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Abstract. On the base of a refinement of the Bender-Knuth (ex-)Conjecture I
present an elementary method for proving enumeration formulas which are polynomial
in at least one parameter. The Bender-Knuth (ex-)Conjecture gives the generating
function of column-strict plane partitions with parts in {1,2,...,n} and at most ¢
columns. In our refinement of this result the number of parts equal to n is fixed in
addition.

Résumé. Sur la base d’un raffinement de l’ex-conjecture de Bender-Knuth, je
présente une méthode élémentaire pour prouver des formules d’énumérations qui sont
polynomiales en au moins un parametre. L’ex-conjecture de Bender-Knuth donne la
fonction génératrice des partitions planes & colonnes strictes en parts dans {1,2,...,n}
et ayant au plus c colonnes. Dans notre raffinement de ce résultat, le nombre de parts
égales a n est fixé en plus.

1. INTRODUCTION

Let A = (A1, A2, ..., Ar) be a partition. A strict plane partition of shape X is an array
Ti<i<r,i<j<); Of non-negative integers such that the rows are weakly decreasing and the
columns are strictly decreasing. The norm n(m) of a strict plane partition is defined
as the sum of its parts and 7 is said to be a strict plane partition of the non-negative
integer n(7). In [2, p.50] Bender and Knuth conjectured that the generating function
of strict plane partitions with at most ¢ columns whose parts lie in the set {1,2,...,n}
and with respect to this norm is equal to
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where [n;q] = 1+ ¢+ ---+¢* ! and [a;¢|, = H?:_Ol [a + i;q]. This conjecture was
independently proved by Andrews [1], Gordon [9], Macdonald [12, Ex. 19, p.53] and
Proctor [14, Prop. 7.2|. For related papers, which mostly include generalisations of
the Bender-Knuth (ex-)Conjecture, see [4, 5, 10, 11, 15, 18]. In our refinement of this
result the number of parts equal to n in the strict plane partition is fixed in addition.



Theorem 1. The generating function of strict plane partitions with parts in {1,2,...,n},
at most ¢ columns and k entries equal to n s

"k + 1;qln-1[1 + ¢ — k; qln—1 ﬁ [c+ i+ 1;q)i1
[1§q]n71 i1 [7;36_7]1'

If we sum this generating function over all £’s, 0 < k < ¢, we easily obtain the
Bender-Knuth (ex)-Conjecture. Probably this detour over Theorem 1 is so far the
easiest and most elementary possibility to prove the Bender-Knuth (ex-)Conjecture.
For the full version of this paper see [6].

2. THE METHOD

We first explain how to prove the case ¢ = 1 of Theorem 1, i.e. we compute the
number of strict plane partitions with parts in {1,2,...,n}, at most ¢ columns and &
entries equal to n, and later see that the method can be extended in order to prove
the more general result. Note that in the special case ¢ = 1 the formula in Theorem 1
is a polynomial in &, which factorises into linear factors over Z. In the following I give
a recipe which might be suitable for proving polynomial enumeration formulas of that
type in general. It is divided into three steps.

(1) Extension of the combinatorial interpretation. Suppose we are given
combinatorial objects we want to enumerate which depend on an integer pa-
rameter £ and we suspect that there exists an enumeration formula of these
objects which is polynomial in k£ and factorises into distinct linear factors over
Z. Typically the admissible domain of k is a set S of non-negative integers. In
the first step of our method we have to find (most likely new) combinatorial
objects indexed by an arbitrary integer £ which are in bijection with the orig-
inal objects for £ € S. In our example: With the help of new combinatorial
objects, namely the generalised (n— 1, n, ¢)-Gelfand-Tsetlin-patterns with fixed
part k in the center of the first row, we extend the interpretation of strict plane
partitions with parts in {1,2,...,n}, at most ¢ columns and k parts equal to n
to arbitrary integers k.

(2) The extension is enumerated by a polynomial. The extension of the
combinatorial interpretation in the previous step has to be chosen such that we
are able to prove that the new objects are enumerated by a polynomial in k.
Moreover the degree of this polynomial has to be computed. In our example we
show that for fixed n and c¢ these new objects are enumerated by a polynomial
P, (k) in k. Moreover it can be shown that this polynomial is of degree 2n — 2.
However, this is the part of the proof of Theorem 1 we omit in this extended
abstract. It can be found in [6].

