
SELF-AVOIDING WALKS CROSSING A SQUAREA. J. GUTTMANN, I. JENSEN, AND M. BOUSQUET-MÉLOUAbstrat. We study a restrited lass of self-avoiding walks (SAW) whih start at theorigin (0, 0), end at (L, L), and are entirely ontained in the square [0, L]× [0, L] on thesquare lattie Z2. The number of distint walks is known to grow as λL2+o(L2). We givea preise estimate for λ as well as obtaining upper and lower bounds. We give exatresults for the number of SAW of length 2L + 2K for K = 0, 1, 2 and asymptoti resultsfor K = o(L1/3).We also onsider the model in whih a weight or fugaity x is assoiated with eahstep of the walk. This gives rise to a anonial model of a phase transition. For x < 1/µthe average length of a SAW is proportional to L, while for x > 1/µ it is proportional to
L2. Here µ is the growth onstant of unonstrained SAW in Z2. For x = 1/µ we providenumerial evidene, but no proof, that the average walk length is O(L4/3).We also onsider Hamiltonian walks under the same restritions. These grow as
τL2+o(L2) on the same L × L lattie. We give preise estimates for τ , as well as up-per and lower bounds, and prove τ < λ.Nous étudions les hemins auto-évitants (CAE) du réseau arré qui partent de l'origine
(0, 0), �nissent en (L, L), et sont entièrement ontenus dans le arré [0, L] × [0, L]. Onsait que le nombre de tels hemins roît omme λL2+o(L2). Nous donnons une estimationpréise, ainsi que des bornes supérieures et inférieures pour λ. Nous donnons le nombreexat de CAE de longueur 2L + 2K traversant le arré de �té L, pour K = 0, 1, 2, et leomportement asymptotique de e nombre pour K = o(L1/3).On assoie ensuite un poids x à haque pas d'un hemin, e qui mène à une modèleprésentant une transition de phase. Si µ désigne la onstante de roissante des CAE nonontraints, alors pour x < 1/µ, la longueur moyenne d'un CAE traversant le arré de �té
L est proportionnelle à L, tandis qu'elle est proportionnelle à L2 lorsque x > µ. Pour
x = µ, nos données numériques suggèrent que la longueur moyenne est en O(n3/4).Nous onsidérons aussi des hemins hamiltoniens traversant un arré. Le nombre detels hemins roît omme τL2+o(L2). Nous donnons une estimation préise et des bornessupérieures et inférieures pour τ , et nous prouvons que τ < λ.1. IntrodutionWe are onsidering the problem of self-avoiding walks on the square lattie Z

2. For walkson an in�nite lattie, it is generally aepted [9℄ that the number cn of suh walks of length
n, onsidered up to a translation, grows as cn ∼ const.µnnγ−1, with metri properties, suhas mean-square radius of gyration or mean-square end-to-end distane growing as 〈R2〉n ∼
const.n2ν , where γ = 43/32 and ν = 3/4. The growth onstant µ is lattie dependent, and forthe square lattie is not known exatly, but is indistinguishable numerially from the uniquepositive root of the equation 13x4 − 7x2 − 581 = 0. We denote the generating funtion by
C(x) :=

∑
n cnxn, and it will be useful to de�ne a seond generating funtion for those SAWwhih start at the origin (0, 0) and end at a given point (u, v), as G(0,0;u,v)(x). In terms ofthis generating funtion, the mass m(x) is de�ned [9℄ to be the rate of deay of G along aDate: May 11, 2005.MBM was partially supported by the European Commission's IHRP Programme, grant HPRN-CT-2001-00272, �Algebrai Combinatoris in Europe�. 1
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2 A. J. GUTTMANN, I. JENSEN, AND M. BOUSQUET-MÉLOUoordinate axis,
m(x) := lim

n→∞

− log G(0,0;n,0)(x)

