
SELF-AVOIDING WALKS CROSSING A SQUAREA. J. GUTTMANN, I. JENSEN, AND M. BOUSQUET-MÉLOUAbstra
t. We study a restri
ted 
lass of self-avoiding walks (SAW) whi
h start at theorigin (0, 0), end at (L, L), and are entirely 
ontained in the square [0, L]× [0, L] on thesquare latti
e Z2. The number of distin
t walks is known to grow as λL2+o(L2). We givea pre
ise estimate for λ as well as obtaining upper and lower bounds. We give exa
tresults for the number of SAW of length 2L + 2K for K = 0, 1, 2 and asymptoti
 resultsfor K = o(L1/3).We also 
onsider the model in whi
h a weight or fuga
ity x is asso
iated with ea
hstep of the walk. This gives rise to a 
anoni
al model of a phase transition. For x < 1/µthe average length of a SAW is proportional to L, while for x > 1/µ it is proportional to
L2. Here µ is the growth 
onstant of un
onstrained SAW in Z2. For x = 1/µ we providenumeri
al eviden
e, but no proof, that the average walk length is O(L4/3).We also 
onsider Hamiltonian walks under the same restri
tions. These grow as
τL2+o(L2) on the same L × L latti
e. We give pre
ise estimates for τ , as well as up-per and lower bounds, and prove τ < λ.Nous étudions les 
hemins auto-évitants (CAE) du réseau 
arré qui partent de l'origine
(0, 0), �nissent en (L, L), et sont entièrement 
ontenus dans le 
arré [0, L] × [0, L]. Onsait que le nombre de tels 
hemins 
roît 
omme λL2+o(L2). Nous donnons une estimationpré
ise, ainsi que des bornes supérieures et inférieures pour λ. Nous donnons le nombreexa
t de CAE de longueur 2L + 2K traversant le 
arré de 
�té L, pour K = 0, 1, 2, et le
omportement asymptotique de 
e nombre pour K = o(L1/3).On asso
ie ensuite un poids x à 
haque pas d'un 
hemin, 
e qui mène à une modèleprésentant une transition de phase. Si µ désigne la 
onstante de 
roissante des CAE non
ontraints, alors pour x < 1/µ, la longueur moyenne d'un CAE traversant le 
arré de 
�té
L est proportionnelle à L, tandis qu'elle est proportionnelle à L2 lorsque x > µ. Pour
x = µ, nos données numériques suggèrent que la longueur moyenne est en O(n3/4).Nous 
onsidérons aussi des 
hemins hamiltoniens traversant un 
arré. Le nombre detels 
hemins 
roît 
omme τL2+o(L2). Nous donnons une estimation pré
ise et des bornessupérieures et inférieures pour τ , et nous prouvons que τ < λ.1. Introdu
tionWe are 
onsidering the problem of self-avoiding walks on the square latti
e Z

2. For walkson an in�nite latti
e, it is generally a

epted [9℄ that the number cn of su
h walks of length
n, 
onsidered up to a translation, grows as cn ∼ const.µnnγ−1, with metri
 properties, su
has mean-square radius of gyration or mean-square end-to-end distan
e growing as 〈R2〉n ∼
const.n2ν , where γ = 43/32 and ν = 3/4. The growth 
onstant µ is latti
e dependent, and forthe square latti
e is not known exa
tly, but is indistinguishable numeri
ally from the uniquepositive root of the equation 13x4 − 7x2 − 581 = 0. We denote the generating fun
tion by
C(x) :=

∑
n cnxn, and it will be useful to de�ne a se
ond generating fun
tion for those SAWwhi
h start at the origin (0, 0) and end at a given point (u, v), as G(0,0;u,v)(x). In terms ofthis generating fun
tion, the mass m(x) is de�ned [9℄ to be the rate of de
ay of G along aDate: May 11, 2005.MBM was partially supported by the European Commission's IHRP Programme, grant HPRN-CT-2001-00272, �Algebrai
 Combinatori
s in Europe�. 1
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2 A. J. GUTTMANN, I. JENSEN, AND M. BOUSQUET-MÉLOU
oordinate axis,
m(x) := lim

n→∞

− log G(0,0;n,0)(x)

n
. (1)Here, we are interested in a restri
ted 
lass of square latti
e SAW whi
h start at theorigin (0, 0), end at (L, L), and are entirely 
ontained in the square [0, L]× [0, L]. A fuga
ity