(3) Exploring ’natural’ linear factors. Finally one has to find the &’s for which
there exist none of these objects, i.e. one has to compute the (integer) zeros
of the enumeration polynomial. Typically these zeros will not lie in S, which
made the extension in Step 1 necessary. Moreover one has to find a non-zero
evaluation of the polynomial which is easy to compute, and together with the



zeros the polynomial is finally computable. In our example we observe that
there is no such (n — 1,n, ¢)-pattern with fixed part k£ in the center of the first
row for k = —1,-2,...,—n+1land for k =c+1,c+ 2,...,c+n — 1 which
implies that the polynomial P, .(k) must have the factor (k+1),_1(1+c—Fk),_1.
By the degree estimation of the previous step we have determined P, .(k) up
to a factor which does not depend on k. Since it is possible to compute P, .(c)
inductively, i.e. by the use of P,_;.(k), we are able to compute this factor and
with this P, .(k).

I plan to apply this method to other enumeration problems. The most ambitious
project in this direction is probably my current effort to give another proof of the refined
alternating sign matrix (ex-)Conjecture. There is some hope for a proof which is in
the vein of the proof of Theorem 2: Let A(n, k) denote the number of alternating sign
matrices of order n, where the unique 1 in the first row is in the k-th column. It was
conjectured by Mills, Robbins and Rumsey [13] (well-known as the refined alternating
sign matrix Conjecture; see also [3] for a nice introduction to alternating sign matrices)
and proved by Zeilberger [19] that

(B)n—1(1+7n —k)ns o (1)3i—2
e Sy

A(n, k) =

For me it came by surprise that the number of strict plane partitions with parts in
{1,2,...,n}, at most n — 1 columns and k — 1 parts equal to n divided by A(n, k) is
independent of k. (In fact this fraction is the number of (n — 1) x (n — 1) x (n — 1)
totally symmetric plane partitions.) In other words: Up to a shift and up to a constant
the enumeration polynomials (in k) coincide in these two cases. Moreover strict plane
partitions and alternating sign matrices are also closely related because of the follow-
ing: Below we see that strict plane partitions are in bijection with Gelfand-Tsetlin
patterns. Alternating sign matrices are in bijection with monotone triangles (see [3])
and monotone triangles are simply Gelfand-Tsetlin patterns with strictly increasing
rows. Thus an application of the method to alternating sign matrices could be similar
to the application presented in this paper.

Throughout our considerations we use the extended definition of the summation
symbol, namely,

fla)+ fla+1)+...+ f(b) ifa<b

b
d fH)=10 ifb=a—1
=6 —fb+1)—fb+2)—...— fla—1) ifb+1<a-—-1

This assures that for any polynomial p(X) over an arbitrary integral domain I there
exists a unique polynomial ¢(X) over I such that >-Y_, p(z) = ¢(y) for all integers y.

Moreover deg ¢ = degp + 1. (Thus we usually use Y ._,p(z) as a synonym for ¢(y).)

The following three sections refer to the three steps of our method given above.



3. STEP 1: FROM STRICT PLANE PARTITIONS TO GENERALISED
(n — 1,n, ¢)-GELFAND-TSETLIN-PATTERNS

Let 7, n,c be integers, r non-negative and n positive. In this paper a generalised
(r,n, ¢)-Gelfand- Tsetlin-pattern (short: (r,n, c)-pattern) is an array (a; ;)1<i<r+1,i—1<j<n+1
of integers with

®a;; 1 =0and a1 = ¢
o ifa;; < a;j41 then a;; < a1 < a; 541
o if Q5 > Qjj+1 then Qi j > Qi1 > Gjj+1-

Thus

is an example of an (3,6,4)-pattern. Note that a generalised (n — 1,n, c)-Gelfand-
Tsetlin pattern with 0 < a,, < c is what is said to be a Gelfand-Tsetlin pattern,
see [17, p. 313] or [8, (3)] for the original reference. It is crucial to our considerations
that (n — 1,n,c)-patterns with 0 < a,, = k < c are in bijection with strict plane
partitions with parts in {1,2,...,n}, at most ¢ columns and & parts equal to n: Given
an (n — 1, n, ¢)-pattern, the corresponding strict plane partition is such that the shape
filled by entries greater than i corresponds to the partition given by the (n —7)-th row
of the (n — 1, n, ¢)-pattern, the topmost row being the first row.