n
. (1)Here, we are interested in a restrited lass of square lattie SAW whih start at theorigin (0, 0), end at (L, L), and are entirely ontained in the square [0, L]× [0, L]. A fugaity

x is assoiated with eah step of the walk. Historially, this problem seems to have led twolargely independent lives. One as a problem in ombinatoris (in whih ase the fugaityhas been impliitly set to x = 1), and one in the statistial mehanis literature where thebehaviour as a funtion of fugaity x has been of onsiderable interest, as there is a fugaitydependent phase transition.The problem seems to have �rst been mentioned by Knuth [7℄, within the framework ofa disussion on how to estimate large numbers. The �rst full disussion as a mathematialproblem seems to be by Abbott and Hanson [1℄ in 1978, many of whose results and methodsare still useful today. In [10℄ there is mention of a version of the problem being due toearlier work of Hammersley. A key question onsidered in [1℄ and in this paper, is thenumber of distint SAW on the onstrained lattie, and their growth as a funtion of thesize of the lattie. Let cn(L) denote the number of n-step SAW whih start at the origin
(0, 0), end at (L, L) and are entirely ontained in the square [0, L] × [0, L]. Further, let
CL(x) :=

∑
n cn(L)xn. Then CL(1) is the number of distint walks from the origin to thediagonally opposite orner of an L×L lattie. In [1℄, and independently in [13℄ it was provedthat CL(1) = λL2+o(L2). The value of λ is not known, though bounds and estimates havebeen given in [1, 13℄. One of our purposes in this paper is to improve on both the boundsand the estimate.In the statistial mehanis literature, the problem appears to have been introdued byWhittington and Guttmann [13℄ in 1990, who were partiularly interested in the phasetransition that takes plae as one varies the fugaity assoiated with the walk length. At aritial value, xc the average walk length of a path on an L × L lattie hanges from beingproportional to L to being proportional to L2. In [13℄ the ritial fugaity proved to be

≥ 1/µ, and onjetured to be xc = 1/µ. In [8℄ the onjeture was proved.In [1℄ the more general problem of SAW onstrained to an L ×M lattie was onsidered,where the analogous question was asked: how many self-avoiding paths are there from (0, 0)to (L, M)?If one denotes the number of suh paths by CL,M , it is lear that, for M �xed, the pathsan be generated by a �nite dimensional transfer matrix, and hene that the generatingfuntion is rational. Indeed, in [1℄ it was proved that
G2(z) =

∑

L≥0

CL,2z
L =

1 − z2

1 − 4z + 3z2 − 2z3 − z4
, (2)(where here we have orreted a typographial error). It follows that CL,2 ∼ const.λ2L

2 ,where λ2 =
√

2√
13−3

= 1.81735 . . ..In this paper we also onsider two further problems whih an be seen as generalisationsof the stated problem. Firstly, we onsider the problem where SAWs are allowed to startanywhere on the left edge of the square and terminate anywhere on the right edge; sothese are walks spanning the retangle from left to right. We denote by TL the number ofsuh SAWs on an L × L lattie. Seondly, we onsider the problem in whih there may beseveral independent self- and mutually-avoiding walks, eah suh walk starting and endingon the perimeter of the square. The SAW are not allowed to take steps along the edgesof the perimeter. Suh walks partition the retangle into distint regions and by olouringthe regions alternately blak and white we get a ow-path pattern. We denote by PL thenumber of suh on�gurations of SAWs on an L × L lattie. Eah problem is illustrated in
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SELF-AVOIDING WALKS CROSSING A SQUARE 3�gure 1. These generalisations are introdued as they allow us to establish rigorous boundson λ, whih we do below.

