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1. INTRODUCTION

For over two decades, the theory of linear (error correcting) codes has
extensive and fruitful interaction with the theory of algebraic curves.
The study of linear codes associated to higher dimensional algebraic
varieties over finite fields is relatively new. However, given the richness
of the geometric objects at our disposal, it promises to play a useful
role in coding theory. Moreover, such a study often seems to lead to
questions that could also be of interest in combinatorics and algebraic
geometry.

In this article we attempt to illustrate these remarks by considering
linear codes associated to Schubert varieties in Grassmannians. Our
main results are presented here only with a brief idea of proofs; for
details, we refer to [7]. To motivate and to give a perspective, we
include a quick outline of some background material and known results.

2. LINEAR CODES AND PROJECTIVE SYSTEMS

Let I, denote the finite field with ¢ elements, and let n, k be integers
with 1 < k£ < n. The n-dimensional vector space Fy has a norm, called
Hamming norm, which is defined by

lzl| =[{i € {1,...,n} :2; #0}| forz € Fy.

More generally, if D is a subspace of Iy, the Hamming norm of D is
defined by

ID||=|{i€{1,...,n}: there exists z € D with x; # 0} |.

A linear [n, k|,-code is, by definition, a k-dimensional subspace of
7. The adjective linear will often be dropped since in this article we
only consider linear codes. The parameters n and k are referred to as
the length and the dimension of the corresponding code. If C' is an

[n, k],~code, then the minimum distance d = d(C) of C' is defined by
d(C) =min{||z| : x € C, = # 0}.
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More generally, given any positive integer r, the rth higher weight d,. =
d,(C) of C is defined by

d,(C) = min{||D|| : D is a subspace of C' with dim D =r}.

Note that d,(C) = d(C).

An [n, k|,-code is said to be nondegenerate if it is not contained in a
coordinate hyperplane of Fy. Two [n, k],-codes are said to be equivalent
if one can be obtained from another by permuting coordinates and
multiplying them by nonzero elements of IF,; in other words, if they are
in the same orbit for the natural action of the semidirect product of
(F7)™ and S,. It is clear that this gives a natural equivalence relation
on the set of [n, k|,~codes.

An alternative way to describe codes is via the language of projective
systems introduced in [21]. A projective system is a (multi)set X of n
points in the projective space P¥~! over F,. We call X nondegenerate
if these m points are not contained in a hyperplane of P*~'. Two pro-
jective systems in P*~! are said to be equivalent if there is a projective
automorphism of the ambient space P¥~!, which maps one to the other;
in other words, if they are in the same orbit for the natural action of
PGL(k,F,). It is clear that this gives a natural equivalence relation
on the set of projective systems of n points in P!,

It turns out that a nondegenerate projective system of n points
in P¥=1 corresponds naturally to a nondegenerate linear [n, k],-code.
Moreover, if we pass to equivalence classes with respect to the equiv-
alence relations defined above, then this correspondence is one-to-one.
The minimum distance of the code C' = C'x associated to a nondegen-
erate projective system X of n points in P*~! admits a nice geometric
interpretation in terms of X, namely,

d(Cx) =n—max {|X N H|: H a hyperplane of P*~'} .

We have a similar interpretation for the rth higher weight d,.(Cx),
where the hyperplane H is replaced by a projective subspace of codi-
mension 7 in PF-1,

The language of projective systems not only explains the close con-
nection between algebraic geometry and coding theory, but also fa-
cilitates the introduction of linear codes corresponding to projective
algebraic varieties defined over a finite field. For more details concern-
ing projective systems and a proof of the above mentioned one-to-one
correspondence, we refer to [21] and [22].