x is asso
iated with ea
h step of the walk. Histori
ally, this problem seems to have led twolargely independent lives. One as a problem in 
ombinatori
s (in whi
h 
ase the fuga
ityhas been impli
itly set to x = 1), and one in the statisti
al me
hani
s literature where thebehaviour as a fun
tion of fuga
ity x has been of 
onsiderable interest, as there is a fuga
itydependent phase transition.The problem seems to have �rst been mentioned by Knuth [7℄, within the framework ofa dis
ussion on how to estimate large numbers. The �rst full dis
ussion as a mathemati
alproblem seems to be by Abbott and Hanson [1℄ in 1978, many of whose results and methodsare still useful today. In [10℄ there is mention of a version of the problem being due toearlier work of Hammersley. A key question 
onsidered in [1℄ and in this paper, is thenumber of distin
t SAW on the 
onstrained latti
e, and their growth as a fun
tion of thesize of the latti
e. Let cn(L) denote the number of n-step SAW whi
h start at the origin
(0, 0), end at (L, L) and are entirely 
ontained in the square [0, L] × [0, L]. Further, let
CL(x) :=

∑
n cn(L)xn. Then CL(1) is the number of distin
t walks from the origin to thediagonally opposite 
orner of an L×L latti
e. In [1℄, and independently in [13℄ it was provedthat CL(1) = λL2+o(L2). The value of λ is not known, though bounds and estimates havebeen given in [1, 13℄. One of our purposes in this paper is to improve on both the boundsand the estimate.In the statisti
al me
hani
s literature, the problem appears to have been introdu
ed byWhittington and Guttmann [13℄ in 1990, who were parti
ularly interested in the phasetransition that takes pla
e as one varies the fuga
ity asso
iated with the walk length. At a
riti
al value, xc the average walk length of a path on an L × L latti
e 
hanges from beingproportional to L to being proportional to L2. In [13℄ the 
riti
al fuga
ity proved to be

≥ 1/µ, and 
onje
tured to be xc = 1/µ. In [8℄ the 
onje
ture was proved.In [1℄ the more general problem of SAW 
onstrained to an L ×M latti
e was 
onsidered,where the analogous question was asked: how many self-avoiding paths are there from (0, 0)to (L, M)?If one denotes the number of su
h paths by CL,M , it is 
lear that, for M �xed, the paths
an be generated by a �nite dimensional transfer matrix, and hen
e that the generatingfun
tion is rational. Indeed, in [1℄ it was proved that
G2(z) =

∑

L≥0

CL,2z
L =

1 − z2

1 − 4z + 3z2 − 2z3 − z4
, (2)(where here we have 
orre
ted a typographi
al error). It follows that CL,2 ∼ const.λ2L

2 ,where λ2 =
√

2√
13−3

= 1.81735 . . ..In this paper we also 
onsider two further problems whi
h 
an be seen as generalisationsof the stated problem. Firstly, we 
onsider the problem where SAWs are allowed to startanywhere on the left edge of the square and terminate anywhere on the right edge; sothese are walks spanning the re
tangle from left to right. We denote by TL the number ofsu
h SAWs on an L × L latti
e. Se
ondly, we 
onsider the problem in whi
h there may beseveral independent self- and mutually-avoiding walks, ea
h su
h walk starting and endingon the perimeter of the square. The SAW are not allowed to take steps along the edgesof the perimeter. Su
h walks partition the re
tangle into distin
t regions and by 
olouringthe regions alternately bla
k and white we get a 
ow-pat
h pattern. We denote by PL thenumber of su
h 
on�gurations of SAWs on an L × L latti
e. Ea
h problem is illustrated in
148



SELF-AVOIDING WALKS CROSSING A SQUARE 3�gure 1. These generalisations are introdu
ed as they allow us to establish rigorous boundson λ, whi
h we do below.

