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Abstract. Significant progress continues to be made in algebraic
combinatorics. We will survey three topics representative of this
development.

Résumé: La combinatoire algébrique est un domaine en plein
essor. Nous donnerons ici un aper cu de trois sujets typiques de
ces derniers développements.

1. The Laurent phenomenon. There are many examples of ra-
tional functions with recursive definitions which turn out unexpectedly
to be Laurent polynomials. The protypical example is the (generic)
Somos-4 sequence [9] defined by

a0 = a, a1 = b, a2 = c, a3 = d, an−4an = an−1an−3 + a2
n−2 for n ≥ 4,

where a, b, c, d are independent indeterminates. A priori an is a ratio-
nal function of a, b, c, d with a complicated denominator, but in fact
when an is reduced to lowest terms the denominator is a monomial.
In particular, when a = b = c = d = 1, an is an integer. A break-
through in understanding the Laurent phenomenon algebraically was
made by Fomin and Zelevinsky [3] as a consequence of their theory of
cluster algebras. The integrality of the Somos-4 sequence itself (and a
natural extension known as Somos-5) when a = b = c = d = 1 was
elucidated by a combinatorial interpretation of an as the number of
matchings of a certain graph by a team of undergraduate students at
Harvard University supervised by Jim Propp [10] and independently
by M. Bousquet-Mélou and J. West [1].

2. Toric Schur functions and Gromov-Witten invariants.

Let Grkn denote the Grassmann variety (or Grassmannian) of all k-
dimensional subspaces of the n-dimensional complex vector space Cn.
The cohomology ring H∗(Grkn) (say over Q) is the fundamental object
for the development of classical Schubert calculus, which is concerned,
at the enumerative level, with counting the number of linear subspaces
that satisfy certain geometric conditions. For an introduction to Schu-
bert calculus see [4][5], and for connections with combinatorics see [12].
In particular, H∗(Grkn) has a basis of Schubert cycles Ωλ indexed by



partitions λ whose shape is contained in a k × (n − k) rectangle (de-
noted λ ⊆ k × (n − k)). Multiplication in the ring H∗(Grkn) is given
by

(1) σµσν =
∑

λ⊆k×(n−k)

cλ
µνσλ,

where cλ
µν is a Littlewood-Richardson coefficient. Thus cλ

µν has a geo-
metric interpretation as the intersection number of the Schubert vari-
eties Ωµ, Ων , Ωλ∨ , where λ∨ denotes the complement of λ (rotated 180◦)
in a k × (n − k) rectangle. More concretely,

(2) cλ
µν = #

(

Ω̃µ ∩ Ω̃ν ∩ Ω̃λ∨

)

,

the number of points of Grkn contained in the intersection Ω̃µ∩Ω̃ν∩Ω̃λ∨ ,

where Ω̃σ denotes a generic translation of Ωσ. Equivalently, cλ
µν is the

number of k-dimensional subspaces of Cn satisfying all of the geometric
conditions defining Ω̃λ∨ , Ω̃µ, and Ω̃ν .

Some recent results of Alexander Postnikov [8] deal with a quan-
tum deformation of H∗(Grkn). The cohomology ring H∗(Grkn) can be
deformed into a “quantum cohomology ring” QH∗(Grkn), which spe-
cializes to H∗(Grkn) by setting q = 0. A basis for QH∗(Grkn) remains
those σλ for which λ fits in a k × (n− k) rectangle. Now, however, the
usual multiplication σµσν of Schubert classes has been deformed into a
“quantum multiplication” σµ ∗ σν . It has the form

σµ ∗ σν =
∑

d≥0

∑

λ`|µ|+|ν|−dn

λ⊆k×(n−k)

qdCλ,d
µν σλ,

where Cλ,d
µν ∈ Z. The geometric significance of the coefficients Cλ,d

µν (and
the motivation for defining QH∗(Grkn) in the first place) is that they
count the number of rational curves of degree d in Grkn that meet fixed
generic translates of the Schubert varieties Ωλ, Ωµ, and Ων∨ . (Naively,
a rational curve of degree d in Grkn is a set

C = {(f1(s, t), f2(s, t), . . . , f(n
k)

(s, t)) ∈ P (n
k)−1(C) : s, t ∈ C},

where f1(x, y), . . . , f(n
k)

(x, y) are homogeneous polynomials of degree d

such that C ⊂ Grkn.) Since a rational curve of degree 0 in Grkn is just a
point of Grkn we recover in the case d = 0 the geometric interpretation
(2) of ordinary Littlewood-Richardson coefficients cλ

µν = Cλ,0
µν . The

numbers Cλ,d
µν are known as (3-point) Gromov-Witten invariants.

We will discuss Postnikov’s combinatorial description of a new gen-
eralization of (skew) Schur functions, called toric Schur functions and



denoted sλ/d/µ, where ordinary (planar) Young diagrams are replaced
by a toroidal analogue. The main result concerning toroidal Schur
functions is the expansion

sλ/d/µ(x1, . . . , xk) =
∑

ν⊆k×(n−k)

Cλ,d
µν sν(x1, . . . , xk),

giving a new interpretation of the Gromov-Witten invariants Cλ,d
µν .

3. Domino Schur functions and the imbalance of a standard

Young tableaux. Let T be a standard Young tableau (SYT) of shape
λ ` n, such as

T =
1 2 4 6
3 7 8
5

,

of shape λ = (4, 3, 1). Read the entries of T in the usual reading
order, obtaining a permutation wT ∈ Sn. For the above example,
wT = 12463785 ∈ S8. Let εT = 1 if wT is an even permutation, and
εT = −1 if wT is odd. Define the imbalance Iλ of the partition λ by

Iλ =
∑

sh(T )=λ

εT ,

where T ranges over all SYT of shape λ. The notion of the imbalance
of λ first arose in the work of Frank Ruskey [11] in the case where
λ = (ab) (i.e., the shape of λ is an a × b rectangle). A conjecture of
Ruskey concerning this case was proved and refined by Dennis White
[14]. Some further results appear in [13].

We will discuss connections between the imbalance of λ and such
topics as domino Schur functions [6], shifted tableaux and Schur’s Q-
functions [7, §III.8], and the Wronski map on the real Grassmannian
[2].
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