Figure 1. An example of a SAW on�guration rossing a square (leftpanel), spanning a square from left to right (middle panel) and a ow-path(right panel).Following the work in [13℄, Madras in [8℄ proved a number of theorems. In fat, most ofMadras's results were proved for the more general d-dimensional hyperubi lattie, but herewe will quote them in the more restrited two-dimensional setting.Theorem 1. The following limits,
µ1(x) := lim

L→∞
CL(x)1/L and µ2(x) := lim

L→∞
CL(x)1/L2

,are well-de�ned in R ∪ {+∞}.More preisely,
(i) µ1(x) is �nite for 0 < x ≤ 1/µ, and is in�nite for x > 1/µ. Moreover, 0 < µ1(x) < 1for 0 < x < 1/µ and µ1(1/µ) = 1.

(ii) µ2(x) is �nite for all x > 0. Moreover, µ2(x) = 1 for 0 < x ≤ 1/µ and µ2(x) > 1 for
x > 1/µ.The average length of (weighted) walks rossing the L × L square is de�ned to be

〈n(x)〉L :=
∑

n

ncn(L)xn/
∑

n

cn(L)xn. (3)Let a(x) and b(x) be two funtions of some variable x. We write that a(x) = Θ(b(x)) as
x → x0 if there exist two positive onstants κ1 and κ2 suh that, for x su�iently lose to
x0,

κ1 b(x) ≤ a(x) ≤ κ2 b(x).Theorem 2. For 0 < x < 1/µ, we have that 〈n(x)〉L = Θ(L) as L → ∞, while for x > 1/µ,we have 〈n(x)〉L = Θ(L2).The situation at x = 1/µ is unknown. We provide ompelling numerial evidene that infat 〈n(1/µ)〉L = Θ(L1/ν) , where ν = 3/4, in aordane with an intuitive suggestion in [8℄.Theorem 3. For x > 0, de�ne f1(x) = log µ1(x) and f2(x) = log µ2(x).

(i) The funtion f1 is a stritly inreasing, negative-valued onvex funtion of log x for
0 < x < 1/µ, and f1(x) = Θ(−m(x)) as x → 1/µ−, where m(x) is the mass, de�nedby (1).

(ii) The funtion f2 is a stritly inreasing, onvex funtion of log x for x > 1/µ, andsatis�es 0 < f2(x) ≤ log µ + log x.
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4 A. J. GUTTMANN, I. JENSEN, AND M. BOUSQUET-MÉLOUSome, but not all of the above results were previously proved in [13℄, but these threetheorems elegantly apture all that is rigorously known.2. Bounds on the growth onstant λFor the more general problem of SAW going from (0, 0) to (L, M) on an L×M lattie, itwas proved in [1℄ thatTheorem 4. For eah �xed M , limL→∞ C
1

LM

L,M = λM exists.Further, Abbott and Hanson state that a similar proof an be used to establish that
limL→∞ C

1

L2

L,L := λ exists. This was proved rather di�erently in [13℄.2.1. Upper bounds on λIn [1℄ an upper bound on the growth onstant λ was obtained by reasting the problem ina matrix setting. We give below an alternative method for establishing upper bounds, basedon de�ning a superset of paths. We then show that these two methods are in fat essentiallyidential.Following [1℄, onsider any non-interseting path rossing the L × L square. Label eahunit square in the L × L lattie by 1 if it lies to the right of the path, and by 0 if itlies to the left. This provides a one-to-one orrespondene between paths and a subset of
L × L matries with elements 0 or 1. Matries orresponding to allowed paths are alledadmissible, otherwise they are inadmissible. Sine the total number of L× L 0− 1 matriesis 2L2

, we immediately have the weak bound CL,L ≤ 2L2

. Of the 16 possible 2× 2 matries,only 14 an orrespond to portions of non-interseting lattie paths. Lote that there areonly 12 atual paths from (0, 0) to (2, 2), but a further two matries may orrespond topaths that are embedded in a larger lattie. Thus we �nd the bound CL,L ≤ 14(L/2)2, so
λ ≤ 1.9343... Similarly, for 3 × 3 latties we �nd 320 admissible matries (out of a possible512), so λ ≤ 3201/9 = 1.8982.. For 4 × 4 latties, [1℄ laims that there are 22662 admissiblematries, but we believe the orret number to be 22816, giving the bound λ ≤ 1.8723... Wehave made dramati extensions of this work, using a ombination of �nite-lattie methodsand transfer matries, as desribed below, and have determined the number of admissiblematries up to 19 × 19. There are 3.5465202× 1090 suh matries, giving the bound