Figure 1. An example of a SAW 
on�guration 
rossing a square (leftpanel), spanning a square from left to right (middle panel) and a 
ow-pat
h(right panel).Following the work in [13℄, Madras in [8℄ proved a number of theorems. In fa
t, most ofMadras's results were proved for the more general d-dimensional hyper
ubi
 latti
e, but herewe will quote them in the more restri
ted two-dimensional setting.Theorem 1. The following limits,
µ1(x) := lim

L→∞
CL(x)1/L and µ2(x) := lim

L→∞
CL(x)1/L2

,are well-de�ned in R ∪ {+∞}.More pre
isely,
(i) µ1(x) is �nite for 0 < x ≤ 1/µ, and is in�nite for x > 1/µ. Moreover, 0 < µ1(x) < 1for 0 < x < 1/µ and µ1(1/µ) = 1.

(ii) µ2(x) is �nite for all x > 0. Moreover, µ2(x) = 1 for 0 < x ≤ 1/µ and µ2(x) > 1 for
x > 1/µ.The average length of (weighted) walks 
rossing the L × L square is de�ned to be

〈n(x)〉L :=
∑

n

ncn(L)xn/
∑

n

cn(L)xn. (3)Let a(x) and b(x) be two fun
tions of some variable x. We write that a(x) = Θ(b(x)) as
x → x0 if there exist two positive 
onstants κ1 and κ2 su
h that, for x su�
iently 
lose to
x0,

κ1 b(x) ≤ a(x) ≤ κ2 b(x).Theorem 2. For 0 < x < 1/µ, we have that 〈n(x)〉L = Θ(L) as L → ∞, while for x > 1/µ,we have 〈n(x)〉L = Θ(L2).The situation at x = 1/µ is unknown. We provide 
ompelling numeri
al eviden
e that infa
t 〈n(1/µ)〉L = Θ(L1/ν) , where ν = 3/4, in a

ordan
e with an intuitive suggestion in [8℄.Theorem 3. For x > 0, de�ne f1(x) = log µ1(x) and f2(x) = log µ2(x).

(i) The fun
tion f1 is a stri
tly in
reasing, negative-valued 
onvex fun
tion of log x for
0 < x < 1/µ, and f1(x) = Θ(−m(x)) as x → 1/µ−, where m(x) is the mass, de�nedby (1).

(ii) The fun
tion f2 is a stri
tly in
reasing, 
onvex fun
tion of log x for x > 1/µ, andsatis�es 0 < f2(x) ≤ log µ + log x.
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4 A. J. GUTTMANN, I. JENSEN, AND M. BOUSQUET-MÉLOUSome, but not all of the above results were previously proved in [13℄, but these threetheorems elegantly 
apture all that is rigorously known.2. Bounds on the growth 
onstant λFor the more general problem of SAW going from (0, 0) to (L, M) on an L×M latti
e, itwas proved in [1℄ thatTheorem 4. For ea
h �xed M , limL→∞ C
1

LM

L,M = λM exists.Further, Abbott and Hanson state that a similar proof 
an be used to establish that
limL→∞ C

1

L2

L,L := λ exists. This was proved rather di�erently in [13℄.2.1. Upper bounds on λIn [1℄ an upper bound on the growth 
onstant λ was obtained by re
asting the problem ina matrix setting. We give below an alternative method for establishing upper bounds, basedon de�ning a superset of paths. We then show that these two methods are in fa
t essentiallyidenti
al.Following [1℄, 
onsider any non-interse
ting path 
rossing the L × L square. Label ea
hunit square in the L × L latti
e by 1 if it lies to the right of the path, and by 0 if itlies to the left. This provides a one-to-one 
orresponden
e between paths and a subset of
L × L matri
es with elements 0 or 1. Matri
es 
orresponding to allowed paths are 
alledadmissible, otherwise they are inadmissible. Sin
e the total number of L× L 0− 1 matri
esis 2L2

, we immediately have the weak bound CL,L ≤ 2L2

. Of the 16 possible 2× 2 matri
es,only 14 
an 
orrespond to portions of non-interse
ting latti
e paths. Lote that there areonly 12 a
tual paths from (0, 0) to (2, 2), but a further two matri
es may 
orrespond topaths that are embedded in a larger latti
e. Thus we �nd the bound CL,L ≤ 14(L/2)2, so
λ ≤ 1.9343... Similarly, for 3 × 3 latti
es we �nd 320 admissible matri
es (out of a possible512), so λ ≤ 3201/9 = 1.8982.. For 4 × 4 latti
es, [1℄ 
laims that there are 22662 admissiblematri
es, but we believe the 
orre
t number to be 22816, giving the bound λ ≤ 1.8723... Wehave made dramati
 extensions of this work, using a 
ombination of �nite-latti
e methodsand transfer matri
es, as des
ribed below, and have determined the number of admissiblematri
es up to 19 × 19. There are 3.5465202× 1090 su
h matri
es, giving the bound