3. GRASSMANN CODES AND SCHUBERT CODES

Perhaps the most basic example of a projective algebraic variety over
I, is the Grassmannian Gy,,, = G¢(V) of /-dimensional subspaces of an
m-dimensional vector space V' over ;. We have the well-known Pliicker
embedding of the Grassmannian into a projective space (cf. [3], [11]),



and this embedding is known to be nondegenerate. Considering the
(IF,-rational) points of Gy, as a projective system, we obtain a g-ary
linear code, called the Grassmann code, which we denote by C(¢, m).
These codes were first studied by Ryan [17, 18, 19] in the binary case
and by Nogin [14] in the g-ary case. It is clear that the length n and
the dimension k of C (¢, m) are given by

W= [’Z] = qq))-'-'-'((ffm—_qf—el;) me e @)

The minimum distance of C(¢,m) is given by the following elegant
formula due to Nogin [14]:

(2) d(C(¢,m)) = ¢°, where §&:=/0(m—{).

In fact, Nogin [14] also determined some of the higher weights of
C(¢, m). More precisely, he showed that for 1 < r < max{{,m—£}+1,
(3) d, (C(lym)) = +¢" 1+ -+ ¢

Alternative proofs of (3) were given in [3], and in the same paper a
generalization to Schubert codes was proposed. The Schubert codes
are indexed by the elements of the set

I(¢,m) ::{a:(al,...,a@)GZZ:1§a1<---<a4§m}_

Given any « € I(¢,m), the corresponding Schubert code is denoted by
Cy(¢,m), and it is the code obtained from the projective system defined
by the Schubert variety €2, in Gy, with a nondegenerate embedding
induced by the Pliicker embedding. Recall that ), can be defined by

Qo ={W € Gy : dim(WNA,)>ifori=1,..., ¢},

where A; denotes the span of the first j vectors in a fixed basis of V,
for 1 < j < m. It was observed in [3] that the length n, and the
dimension k, of C, (¢, m) are abstractly given by

(4) na = [Qa(Fy)| and ko =[{B€I({,m): B < a}l,
where for = (51,...,00) € I(¢,m), by f < a we mean that 3; <
a; for i = 1,...,£. It was shown in [3] that the minimum distance of

Ca(¢, m) satisfies the inequality
¢
d(Ca(E; m)) S (]50‘, Where 5& = Z(az—l) = a1+- . .+ae_

=1

0l+1)
5

Further, it was conjectured by the first named author that, in fact, the

equality holds, i.e.,

() d(Ca(t,m)) = ¢*.

We shall refer to (5) as the minimum distance conjecture (for Schubert

codes). Note that if = (m — £+ 1,...,m — 1,m), then Q, = Gy,
and so in this case (5) is an immediate consequence of (2).



The minimum distance conjecture has been proved in the affirmative
by Hao Chen [1] when £ = 2. In fact, he proves the following. If £ = 2
and o = (m—h—1,m) [we can assume that « is of this form without any
loss of generality], then d(Cy/(2, )) ¢ = q2m*h*4 and moreover,

( m—1 __ h

_ ( ) 2m—j—2— z

6 @ 1)(g= ;Z_}q and
m(m —1) h(h +1)

2 2

An alternative proof of the minimum distance conjecture, as well as
the weight distribution of codewords in the case ¢ = 2, was obtained
independently by Guerra and Vincenti [9]; in the same paper, they
prove also the following lower bound for d(C,(¢,m)) in the general
case:

qal qa2 _ qal . qal _ qalfl _
(8) d(Ca(l,m)) > ( = 2%__; ) > g%t

(7) ka

In an earlier paper, Vincenti [23], partly in collaboration with Guerra,
verified the minimum distance conjecture for the unique nontrivial
Schubert variety in the Klein quadric g4, namely €234y, and obtained
a lower bound which is weaker than (8), and also proved the following
formula' for the length of Cy (¢, m).

o k) (Ko — o
9 na=[QF)= ) H[ T ] (oi—hi) (ki1 —ks)
q

(k1senskg—1) =0 z

where the sum is over all (£ — 1)-tuples (ki,..., ky_1) of integers with
1 <k; <o;and k; < k;yq for 1 <7 </ —1, and where, by convention,
Oé():():k() andkgzﬁ.

Now, we are ready to state our main results.

4. LENGTH OF SCHUBERT CODES

Fix integers £,m with 1 < ¢ < m. Let I(¢,m) be the indexing
set, with the partial order < defined in the previous section. For any

B=(B,--,B) € I((,m), let

0
1= 3 (B =) = B+t B D)

i=1
Finally, fix some a € I({,m) and let C,(¢,m) be the corresponding
Schubert code.