λ ≤ 1.781684.This bound is fully equivalent to the bound λ ≤ (2PL)1/L2 , where PL denotes the numberof ow-path on�gurations on the L × L lattie. This equivalene follows if one oloursow-pathes by two olours, suh that adjaent regions have di�erent olours. Labelling thetwo olours 0 and 1 produes a 0 − 1 matrix representation.2.2. Lower bounds on λIn [1℄ the useful bound
λ > λ

M

M+1

Mis proved.The above evaluation of λ2, see (2), immediately yields λ > 1.4892 . . ..Based on exat enumeration, we have found the exat generating funtions GM (z) =∑
L CL,MzL for M ≤ 6. For M = 3 we �nd:

G3(z) =
[1,−4,−4, 36,−39,−26, 50, 6,−15, 1]

[1,−12, 54,−124, 133, 16,−175, 94, 69,−40,−12, 4, 1]
,where we denote by [a0, a1, . . . , an] the polynomial a0 + a1z + · · · + anzn. As explainedabove, all the generating funtions GM (z) are rational. For M = 4, 5, 6, their numerator
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SELF-AVOIDING WALKS CROSSING A SQUARE 5and denominators are found to have degree (26, 27), (71, 75) and (186, 186) respetively, inan obvious notation.From these, we �nd the following values: λ3 = 1.76331 . . ., λ4 = 1.75146 . . ., λ5 =
1.74875 . . . and λ6 = 1.74728 . . . from whih we obtain the bound λ > 1.61339 . . ..However, an alternative lower bound an be obtained from spanning SAWs, de�ned inSetion 1. If TL denotes the number of spanning SAW on the L × L lattie, then we provein the full version of this paper that