λ ≤ 1.781684.This bound is fully equivalent to the bound λ ≤ (2PL)1/L2 , where PL denotes the numberof 
ow-pat
h 
on�gurations on the L × L latti
e. This equivalen
e follows if one 
olours
ow-pat
hes by two 
olours, su
h that adja
ent regions have di�erent 
olours. Labelling thetwo 
olours 0 and 1 produ
es a 0 − 1 matrix representation.2.2. Lower bounds on λIn [1℄ the useful bound
λ > λ

M

M+1

Mis proved.The above evaluation of λ2, see (2), immediately yields λ > 1.4892 . . ..Based on exa
t enumeration, we have found the exa
t generating fun
tions GM (z) =∑
L CL,MzL for M ≤ 6. For M = 3 we �nd:

G3(z) =
[1,−4,−4, 36,−39,−26, 50, 6,−15, 1]

[1,−12, 54,−124, 133, 16,−175, 94, 69,−40,−12, 4, 1]
,where we denote by [a0, a1, . . . , an] the polynomial a0 + a1z + · · · + anzn. As explainedabove, all the generating fun
tions GM (z) are rational. For M = 4, 5, 6, their numerator
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SELF-AVOIDING WALKS CROSSING A SQUARE 5and denominators are found to have degree (26, 27), (71, 75) and (186, 186) respe
tively, inan obvious notation.From these, we �nd the following values: λ3 = 1.76331 . . ., λ4 = 1.75146 . . ., λ5 =
1.74875 . . . and λ6 = 1.74728 . . . from whi
h we obtain the bound λ > 1.61339 . . ..However, an alternative lower bound 
an be obtained from spanning SAWs, de�ned inSe
tion 1. If TL denotes the number of spanning SAW on the L × L latti
e, then we provein the full version of this paper that

λ ≥ T (L)1/((L+1)(L+2)). (4)This gives the improved bound λ > 1.6284.Combining our results for lower and upper bounds �nally gives
1.6284 < λ < 1.781684.3. Computer enumerationIn the following we give a fairly detailed des
ription of the algorithm we use to enumeratethe number of walks 
rossing a square and brie�y outline how this basi
 algorithm is mod-i�ed in order to in
lude a step fuga
ity, study SAWs spanning a square and the 
ow-pat
h
on�gurations.3.1. The algorithmThe basi
 algorithm used to enumerate self-avoiding walks 
rossing a square is based onthe method of Conway et al. [2℄ for enumerating ordinary self-avoiding walks. The numberof walks 
rossing an L × M re
tangle is 
ounted using a transfer matrix algorithm. Thetransfer matrix te
hnique involves drawing a boundary line through the re
tangle interse
ting
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Figure 2. The left panel shows a snapshot of the interse
tion (dashedline) during the transfer matrix 
al
ulation. Walks within a re
tangle areenumerated by su

essive moves of the kink in the boundary, as exempli�edby the position given by the dotted line, so that the L × M re
tangle isbuilt up one vertex at a time. To the left of the boundary we have drawnan example of a partially 
ompleted walk. Numbers along the boundaryindi
ate the en
oding of this parti
ular 
on�guration. The right panel showssome of the lo
al 
on�gurations whi
h o

ur as the kink in the interse
tionis moved one step.
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6 A. J. GUTTMANN, I. JENSEN, AND M. BOUSQUET-MÉLOUup to M + 2 edges. For ea
h 
on�guration of o

upied or empty edges we maintain a
ount of partially 
ompleted walks interse
ting the boundary in that pattern. Walks inre
tangles are 
ounted by moving the boundary, adding one vertex at a time (see �gure 2).Re
tangles are built up 
olumn by 
olumn with ea
h 
olumn 
onstru
ted one vertex at atime. Con�gurations are represented by lists of states {σi}, where the value of the state
σi must indi
ate if the ith edge of the boundary is o