'In fact, in [23] and [9], the Grassmannian and its Schubert subvarieties are
viewed as families of projective subspaces of a projective space rather than linear
subspaces of a vector space. The two viewpoints are, of course, equivalent. To get
(9) from [23, Prop. 15], one hastoset { =d+1,a; =a;—1+1and k; = ;1 +1
for 1 < i < {. A similar substitution has to be made to get (8) from [9, Thm. 1.1].



Quite possibly, the simplest formula for the length n, of C, (¢, m) is
the one given in the theorem below. This is essentially an easy conse-
quence of the well-known cellular decomposition of the Grassmannian,
which goes back to Ehresmann [2].

Theorem 1. The length n, of Co (¢, m) or, in other words, the number
of Fy-rational points of §,, is given by

(10) Ng = Zq6B7

BLa
where the sum is over all 5 € I(¢,m) satisfying 5 < .

It may be argued that even though formula (10) is simple and elegant,
it may not be very effective in practice in view of the rather intricate
summation involved. For example, if €2, is the full Grassmannian G,
then (10) involves (}) summands, while the closed form formula in (1)
for n may be deemed preferable. For an arbitrary « € I(¢,m), it is
not easy to estimate the number of summands in (10), as will be clear
from the results in Section 5. With this in view, we shall now describe
another formula for n,, which is far from being elegant but may also
be of some interest. First, we need some notation.

Given any integers a, b, s, t, we define

t
r—s —_ b —-T
Ma, by s,t) =3 (1) 2g() |4 77 .
@it = a0 7]
Here, for any u, v € Z, the Gaussian binomial coefficient m . is defined

as in (1) when 0 < v < u, and 0 otherwise. Thus, if @ = s = 0, then
Ma, by s,t) = [ﬂ )

q

Theorem 2. Let a = (ay,...,aq) have u+ 1 consecutive blocks:
Q= (01, ..y 0y Qpyglyeny Qpyy ooy Qpu i 41yeny Oy Qi ...,y Og),
so that 1 < py < -+- <py <l and op41,...,0p,,, are consecutive for

0 < i < wu, where by convention, pgo = 0 and pyr1 = ¢. Then the length
ne of the Schubert code C, (€, m) is given by

Qpy  Qpy Qpy, u
(11) Ng = E E E H)\(O!pi,api+1;8i,si+1),
$1=p1 S2=p2 Su=py =0

where, by convention, so = po = 0 and Syr1 = Pys1 = L.

The key idea in the proof of the above theorem is to use an inductive
argument together with Mobius inversion applied to the poset of sub-
spaces of a finite dimensional vector space over F,, and the well-known
formula for the Mdbius function of this poset (cf. [20, Ch. 3]).

Remark 3. In the case £ = 2, we obviously have u < 1, and the formula
given above becomes somewhat simpler. It is not difficult to verify that
this agrees with the formula (6) of Hao Chen [1].



Remark 4. As a consequence of the results in this section, we obtain
a purely combinatorial identity which equates the right hand sides of
(9), (10) and (11). It would be an intriguing problem to prove this
without invoking Schubert varieties.

5. DIMENSION OF SCHUBERT CODES

Let the notation be as in the beginning of the previous section. An
explicit formula for the dimension k, of the Schubert code C, (¢, m) is
given by the following

Theorem 5. The dimension k, of the Schubert code C,(¢,m) equals
the determinant of the £ X £ matriz whose (i, j)th entry is (‘]“j*ijl

i ), i.e.,
CORE! 0o ... 0

() =) 1 ... 0
() () () - ()
The key idea in the proof of this theorem is to use the postulation

formula for Schubert varieties in Grassmannians, which goes back to
Hodge [10] (see also [5]).

(12) ko =

Remark 6. In the case £ = 2, we obviously have

b = an(0y — 1) — <a1> _alay—a—1)

2 2
Setting o = (m — h — 1,m), we retrieve the formula (7) of Chen [1].