λ ≥ T (L)1/((L+1)(L+2)). (4)This gives the improved bound λ > 1.6284.Combining our results for lower and upper bounds �nally gives
1.6284 < λ < 1.781684.3. Computer enumerationIn the following we give a fairly detailed desription of the algorithm we use to enumeratethe number of walks rossing a square and brie�y outline how this basi algorithm is mod-i�ed in order to inlude a step fugaity, study SAWs spanning a square and the ow-pathon�gurations.3.1. The algorithmThe basi algorithm used to enumerate self-avoiding walks rossing a square is based onthe method of Conway et al. [2℄ for enumerating ordinary self-avoiding walks. The numberof walks rossing an L × M retangle is ounted using a transfer matrix algorithm. Thetransfer matrix tehnique involves drawing a boundary line through the retangle interseting
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Figure 2. The left panel shows a snapshot of the intersetion (dashedline) during the transfer matrix alulation. Walks within a retangle areenumerated by suessive moves of the kink in the boundary, as exempli�edby the position given by the dotted line, so that the L × M retangle isbuilt up one vertex at a time. To the left of the boundary we have drawnan example of a partially ompleted walk. Numbers along the boundaryindiate the enoding of this partiular on�guration. The right panel showssome of the loal on�gurations whih our as the kink in the intersetionis moved one step.
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6 A. J. GUTTMANN, I. JENSEN, AND M. BOUSQUET-MÉLOUup to M + 2 edges. For eah on�guration of oupied or empty edges we maintain aount of partially ompleted walks interseting the boundary in that pattern. Walks inretangles are ounted by moving the boundary, adding one vertex at a time (see �gure 2).Retangles are built up olumn by olumn with eah olumn onstruted one vertex at atime. Con�gurations are represented by lists of states {σi}, where the value of the state
σi must indiate if the ith edge of the boundary is oupied or empty. An empty edge isindiated by σi = 0. An oupied edge is either free (that is, not onneted to other edges ofthe boundary by a path loated to the left of the boundary) or onneted to exatly one suhedge. We indiate this by σi = 1 for a free end, σi = 2 for the lower end of a loop and σi = 3for the upper end of loop onneting two edges. Sine we are studying self-avoiding walks ona two-dimensional lattie the ompat enoding given above uniquely spei�es whih endsare paired. Read from the bottom the on�guration along the intersetion in �gure 2 is
{2203301203} (prior to the move) and {2300001203} (after the move).There are major restritions on the possible on�gurations and their updating rules.Firstly, sine the walk has to ross the retangle there is exatly one free end in any on�g-uration. Seondly, all remaining oupied edges are onneted by a path to the left of theintersetion and we annot lose a loop. It is therefore lear that the total number of 2'sequals the total number of 3's. Furthermore, as we look through the on�guration from thebottom the number of 2's is never smaller than the number of 3's (so that on�gurations anbe seen as well-balaned parentheses systems). We also have to ensure that the graphs weonstrut have only one onneted omponent. In the following we shall brie�y show howthis is ahieved.Table 1. The various `input' states and the `output' states whih arise asthe boundary line is moved in order to inlude one more vertex. Eah panelontains up to three possible `output' states or other allowed ations.Bottom \ Top 0 1 2 30 00 23 01 10 Res 02 20 03 301 01 10 Res 0̂0 0̂02 02 20 0̂0 003 03 30 0̂0 00 00We all the on�guration before and after the move the `soure' and `target', respetively.Initially we have just one on�guration with a single `1' at position 0 (all other entries `0')thus ensuring that we start in the bottom-left orner. As the boundary line is moved onestep, we run through all the existing soures. Eah soure gives rise to one or two targetsand the ount of the soure is added to the ount of the target (the initial ount of a targetbeing zero). After a soure has been proessed it an be disarded sine it will make nofurther ontribution. Table 1 lists the possible loal `input' states and the `output' stateswhih arise as the kink in the boundary is propagated one step, and the various symbolsare explained below. Firstly, the values of the 'Bottom' and 'Top' table entries refer to theedge-states of the kink prior to the move. The Top (Bottom) entry is the state of the edgeinterseted by (below) the horizontal part of the boundary. Some of the update rules areillustrated further in �gure 2. The topmost panels represent the input state `00' having theallowed output states `00' and `23' orresponding to leaving the edges empty or insertinga new loop, respetively. The middle panels represents the input state `20' with outputstates `20' and `02' from the two ways of ontinuing the loop-end (note that the loop hasto be ontinued sine we would otherwise generate an additional free end not loated at theallowed positions in the orners). The bottommost panels represents the input state `22'
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SELF-AVOIDING WALKS CROSSING A SQUARE 7as part of the on�guration {02233}. In this ase we onnet two loop-ends and we thusjoin two separate loops into a single larger loop. The mathing upper end of the innermostloop beomes the new lower end of the joined loop. The relabeling of the mathing loop-endwhen onneting two `2's (or two `3's) is denoted by over-lining in Table 1. When we joinloop-ends to a free end (inputs `12', `21', `13', and '31') we have to relabel the mathingloop-end as a free end. This type of relabeling is indiated by the symbol 0̂0. The inputstate `11' never ours sine there is only one free end. The input state `23' is not allowedsine onneting the two ends results in a losed loop. Finally, we have marked two outputs,from the inputs `01' and `10' with `Res', indiating situations where we terminate free ends.This results in ompleted partial walks and is only allowed if there are no other oupiededges in the soure (otherwise we would produe graphs with separate piees) and if we areat the top-most vertex (otherwise we would not ross the retangle). The ount for thison�guration is the number of walks rossing a retangle of height M and length L equal tothe number of ompleted olumns.3.2. ComplexityThe time required to obtain the number of walks on L×M retangles grows exponentiallywith M and linearly with L. Time and memory requirements are basially proportional tothe maximal number of distint on�gurations along the boundary line. When there is nokink in the intersetion (a olumn has just been ompleted) we an alulate this number,
Nconf(M), exatly. Obviously the free end uts the boundary line on�guration into twoseparate piees. Eah of these piees onsists of `0's and an equal number of `2's and `3'swith the latter forming a well-balaned parenthesis system.Eah piee thus orresponds to a Motzkin path [12, Ch. 6℄ (just map 0 to a horizontal step,2 to a north-east step, and 3 to a south-east step). The number of Motzkin paths Mn with
n steps is easily derived from the generating funtion M(x) =