upied or empty. An empty edge isindi
ated by σi = 0. An o

upied edge is either free (that is, not 
onne
ted to other edges ofthe boundary by a path lo
ated to the left of the boundary) or 
onne
ted to exa
tly one su
hedge. We indi
ate this by σi = 1 for a free end, σi = 2 for the lower end of a loop and σi = 3for the upper end of loop 
onne
ting two edges. Sin
e we are studying self-avoiding walks ona two-dimensional latti
e the 
ompa
t en
oding given above uniquely spe
i�es whi
h endsare paired. Read from the bottom the 
on�guration along the interse
tion in �gure 2 is
{2203301203} (prior to the move) and {2300001203} (after the move).There are major restri
tions on the possible 
on�gurations and their updating rules.Firstly, sin
e the walk has to 
ross the re
tangle there is exa
tly one free end in any 
on�g-uration. Se
ondly, all remaining o

upied edges are 
onne
ted by a path to the left of theinterse
tion and we 
annot 
lose a loop. It is therefore 
lear that the total number of 2'sequals the total number of 3's. Furthermore, as we look through the 
on�guration from thebottom the number of 2's is never smaller than the number of 3's (so that 
on�gurations 
anbe seen as well-balan
ed parentheses systems). We also have to ensure that the graphs we
onstru
t have only one 
onne
ted 
omponent. In the following we shall brie�y show howthis is a
hieved.Table 1. The various `input' states and the `output' states whi
h arise asthe boundary line is moved in order to in
lude one more vertex. Ea
h panel
ontains up to three possible `output' states or other allowed a
tions.Bottom \ Top 0 1 2 30 00 23 01 10 Res 02 20 03 301 01 10 Res 0̂0 0̂02 02 20 0̂0 003 03 30 0̂0 00 00We 
all the 
on�guration before and after the move the `sour
e' and `target', respe
tively.Initially we have just one 
on�guration with a single `1' at position 0 (all other entries `0')thus ensuring that we start in the bottom-left 
orner. As the boundary line is moved onestep, we run through all the existing sour
es. Ea
h sour
e gives rise to one or two targetsand the 
ount of the sour
e is added to the 
ount of the target (the initial 
ount of a targetbeing zero). After a sour
e has been pro
essed it 
an be dis
arded sin
e it will make nofurther 
ontribution. Table 1 lists the possible lo
al `input' states and the `output' stateswhi
h arise as the kink in the boundary is propagated one step, and the various symbolsare explained below. Firstly, the values of the 'Bottom' and 'Top' table entries refer to theedge-states of the kink prior to the move. The Top (Bottom) entry is the state of the edgeinterse
ted by (below) the horizontal part of the boundary. Some of the update rules areillustrated further in �gure 2. The topmost panels represent the input state `00' having theallowed output states `00' and `23' 
orresponding to leaving the edges empty or insertinga new loop, respe
tively. The middle panels represents the input state `20' with outputstates `20' and `02' from the two ways of 
ontinuing the loop-end (note that the loop hasto be 
ontinued sin
e we would otherwise generate an additional free end not lo
ated at theallowed positions in the 
orners). The bottommost panels represents the input state `22'
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SELF-AVOIDING WALKS CROSSING A SQUARE 7as part of the 
on�guration {02233}. In this 
ase we 
onne
t two loop-ends and we thusjoin two separate loops into a single larger loop. The mat
hing upper end of the innermostloop be
omes the new lower end of the joined loop. The relabeling of the mat
hing loop-endwhen 
onne
ting two `2's (or two `3's) is denoted by over-lining in Table 1. When we joinloop-ends to a free end (inputs `12', `21', `13', and '31') we have to relabel the mat
hingloop-end as a free end. This type of relabeling is indi
ated by the symbol 0̂0. The inputstate `11' never o

urs sin
e there is only one free end. The input state `23' is not allowedsin
e 
onne
ting the two ends results in a 
losed loop. Finally, we have marked two outputs,from the inputs `01' and `10' with `Res', indi
ating situations where we terminate free ends.This results in 
ompleted partial walks and is only allowed if there are no other o