Therefore it suffices to enumerate the (n — 1,n, ¢)-patterns with 0 < a,, = k < c.
A pair (a;;, a;j41) With a;; > a;;+1 and @ # 1 is called an inversion of the (r,n,c)-
pattern and (—1)#ofinversions jg gaid to be the sign of the pattern, denoted by sgn(a).
The (3,6, 4)-pattern in the example above has altogether 6 inversions and thus its sign
is 1. We define the following expression

F(ryn,c ki, ko, ..o kn_y) = ngn(a),

where the sum runs over all (r, n, ¢)-patterns (a; ;) with k; = @, 41,4 fori =1,... n—r.
Note that the number of (n — 1,n,c)-patterns with 0 < a,, = k£ < ¢ is equal to
F(n —1,n,c;k). This is because an (n — 1,n, ¢)-pattern with 0 < a,, < c has no
inversions.

Clearly it makes no sense to ask for the number of strict plane partitions with parts
in {1,2,...,n}, at most ¢ columns and k parts equal to n if k& ¢ {0,1,..., ¢}, since
by the columnstrictness parts equal to n can only occur in the first row of a strict
plane partition. However, F(r,n,c;k) is well-defined for all integers k& and therefore
what we have done so far is 'naturally’ extended the combinatorial interpretation of
the number of these strict plane partitions to arbitrary integers k. In the following we
see that 'naturally’ here stands for the fact that the extension was chosen such that
the extended objects are enumerated by a polynomial in &.



4. STEP 2: F(n—1,n,c¢;k) 1S A POLYNOMIAL IN k OF DEGREE 27 — 2

The definition of an (7, n, ¢)-pattern immediately implies the following recursion

k1 k2 kn—r41
F(Tanac;klak%-"akn—r): E E E F(T_lanac;llal27'--aln—r+1)a
li=ko lo=k1 ln—r+1=Kkn—r

for r > 0 and with ky =0, k, .41 = ¢. This recursion and the fact that
F(O,n,c;kl,kg,...,kn) =1

shows inductively (with respect to r) that F(r,n,c; k1, ..., k,_,) can be expressed by a
polynomial in k1, kg, . . ., kn_p. In the following F'(r, n, ¢; k1, ks, . . ., ky_) will be identi-
fied with this polynomial. It can be shown that this polynomial is of degree 2r in every
k;. However, this is the most difficult part in the proof of Theorem 1 and therefore we
omit it here. It can be found in [6]. Consequently F(n — 1,n,c; k) is a polynomial in
k of degree 2n — 2.

5. STEP 3: EXPLORING 'NATURAL’ LINEAR FACTORS

Now observe that there exists no (r, n, ¢)-pattern with fixed first row 0, k1, ..., kn_p, C
such that k; € {—1,—2,...,—r} by induction with respect to r: For r = 0 there is
nothing to prove, otherwise the southwest neighbour of k; in an (r, n, ¢)-pattern must
be in {—1,—-2,...,—r 4+ 1} and the assertion follows by induction. Analogously there
exists no such (r,n,c)-pattern with k,_, € {¢+ 1,¢+ 2,...,¢+ r}. Consequently
(k+1), 1(1+c— k), 1is a factor of F(n —1,n,c; k).

Lemma 1. F(n—1,n,¢k)/((k+1)p—1(1 + ¢ — k)n_1) is independent of k.

Proof. By the argument above and by Section 4 (k+ 1), 1(1 4+ ¢ — k), 1 is a factor
of F(n—1,n,c; k). But F(n—1,n,c; k) is a polynomial of degree 2n — 2 in k and the
assertion follows. 0

Theorem 2. The number of strict plane partitions with parts in {1,2,...,n}, at most
¢ columns and k parts equal to n is given by

n—1

(k+1)p1(1+c—k)p (c+i+1)1
(Dn—1 E (4)s '

Proof. Induction with respect to n. The formula is true for n = 1 since F(0,1,¢; k) =
1. In order to show the assertion for n, observe that

F(n—1,n,¢k)=

F(n—1,n,¢c)
(C+ ]-)n—l(l)n—l

by Lemma 1. The fact that for an (T‘, n, c)—pattern (ai,j)lgign_}_l’i_lgjgn_}_l with Gpnp = C
we have a;, = c for all 7, implies the recursion

Fn—1,n,¢c;k)=(k+1)p_1(1+¢c—k)n

F(n—1,n,¢c¢) :ZF(n—Q,n—l,c;k).
k=0



With the help of this recursion, the hypergeometric identity

k=0
(this identity can easily be deduced from the Chu-Vandermonde identity; see [16,
(1.7.7); Appendix (III. 4)]) and the induction hypothesis for F\(n — 2,n — 1, ¢; k) we
compute F(n —1,n,c; k). O

(5.1)

6. EXTENSION OF THE METHOD TO g-POLYNOMIALS

A natural question to ask is whether it is possible to obtain a generating function ver-
sion of Theorem 2. Of course only this would refine the Bender-Knuth (ex)-Conjecture.
Clearly this generating function is not a polynomial in k. However, we introduce the
notion of a ¢-polynomial below and find that the generating function is roughly such
a g-polynomial. Thus we adapt our method to g-polynomials in this section.