∑
n Mnxn, whih satis�es

M = 1 + xM + x2M2, so that
M(x) = [1 − x − ((1 + x)(1 − 3x))1/2]/2x2. (5)The number of on�gurations Nconf(M) for a retangle of height M is simply obtainedby inserting a free end between two Motzkin paths, so that the generating funtion∑

M Nconf(M)xM is simply xM(x)2. The Lagrange inversion formula gives
Nconf(M) = 2

∑

i≥0

(M + 1)!

i!(i + 2)!(M − 2i)!
.When the boundary line has a kink the number of on�gurations exeeds Nconf(M) butlearly is less than Nconf(M + 1). From (5) we see that asymptotially Nconf(M) growslike 3M (up to a power of M). So the same is true for the maximal number of boundaryline on�gurations and hene for the omputational omplexity of the algorithm. Note thatthe total number a walks grows like λLM and our algorithm thus leads to a better thanexponential improvement over diret enumeration.The integers ourring in the expansion beome very large so the alulation was per-formed using modular arithmeti [6℄. This involves performing the alulation modulo var-ious prime numbers pi and then reonstruting the full integer oe�ients at the end. Weused primes of the form pi = 230−ri, where ri are distint integers, less than 1000, suh that

pi is a (di�erent) prime for eah value of i. The Chinese remainder theorem ensures that anyinteger has a unique representation in terms of residues. If the largest integer ourring inthe �nal expansion is m, then we have to use a number of primes k suh that p1p2 · · · pk > m.
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8 A. J. GUTTMANN, I. JENSEN, AND M. BOUSQUET-MÉLOU3.3. Extensions of the algorithmThe algorithm is easily generalised to inlude a step fugaity x. The ount assoiatedwith the boundary line on�guration has to be replaed by a generating funtion for partialwalks. Sine we only use this generalisation to study walks rossing a square, the generatingfuntion is a polynomial of degree (at most) M2 in x. The oe�ient of xn in this polynomialis the number of walks of length n interseting the boundary line in the pattern spei�ed bythe on�guration. When the boundary is updated, if m additional steps are inserted, thegenerating funtion of the soure is multiplied by xm and added to the generating funtionof the target. Not all M2 terms in the polynomials need be retained. Firstly, only termswith n even are non-zero and only these are retained. Seondly, in order to onstrut a givenboundary line on�guration, a ertain minimal number of steps nmin are required and termswith n < nmin an be disarded.The generalisation to spanning walks is also quite simple. Firstly, we have M + 1 initialon�gurations whih are empty exept for a free end at position 0 ≤ j ≤ M . This orrespondsto the M +1 possible starting positions for the walk on the left boundary. Seondly, we haveto hange how we produe the �nal ounts. The easiest way to ensure that a walk spans theretangle and that only single omponent graphs are ounted is as follows: When olumn
L + 1 has been ompleted we look at the M + 1 on�gurations with a single free end andadd the ounts from all of them. This is the number of walks spanning an L×M retangle.The generalisation to ow-path patterns is more ompliated. Graphs an now have manyseparate omponents and there an be many free ends in a boundary line on�guration. Notealso that eah free end has to start and terminate with a step perpendiular to the border ofthe retangle and there are no steps along the edges of the borders of the retangle. Thereare 2M−1 initial on�gurations sine any of the edges in the �rst olumn from position 1 to
M − 1 an be oupied by a free end or be empty. There is an extra updating rule in thebulk in that we an have the loal input `11' (joining of two free ends) with the only possibleoutput being `00'. Also the updating rules at the upper and lower borders of the retangleare di�erent in this ase. At the upper border we only have the input `00' with the outputs`00' and `10' orresponding to the insertion of a free end on a vertial edge at the upperborder. There is no `23' or `01' outputs sine these would produe an oupied edge alongthe upper border. At the lower border we have inputs `00', `01', and `02' and in eah asethe only possible output is `00' (with the appropriate relabeling in the `02' ase). Finally,the ount of the number of ow-path patterns is obtained by summing over all boundaryline on�gurations after the ompletion of a olumn.3.4. ResultsAs disussed above, in order to obtain the exat value of the number of SAW rossing asquare, some of whih are integers with nearly 100 digits, we performed the enumerationsseveral times, eah time modulo a di�erent prime. The enumerations were then reonstrutedusing the Chinese Remainder Theorem. Eah run for a 19 × 19 lattie took about 72 hoursusing 8 proessors of a multiproessor 1 GHz Compaq Alpha omputer. Ten suh runs wereneeded to uniquely speify the resultant numbers.Proeeding as above, we have alulated cn(L) for all n for L ≤ 17. In other words, wehave obtained the polynomials CL(x) for L ≤ 17. In addition, we have omputed C18(1) and
C19(1), the total number of SAW rossing an 18 × 18 and 19 × 19 square respetively. Wehave also omputed the orresponding quantities for ow-path and spanning SAWs, denoted
PL(1) and TL(1) respetively, for L ≤ 19.Finally, in [1℄ the question was asked whether C