upiededges in the sour
e (otherwise we would produ
e graphs with separate pie
es) and if we areat the top-most vertex (otherwise we would not 
ross the re
tangle). The 
ount for this
on�guration is the number of walks 
rossing a re
tangle of height M and length L equal tothe number of 
ompleted 
olumns.3.2. ComplexityThe time required to obtain the number of walks on L×M re
tangles grows exponentiallywith M and linearly with L. Time and memory requirements are basi
ally proportional tothe maximal number of distin
t 
on�gurations along the boundary line. When there is nokink in the interse
tion (a 
olumn has just been 
ompleted) we 
an 
al
ulate this number,
Nconf(M), exa
tly. Obviously the free end 
uts the boundary line 
on�guration into twoseparate pie
es. Ea
h of these pie
es 
onsists of `0's and an equal number of `2's and `3'swith the latter forming a well-balan
ed parenthesis system.Ea
h pie
e thus 
orresponds to a Motzkin path [12, Ch. 6℄ (just map 0 to a horizontal step,2 to a north-east step, and 3 to a south-east step). The number of Motzkin paths Mn with
n steps is easily derived from the generating fun
tion M(x) =

∑
n Mnxn, whi
h satis�es

M = 1 + xM + x2M2, so that
M(x) = [1 − x − ((1 + x)(1 − 3x))1/2]/2x2. (5)The number of 
on�gurations Nconf(M) for a re
tangle of height M is simply obtainedby inserting a free end between two Motzkin paths, so that the generating fun
tion∑

M Nconf(M)xM is simply xM(x)2. The Lagrange inversion formula gives
Nconf(M) = 2

∑

i≥0

(M + 1)!

i!(i + 2)!(M − 2i)!
.When the boundary line has a kink the number of 
on�gurations ex
eeds Nconf(M) but
learly is less than Nconf(M + 1). From (5) we see that asymptoti
ally Nconf(M) growslike 3M (up to a power of M). So the same is true for the maximal number of boundaryline 
on�gurations and hen
e for the 
omputational 
omplexity of the algorithm. Note thatthe total number a walks grows like λLM and our algorithm thus leads to a better thanexponential improvement over dire
t enumeration.The integers o

urring in the expansion be
ome very large so the 
al
ulation was per-formed using modular arithmeti
 [6℄. This involves performing the 
al
ulation modulo var-ious prime numbers pi and then re
onstru
ting the full integer 
oe�
ients at the end. Weused primes of the form pi = 230−ri, where ri are distin
t integers, less than 1000, su
h that

pi is a (di�erent) prime for ea
h value of i. The Chinese remainder theorem ensures that anyinteger has a unique representation in terms of residues. If the largest integer o

urring inthe �nal expansion is m, then we have to use a number of primes k su
h that p1p2 · · · pk > m.
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8 A. J. GUTTMANN, I. JENSEN, AND M. BOUSQUET-MÉLOU3.3. Extensions of the algorithmThe algorithm is easily generalised to in
lude a step fuga
ity x. The 
ount asso
iatedwith the boundary line 
on�guration has to be repla
ed by a generating fun
tion for partialwalks. Sin
e we only use this generalisation to study walks 
rossing a square, the generatingfun
tion is a polynomial of degree (at most) M2 in x. The 
oe�
ient of xn in this polynomialis the number of walks of length n interse
ting the boundary line in the pattern spe
i�ed bythe 
on�guration. When the boundary is updated, if m additional steps are inserted, thegenerating fun
tion of the sour
e is multiplied by xm and added to the generating fun
tionof the target. Not all M2 terms in the polynomials need be retained. Firstly, only termswith n even are non-zero and only these are retained. Se
ondly, in order to 
onstru
t a givenboundary line 
on�guration, a 
ertain minimal number of steps nmin are required and termswith n < nmin 
an be dis
arded.The generalisation to spanning walks is also quite simple. Firstly, we have M + 1 initial
on�gurations whi
h are empty ex
ept for a free end at position 0 ≤ j ≤ M . This 
orrespondsto the M +1 possible starting positions for the walk on the left boundary. Se
ondly, we haveto 
hange how we produ
e the �nal 
ounts. The easiest way to ensure that a walk spans there
tangle and that only single 
omponent graphs are 
ounted is as follows: When 
olumn
L + 1 has been 
ompleted we look at the M + 1 
on�gurations with a single free end andadd the 
ounts from all of them. This is the number of walks spanning an L×M re
tangle.The generalisation to 
ow-pat
h patterns is more 
ompli
ated. Graphs 
an now have manyseparate 
omponents and there 
an be many free ends in a boundary line 
on�guration. Notealso that ea
h free end has to start and terminate with a step perpendi
ular to the border ofthe re
tangle and there are no steps along the edges of the borders of the re
tangle. Thereare 2M−1 initial 
on�gurations sin
e any of the edges in the �rst 
olumn from position 1 to
M − 1 
an be o

