+1(k + 1)

ξJ+1(k)
. (30)

We have

GϕJ+1(k)pJ+1(k+1)

ψJ+1(k)pJ+1(k)

(27)
=

1

pJ+1(k)
GϕJ+1(k)

ψJ+1(k)

◦ pJ+1(k)

(30)
=

1

pJ+1(k)
G aJ+1(k)ξJ+1(k+1)

bJ+1(k)ξJ+1(k)

◦ pJ+1(k)

(18)
=

1

pJ+1(k)ξJ+1(k)
G aJ+1(k)

bJ+1(k)

◦ pJ+1(k)ξJ+1(k).

Hence, by (17)

GϕJ+1(k)pJ+1(k+1)

ψJ+1(k)pJ+1(k)

=
1

pJ+1(k)ξJ+1(k)
GaJ+1(k),bJ+1(k) ◦

pJ+1(k)ξJ+1(k)

bJ+1(k − 1)
. (31)

Proposition 3.1 The operators GaJ (k),bJ(k) and GaJ+1(k),bJ+1(k) for J ∈ � are
related by the following recurrences:

GaJ+1(k),bJ+1(k) =
s2(n+J+1, k)ξJ+1(k)

ξJ(k)
GaJ (k),bJ(k) ◦

ξJ (k)

s2(n+J+1, k)ξJ+1(k)
,

(32)

GaJ (k),bJ(k) =
ξJ(k)

s2(n+J+1, k)ξJ+1(k)
GaJ+1(k),bJ+1(k) ◦

s2(n+J+1, k)ξJ+1(k)

ξJ (k)
.

(33)

Proof: By a comparison between (28) and (31).

The recurrences (32) and (33) are important in the next subsection.

3.4 Polynomial simplification

At step J of the item-by-item examination, it follows from (12) and (16) that
the recurrence

GaJ (k),bJ(k)y(k) = cJ(k), (34)

where cJ(k) = ξJ(k)pJ(k), J ∈ � is considered. By (22)

ξJ+1(k)pJ+1(k) = ξJ+1(k)

(

pJ(A0, . . . , AJ , n, k)s2(n+ J + 1, k)+

AJ+1

J+1
∏

i=1

s1(n+ i, k)

)

.
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Therefore,

cJ+1(k) =
ξJ+1(k)

ξJ(k)
s2(n + J + 1, k)cJ(k) + ξJ+1(k)AJ+1

J+1
∏

i=1

s1(n + i, k). (35)

If the right hand side of the J-th recurrence (34) is simplified by means of a
polynomial fJ (k), then the right-hand side becomes c′J where

c′J = cJ −GaJ ,bJfJ . (36)

It follows from (22), (33) and (36) that

ξJ+1(k)

ξJ(k)
s2(n+ J + 1, k)c′J(k) = ξJ+1(k)s2(n + J + 1, k)pJ(k) −

GaJ+1,bJ+1

s2(n+ J + 1, k)ξJ+1(k)

ξJ(k)
fJ (k).

This means that the change of cJ by c′J in the right-hand side of (35) is equal
to the change of cJ+1 by

c̃J+1 = cJ+1 −GaJ+1,bJ+1

s2(n + J + 1, k)ξJ+1

ξJ
fJ .

Once we found a polynomial gJ+1 such that for

c′J+1 = c̃J+1 −GaJ+1,bJ+1gJ+1,

we have degk c
′

J+1 < degk cJ+1, then set

fJ+1 =
s2(n+ J + 1, k)ξJ+1

ξJ
fJ + gJ+1. (37)

Suppose degk cJ − degk c
′

J = m > 0. Then evidently

degk

s2(n+ J + 1, k)ξJ+1

ξJ
cJ − degk

s2(n+ J + 1, k)ξJ+1

ξJ
c′J = m. (38)

Therefore, if we use c′J instead of cJ in (35) to construct the right-hand side
of the (J+1)-th equation from (34), then we decrease by m the high degrees
of the monomials that do not depend on AJ+1. Thereby we increase by m the
(J+1)-increment of the system of linear algebraic equations generated by Z at
step (J+1), and Theorem 2.2 is proven.
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