1
LM

L,M is dereasing in both L and M . Wean answer this in the negative, based on our enumerations.
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SELF-AVOIDING WALKS CROSSING A SQUARE 94. Numerial analysisIt has been proved [1, 13℄ that limL→∞ C
1

L2

L,L = λ exists. From this it is reasonable toexpet (but not a logial onsequene) that RL = CL+1,L+1/CL,L ∼ λ2L so the generatingfuntion R(x) =
∑

L RLxL has a radius of onvergene xc = 1/λ2, whih we an estimateaurately using di�erential approximants [4℄. We estimate in this way that for the rossingproblem xc = 0.32858(5), for the spanning problem xc = 0.3282(6) and for the ow-pathproblem xc = 0.328574(2). So we see that λ is the same for the three problems, and weestimate that λ = 1.744550(5). It is not di�ult to prove that λ de�ned for SAW rossing asquare, and for spanning walks takes the same value. For ow-path walks, this is somewhatmore di�ult, but we have done so (see the full version of this paper).We now speulate on the sub-dominant terms. For SAW on an in�nite lattie, it is widelyaepted (but not proved) that cn ∼ const.µnng, where cn is the number of n step SAWequivalent up to a translation.It seems reasonable to speulate that, the number of SAWs rossing an L × L lattie isequivalent to AλL2+bLLα. We have investigated this possibility numerially, and found it tobe well supported by the data.For ow-pathes we �nd b ≈ 0.8558 and α ≈ −0.500. For transverse walks and walksrossing a square b is quite small, possibly zero. For transverse walks we �nd α ≈ 1.75 whilefor walks rossing the square α ≈ 0. This suggests asymptoti behavioursAP λL2+0.8558L/
√

L,
AT λL2

L7/4 and AW λL2

log L respetively, where AP , AT , and AW an be estimated, andthe log L term (or some power of a logartihm) would follow if α were exatly zero.As remarked in the introdution, we have also studied (numerially) the behaviour of
〈n(1/µ)〉L, by a log-log plot as well as other numerial methods. The results are totallyonsistent with the onjeture [8℄, that 〈n(1/µ)〉L is proportional to L1/ν , where ν = 3/4.5. Asymptotis for walks of �small� length rossing a squareWe now onsider walks of length 2L + 2K rossing an L × L square. Note that walksof length 2L are the minimal possible length. With K = 0 the number of possible walks is(
2L
L