Let I be an integral domain. A g-polynomial over [ in the variable X is an ordinary
polynomial over I(q), the quotient field of I[g], in the variable [X;q] = (1—¢*)/(1—gq).
With the help of the following identity

(X +Y;q) = [X;q]+¢*[Y; 4]
it is possible to express every g-polynomial in the basis [X;q], = H?:_Ol [X + i;q] over
I(q), which is helpful below.

If we review the proof of Theorem 2 we see that the following two basic properties
of polynomials were crucial.

e If p(X) is a polynomial over an integral domain, then there exists a (unique)
polynomial r(X) with degr = degp + 1 and

for every integer y.
e If p(X) is a polynomial over an integral domain and ay, as, . .., a, are distinct
zeros of p(X), then there exists a polynomial 7(X) with

p(X)=(X—a1)(X —ag)... (X —a,)r(X).

The following analogs hold for ¢-polynomials.

e If p(X) is a g-polynomial, then there exists a (unique) ¢g-polynomial r(X) with
degr =degp+ 1 and

> p(z) ¢ =r(y)

for all integers y. In order to see this note that

(X5 qlns1 — [X = 1;¢]ns1 = ¢ Hn 4+ 1;¢][X; gl



which implies

y
> x5 qlng” = L (T
g [n+1;4]
for all integers .
e If p(X) is a g-polynomial and a1, as, . .., a, are distinct zeros of p(X), then there
exists a g-polynomial r(X) with
p(X) = ([X;q] = las; a])([X;q] = [az; q]) - - . ([X50] = [ar; g])r(X) =
gt (X g glIX — agsq] - [X — a3 qlr(X).

The proof is analog to the proof for ordinary polynomials, namely the funda-
mental identity is

n—1 n—1
X5 q"—[Y5q" = (X5 0)—[Y30) D _[V5ql'[X;q]" " = ¢ [X V3] ) _[V;q)'[X; 9"
=0 =0
We introduce a g-analog of F'(r,n, ¢; k1, ks, .. ., k). The norm of an (r, n, ¢)-pattern

is defined as the sum of its parts, where we omit the first and the last part in each row.
Then we define
Fq(T'a n,c, ]ﬁ, k‘g, e Z Sgn norm(a

where the sum runs over all (r, n, ¢)-patterns (a; ;) Wlth ki=ari14ifori=1,...,n—r.
Note that Fy(n—1,n, ¢; k) is the generating function of strict plane partitions with parts
in {1,2,...,n}, at most ¢ columns and k parts equal to n, since the bijection between
these strict plane partitions and (n — 1,n,c)-patterns is norm-preserving. If we run
through the g-analog of the proof of Theorem 2 we observe that

Fq(ra n,c kla k?a R kn—r)/ H qki

is a g-polynomial in kq, ks, ..., k, , and obtain the following g-analog of Lemma 1.
Lemma 2. F,(n —1,n,¢;k)/[1+ k; qln_1lk — ¢ — n + 1;¢]n_1¢") is independent of k.

(Note that [1 + ¢ — k; ¢, 1 is not a g-polynomial in k£ and therefore we work with
[k — ¢ —n+1;q],— instead.) Thus we are now able to prove Theorem 1.

Proof of Theorem 1. Induction with respect to n. The formula is true for n = 1
since F(0,1,c; k) = g*. The rest follows from the lemma, the recursion

F,(n—1,n,¢c¢) = qC”ZFq(n —-2,n—1,¢k)

and the following identity

c

> kA1 glna[k—c—n41; gla ¢F = (—1)" gD yellidh [11[Q]2 : 26 )
k=0 n—

which can be deduced from the ¢-Chu-Vandermonde identity, see [7, (1.5.3);Appendix
(IL. 6)]. O




Finally we are able to prove the Bender-Knuth (ex)-Conjecture.

Corollary 1. The generating function for the strict plane partitions with parts in
{1,2,...,n} and at most ¢ columns equals

n

S @ =] letisgli

o [dh

Proof. By Theorem 1 the generating function is equal to

n—1

"k +1;qln1[l + ¢ — ks qlas I [c+i+1;qlim
k=0 [17 q]n_l i=1 [7’5 q]l
The assertion follows from (6.1). O

Cc
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