The determinant in (12) is, in general, not easy to evaluate. For
example, none of the recipes in the rather comprehensive compendium
of Krattenthaler [12] seems applicable. However, in a special case, a
much simpler formula can be obtained.

Theorem 7. Suppose a,...,qq are in an arithmetic progression, i.e.,
there are ¢,d € Z such that o; = c(i — 1) +d fori=1,...,£. Then

fy = — (O‘”1>, where gy == cl+d = Lon + (1 — O)oy.
(7% /{
The key idea in the proof of the above theorem is to use formula
(3.13) from [12, Thm. 26].

Remark 8. The simplest case where the above Proposition is applica-
ble is when a4, ..., a, are consecutive, i.e., c=1and o; =d + 1 — 1.
Then, the formula for k, reduces to (’Hﬁ_l). Of course, this is not
surprising because in this case (), is nothing but the smaller Grass-
mannian Ggqy¢ 1. S0, here we also have simpler formulae for n, and
0o, and the minimum distance conjecture is true. However, even in this

simplest case, the evaluation of the determinant in (12) does not seem



obvious. Indeed, it becomes an instance of the Ostrowski determinant
det ((kij)) if we take k; = ¢ + 1. A formula for such a determinant

and the result that it is positive for increasing {k;} was obtained by
Ostrowski [15] in 1964. The case when {k;} are consecutive seems to
go back to Zeipel in 1865 (cf. [13, Vol. 3, pp. 448-454]).

An alternative formula for the dimension k, of C,(¢,m) can be de-
rived using results of the previous section. To this end, we begin by
observing that the dimension £ of the ¢g-ary Grassmann code C'(¢,m)

does not depend on ¢, and bears the following relation to the length
n =n(q) of C(¢,m):

qg—1 qg—1 E E

Much has been written on this limiting formula in combinatorics liter-
ature. For example, a colourful, albeit mathematically incorrect, way
to state it would be to say that the (lattice of) subsets of an m-set is
the same as the (lattice of) subspaces of an m-dimensional vector space
over the field of one element! It turns out that a similar relation holds
in the case of Schubert codes. This can, then, be used to obtain the
said alternative formula for k,:

(13) limn(g) =k or, in other words, lim [m] = (m)
q

Proposition 9. The dimension k, of the q-ary Schubert code Cy (¢, m)
is independent of g and is related to its length ny, = ny(q) by the formula

(14) (111_1)1} Na(q) = ka-
Consequently, if u and py,...,p, be are as in Theorem 2, then
Qp;  Cpy Qpy, u o —
15 - Pit+1 Di ’
SIS DD D B 11 ot
$1=p1 $2=P2 Su=pu =0

where, by convention, so = po = 0 and Sy11 = Pys1 = £.

Remark 10. As a consequence of the results in this section, we obtain
a purely combinatorial identity which equates the right hand sides of
(12) and (15). It would be an intriguing problem to prove this without
invoking Schubert codes.

While one would like to construct codes having both the rate k/n
and the relative distance d/n as close to 1 as possible, the two require-
ments are in conflict with each other. For Schubert codes, this conflict
manifests itself in a peculiar way:

Corollary 11. Let R = R(q) and A = A(q) denote, respectively, the
rate and the relative distance of the q-ary Schubert code Co (¢, m). Then

limR(g) =1 and lim A(g) =1.
qg—1 q—0o0

This corollary is a consequence of Proposition 9 together with The-
orem 1 and some results from [3].



6. MINIMUM DISTANCE CONJECTURE FOR SCHUBERT DIVISORS

As remarked earlier, the minimum distance conjecture for the unique
nontrivial Schubert variety in the Klein quadric Gy 4, namely €2, 4), was
proved in [23]. The result in [1] and [9] for Schubert varieties in Gy,
generalizes this simple example. Another natural generalization is the
family of Schubert varieties of codimension one in Gy, for arbitrary
¢ and m. It turns out that the conjecture can also be proved, in the
affirmative, for this other generalization. However, the general case of
the minimum distance conjecture remains open.