). This result is obvious, as there are 2L steps in the path, of whih L must be in thepositive x (and of ourse positive y) diretion. Note that this has the asymptoti expansion
(

2L

L

)
=

4L

√
Lπ

(
1 − 1

4L
+

1

128L2
+

5

1024L3
+ O

(
L−4

))
.With K = 1 we have proved that the number of possible paths is given by 2L

(
2L

L+2

). Thisresult has the asymptoti expansion
2L

(
2L

L + 2

)
=

L4L

√
Lπ

(
2 − 33

4L
+

1345

64L2
− 23835

512L3
+ O

(
L−4

))
.For K = 2 we have proved that the number of possible paths is given by

2(2L)!

L!(L + 4)!
(48 + 90L + 8L2 − 28L3 − 3L4 + 4L5 + L6) − 4.This has asymptoti expansion

L24L

√
Lπ

(
2 − 49

4L
+

2913

64L2
− 92971

512L2
+ O

(
L−3

))
.Our tehnique an be, in theory, extended to ount walks of length 2L + 2K, for any givenvalue of K. It proves that the sequene of numbers thus obtained is always P -reursive.That is to say, it satis�es a linear reurrene relation with polynomial oe�ients [11℄. But,
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10 A. J. GUTTMANN, I. JENSEN, AND M. BOUSQUET-MÉLOUeven for K = 3, the number of speial ases that must be treated beomes very large. Wehave resorted to a numerial study for higher values of K, and for K = 3 we found
L34L

√
Lπ

(
4

3
− 49

6L
+

1931 ± 1

64L2
+ O(L−3)

)
,while the orresponding result for K = 4 is

L44L

√
Lπ

(
2

3
+

11

4L
+ O(L−2)

)
.We an give an heuristi argument for the general form of the leading term in the asymptotiexpansion of the ase K = k, whih leads to the leading order term 4L

√
Lπ

(2L)k

k! . Here the �rstterm is given by the number of ways of hoosing the �bakbone�, (
2L
L

)
∼ 4L

√
Lπ

and the seondis given by the number of ways of plaing k defets (or bakward steps) on a path of length
2L, whih is just (2L)k. The defets are indistinguishable, introduing the fator k!.This argument an be re�ned into a proof, for K = o(L1/3) by following the steps, mutatismutandis in the proof of a similar result given in [3℄.6. Hamiltonian walks rossing a squareHamiltonian walks an only exist on 2L × 2L latties. For latties with an odd numberof edges, one site must be missed. A Hamiltonian walk is of length 4L(L + 1) on a 2L × 2Llattie. The number of suh walks grows as τ4L2

, where we �nd τ ≈ 1.472 based on exatenumeration up to 17 × 17 latties. This is about 20% less than λ, the growth onstantfor all SAWs. In [5℄ the estimate of the growth onstant for Hamiltonian SAW on theunonstrained square lattie 1.472801 ± 0.00001 was given. This should be preisely thesame as the orresponding result for Hamiltonian walks on an L × L lattie, in the large Llimit. In [1℄ it is proved that 21/3 ≤ τ ≤ 121/4, that is to say, 1.260 ≤ τ ≤ 1.861. We animprove on these bounds as follows: we de�ne generalized ow-path walks to be Hamiltonianif every vertex of the square not belonging to the border of the square belongs to one of theSAWs of the ow-path. Then the upper bounds given above translate verbatim into upperbounds for τ, while lower bounds are given by Hamiltonian spanning walks and (4). In thisway we �nd 1.429 ≤ τ ≤ 1.52999. As we have shown above that 1.6284 < λ, this proves that
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