upied by a free end or be empty. There is an extra updating rule in thebulk in that we 
an have the lo
al input `11' (joining of two free ends) with the only possibleoutput being `00'. Also the updating rules at the upper and lower borders of the re
tangleare di�erent in this 
ase. At the upper border we only have the input `00' with the outputs`00' and `10' 
orresponding to the insertion of a free end on a verti
al edge at the upperborder. There is no `23' or `01' outputs sin
e these would produ
e an o

upied edge alongthe upper border. At the lower border we have inputs `00', `01', and `02' and in ea
h 
asethe only possible output is `00' (with the appropriate relabeling in the `02' 
ase). Finally,the 
ount of the number of 
ow-pat
h patterns is obtained by summing over all boundaryline 
on�gurations after the 
ompletion of a 
olumn.3.4. ResultsAs dis
ussed above, in order to obtain the exa
t value of the number of SAW 
rossing asquare, some of whi
h are integers with nearly 100 digits, we performed the enumerationsseveral times, ea
h time modulo a di�erent prime. The enumerations were then re
onstru
tedusing the Chinese Remainder Theorem. Ea
h run for a 19 × 19 latti
e took about 72 hoursusing 8 pro
essors of a multipro
essor 1 GHz Compaq Alpha 
omputer. Ten su
h runs wereneeded to uniquely spe
ify the resultant numbers.Pro
eeding as above, we have 
al
ulated cn(L) for all n for L ≤ 17. In other words, wehave obtained the polynomials CL(x) for L ≤ 17. In addition, we have 
omputed C18(1) and
C19(1), the total number of SAW 
rossing an 18 × 18 and 19 × 19 square respe
tively. Wehave also 
omputed the 
orresponding quantities for 
ow-pat
h and spanning SAWs, denoted
PL(1) and TL(1) respe
tively, for L ≤ 19.Finally, in [1℄ the question was asked whether C

1
LM

L,M is de
reasing in both L and M . We
an answer this in the negative, based on our enumerations.
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SELF-AVOIDING WALKS CROSSING A SQUARE 94. Numeri
al analysisIt has been proved [1, 13℄ that limL→∞ C
1

L2

L,L = λ exists. From this it is reasonable toexpe
t (but not a logi
al 
onsequen
e) that RL = CL+1,L+1/CL,L ∼ λ2L so the generatingfun
tion R(x) =
∑

L RLxL has a radius of 
onvergen
e xc = 1/λ2, whi
h we 
an estimatea

urately using di�erential approximants [4℄. We estimate in this way that for the 
rossingproblem xc = 0.32858(5), for the spanning problem xc = 0.3282(6) and for the 
ow-pat
hproblem xc = 0.328574(2). So we see that λ is the same for the three problems, and weestimate that λ = 1.744550(5). It is not di�
ult to prove that λ de�ned for SAW 
rossing asquare, and for spanning walks takes the same value. For 
ow-pat
h walks, this is somewhatmore di�
ult, but we have done so (see the full version of this paper).We now spe
ulate on the sub-dominant terms. For SAW on an in�nite latti
e, it is widelya

epted (but not proved) that cn ∼ const.µnng, where cn is the number of n step SAWequivalent up to a translation.It seems reasonable to spe
ulate that, the number of SAWs 
rossing an L × L latti
e isequivalent to AλL2+bLLα. We have investigated this possibility numeri
ally, and found it tobe well supported by the data.For 
ow-pat
hes we �nd b ≈ 0.8558 and α ≈ −0.500. For transverse walks and walks
rossing a square b is quite small, possibly zero. For transverse walks we �nd α ≈ 1.75 whilefor walks 
rossing the square α ≈ 0. This suggests asymptoti
 behavioursAP λL2+0.8558L/
√