Let us, as before, fix integers /,m with 1 < ¢ < m, and for any
B=(B,...,B) € I(t,m), let 65 = 3¢ (B — 7). To avoid trivialities,
we may tacitly assume that 1 < ¢ < m. Further, we let

0:=(m—Cl+1,m—L+2,...,m) and n:=(m—Lm—L0+2,...,m).

Note that with respect to the partial order <, defined in Section 3, 6
is the unique maximal element of I(¢, m), whereas n the unique sub-
maximal element. Moreover 6y = 6 := ¢(m — £) and §,, = § — 1. Thus,
(g is the full Grassmannian Gy, whereas (2, is the unique subvariety
of Gy, of codimension one, which is often referred to as the Schubert
divisor in Gy p,.

Theorem 12. For 1 < r < max{/,m — £}, we have
(16) dy (Cy(€,m)) = R e A

In particular, d (C,(¢,m)) = ¢°, i.e., the minimum distance conjecture
s valid in this case.

The key idea in the proof of this theorem is to use the notion of a
close family introduced in [3] and [4], and some results from [3].

7. RELATED DEVELOPMENTS

Just as a Schubert variety is a natural generalization of the Grass-
mannian, another natural generalization is the variety of partial flags.
These are defined as follows. Let V be a vector space of dimension
m over F,. Let £ = (¢1,...,¢;) be a sequence of integers such that
0 <ty <--- <ty <m. A partial flag of dimension £ is a sequence
(Vi,...,Vs) of subspaces of V such that V3 C --- C Vs and dimV; = ¥;
for 1 <7 < s. Let F4(V) denote the set of partial flags of dimension
£. Note that if s = 1, then F,(V) is the Grassmannian Gry, (V). In
general, F;(V') embeds naturally into a product of Grassmannians, and
hence into a product of projective spaces via the Pliicker embeddings,
and consequently, into a large projective space via the Segre embed-
ding. As such, it is a projective variety defined over F, and gives rise
to a linear code, which we denote by C(£;m) or C(¢4,...,4s;m). The



basic parameters n,k and d of this code were determined by Rodier
[16] when s =2 and £ = (1, m — 1). In effect, he showed:

m _ 1 mfl_l
n = (q )(q ), k= m2 —1 and d= q2m—3 o qm—Q'

(¢—1)

It turns out that it is possible to extend the first two results so as to
obtain formulae for n and k£ in the general case. The general formula for
n is, in essence, known for many years and can be gleaned, for example,
from [6, Sec. 2]. The general formula for £ is a little more involved
and uses ideas from representation theory. These results about the
length and dimension of codes associated to flag varieties are expected
to appear in [8]. However, for the minimum distance of these codes,
nothing seems to be known, in general, even conjecturally.

Finally, we remark that Grassmannians and flag varieties are spe-
cial instance of homogeneous spaces of the form G/P, where G is a
semisimple algebraic group and P a parabolic subgroup. Moreover,
Schubert varieties also admit generalization in this context. Thus it
was indicated in [3] that codes such as Schubert codes can also be in-
troduced in a much more general setting. It turns out, in fact, that the
construction of such general codes was already proposed in the binary
case by Wolper in an unpublished paper [24]. The general case, how-
ever, needs to be better understood and can be a source of numerous
interesting problems.

REFERENCES

[1] H. Chen, On the minimum distance of Schubert codes, IEEE Trans. Inform.
Theory, 46 (2000), 1535-1538.

[2] C. Ehresmann, Sur la topologie de certains espaces homogenes, Ann. of
Math. (2) 35 (1934), 396-443.

[3] S. R. Ghorpade and G. Lachaud, Higher weights of Grassmann codes, in:
“Coding Theory, Cryptography and Related Areas” (Guanajuato, 1998),
Springer-Verlag, Berlin/Heidelberg, 2000, pp. 122-131.

[4] S. R. Ghorpade and G. Lachaud, Hyperplane sections of Grassmannians and
the number of MDS linear codes, Finite Fields Appl. 7 (2001), 468-506.