L,
AT λL2

L7/4 and AW λL2

log L respe
tively, where AP , AT , and AW 
an be estimated, andthe log L term (or some power of a logartihm) would follow if α were exa
tly zero.As remarked in the introdu
tion, we have also studied (numeri
ally) the behaviour of
〈n(1/µ)〉L, by a log-log plot as well as other numeri
al methods. The results are totally
onsistent with the 
onje
ture [8℄, that 〈n(1/µ)〉L is proportional to L1/ν , where ν = 3/4.5. Asymptoti
s for walks of �small� length 
rossing a squareWe now 
onsider walks of length 2L + 2K 
rossing an L × L square. Note that walksof length 2L are the minimal possible length. With K = 0 the number of possible walks is(
2L
L

). This result is obvious, as there are 2L steps in the path, of whi
h L must be in thepositive x (and of 
ourse positive y) dire
tion. Note that this has the asymptoti
 expansion
(

2L

L

)
=

4L

√
Lπ

(
1 − 1

4L
+

1

128L2
+

5

1024L3
+ O

(
L−4

))
.With K = 1 we have proved that the number of possible paths is given by 2L

(
2L

L+2

). Thisresult has the asymptoti
 expansion
2L

(
2L

L + 2

)
=

L4L

√
Lπ

(
2 − 33

4L
+

1345

64L2
− 23835

512L3
+ O

(
L−4

))
.For K = 2 we have proved that the number of possible paths is given by

2(2L)!

L!(L + 4)!
(48 + 90L + 8L2 − 28L3 − 3L4 + 4L5 + L6) − 4.This has asymptoti
 expansion

L24L

√
Lπ

(
2 − 49

4L
+

2913

64L2
− 92971

512L2
+ O

(
L−3

))
.Our te
hnique 
an be, in theory, extended to 
ount walks of length 2L + 2K, for any givenvalue of K. It proves that the sequen
e of numbers thus obtained is always P -re
ursive.That is to say, it satis�es a linear re
urren
e relation with polynomial 
oe�
ients [11℄. But,
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10 A. J. GUTTMANN, I. JENSEN, AND M. BOUSQUET-MÉLOUeven for K = 3, the number of spe
ial 
ases that must be treated be
omes very large. Wehave resorted to a numeri
al study for higher values of K, and for K = 3 we found
L34L

√
Lπ

(
4

3
− 49

6L
+

1931 ± 1

64L2
+ O(L−3)

)
,while the 
orresponding result for K = 4 is

L44L

√
Lπ

(
2

3
+

11

4L
+ O(L−2)

)
.We 
an give an heuristi
 argument for the general form of the leading term in the asymptoti
expansion of the 
ase K = k, whi
h leads to the leading order term 4L

√
Lπ

(2L)k

k! . Here the �rstterm is given by the number of ways of 
hoosing the �ba
kbone�, (
2L
L

)
∼ 4L

√
Lπ

and the se
ondis given by the number of ways of pla
ing k defe
ts (or ba
kward steps) on a path of length
2L, whi
h is just (2L)k. The defe
ts are indistinguishable, introdu
ing the fa
tor k!.This argument 
an be re�ned into a proof, for K = o(L1/3) by following the steps, mutatismutandis in the proof of a similar result given in [3℄.6. Hamiltonian walks 
rossing a squareHamiltonian walks 
an only exist on 2L × 2L latti
es. For latti
es with an odd numberof edges, one site must be missed. A Hamiltonian walk is of length 4L(L + 1) on a 2L × 2Llatti
e. The number of su
h walks grows as τ4L2

, where we �nd τ ≈ 1.472 based on exa
tenumeration up to 17 × 17 latti
es. This is about 20% less than λ, the growth 
onstantfor all SAWs. In [5℄ the estimate of the growth 
onstant for Hamiltonian SAW on theun
onstrained square latti
e 1.472801 ± 0.00001 was given. This should be pre
isely thesame as the 
orresponding result for Hamiltonian walks on an L × L latti
e, in the large Llimit. In [1℄ it is proved that 21/3 ≤ τ ≤ 121/4, that is to say, 1.260 ≤ τ ≤ 1.861. We 
animprove on these bounds as follows: we de�ne generalized 
ow-pat
h walks to be Hamiltonianif every vertex of the square not belonging to the border of the square belongs to one of theSAWs of the 
ow-pat
h. Then the upper bounds given above translate verbatim into upperbounds for τ, while lower bounds are given by Hamiltonian spanning walks and (4). In thisway we �nd 1.429 ≤ τ ≤ 1.52999. As we have shown above that 1.6284 < λ, this proves that
τ < λ. Referen
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