[5] S. R. Ghorpade, A note on Hodge’s postulation formula for Schubert vari-
eties, in: “Geometric and Combinatorial Aspects of Commutative Algebra”
(Messina, 1999), Marcel Dekker, New York, 2001, pp. 211-220.

[6] S. R. Ghorpade and G. Lachaud, Number of solutions of equations over finite
fields, and a conjecture of Lang and Weil, in: Number Theory and Discrete
Mathematics (Chandigarh, 2000), Birkhauser, Basel, 2002, pp. 269-291.

[7] S. R. Ghorpade and M. A. Tsfasman, Schubert varieties, linear codes and
enumerative combinatorics, Prétirage n® 2003-04, Institut de Mathématiques
de Luminy, Marseille, 2003.

[8] S. R. Ghorpade, Flag varieties and error correcting codes, in preparation.

[9] L. Guerra and R. Vincenti, On the linear codes arising from Schubert vari-
eties, to appear in: Des. Codes Cryptogr.

[10] W. V. D. Hodge, Some enumerative results in the theory of forms, Proc.
Cambridge Phil. Soc. 39 (1943) 22-30.



[11] W. V. D. Hodge and D. Pedoe, “Methods of Algebraic Geometry, Vol. IT”,
Cambridge Univ. Press, Cambridge, 1952.

[12] C. Krattenthaler, Advanced determinant calculus, Sém. Lothar. Combin. 42
(1999), Article B42q, 67 pp.

[13] T. Muir, “The Theory of Determinants in the Historical Order of Develop-
ment”, 4 Vols., Macmillan, London, 1906-1923.

[14] D. Yu. Nogin, Codes associated to Grassmannians, in: “Arithmetic, Geom-
etry and Coding Theory” (Luminy, 1993), Walter de Gruyter, Berlin/New
York, 1996, pp. 145-154.

[15] A. M. Ostrowski, On some determinants with combinatorial numbers, J.
Reine Angew. Math. 216 (1964), 25-30.

[16] F. Rodier, Codes from flag varieties over a finite field, J. Pure Appl. Algebra
178 (2003) 203-214.

[17] C. T. Ryan, An application of Grassmannian varieties to coding theory,
Congr. Numer. 57 (1987) 257-271.

[18] C. T. Ryan, Projective codes based on Grassmann varieties, Congr. Numer.
57 (1987) 273-279.

[19] C. T. Ryan and K. M. Ryan, The minimum weight of Grassmannian codes
C(k,n), Disc. Appl. Math. 28 (1990) 149-156.

[20] R. Stanley, “Enumerative combinatorics, Vol. I”, Revised Ed., Cambridge
Univ. Press, Cambridge, 1997.

[21] M. A. Tsfasman and S. G. Vlddut, “Algebraic Geometric Codes”, Kluwer,
Amsterdam, 1991.

[22] M. A. Tsfasman and S. G. Vlidut, Geometric approach to higher weights,
IEEFE Trans. Inform. Theory 41 (1995), 1564-1588.

[23] R. Vincenti, On some classical varieties and codes, Proc. Combinatorics 2000
(Gaeta, Italy), to appear in: Ital. J. Pure Appl. Math.

[24] J. Wolper, Linear Codes from Schubert varieties, Issac Newton Institute of
Mathematical Sciences, Cambridge, Preprint No. NI96048 (1996).

DEPARTMENT OF MATHEMATICS, INDIAN INSTITUTE OF TECHNOLOGY BOM-
BAY, PowaAl, MUMBAI 400076, INDIA.

E-mail address: srg@math.iitb.ac.in

URL: http://www.math.iitb.ac.in/~srg

INSTITUT DE MATHEMATIQUES DE LUMINY, CASE 907, 13288 MARSEILLE,
FRANCE,

AND

INDEPENDENT UNIVERSITY OF MOSCOW,

AND

DORBUSHIN MATH. LAB., INSTITUTE FOR INFORMATION TRANSMISSION PROB-
LEMS, MOSCow.

E-mail address: tsfasman@iml.univ-mrs.fr

URL: http://www.aha.ru/~tsfasman



