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AmsTrACcT. We study a restricted class of self-avoiding walks (SAW) which start at the
origin (0,0), end at (L, L), and are entirely contained in the square [0, L] X [0, L] on the
square lattice Z2. The number of distinct walks is known to grow as ALZ (L) e give
a precise estimate for A\ as well as obtaining upper and lower bounds. We give exact
results for the number of SAW of length 2L + 2K for K =0, 1,2 and asymptotic results
for K = o(L/3).

We also consider the model in which a weight or fugacity = is associated with each
step of the walk. This gives rise to a canonical model of a phase transition. For © < 1/p
the average length of a SAW is proportional to L, while for x > 1/u it is proportional to
L2. Here p is the growth constant of unconstrained SAW in Z2. For x = 1/u we provide
numerical evidence, but no proof, that the average walk length is O(L4/3).

We also consider Hamiltonian walks under the same restrictions. These grow as
TL2+0(L2) on the same L x L lattice. We give precise estimates for 7, as well as up-
per and lower bounds, and prove 7 < A.

Nous étudions les chemins auto-évitants (CAE) du réseau carré qui partent de ’origine
(0,0), finissent en (L, L), et sont entiérement contenus dans le carré [0, L] x [0,L]. On
sait que le nombre de tels chemins croit comme AL2+°(L2). Nous donnons une estimation
précise, ainsi que des bornes supérieures et inférieures pour A\. Nous donnons le nombre
exact de CAE de longueur 2L + 2K traversant le carré de coté L, pour K =0,1,2, et le
comportement asymptotique de ce nombre pour K = o(L!/3).

On associe ensuite un poids x a chaque pas d’un chemin, ce qui méne a une modéle
présentant une transition de phase. Si u désigne la constante de croissante des CAE non
contraints, alors pour z < 1/pu, la longueur moyenne d’un CAE traversant le carré de coté
L est proportionnelle a L, tandis qu’elle est proportionnelle a L? lorsque = > u. Pour
x = p, nos données numeériques suggérent que la longueur moyenne est en O(n3/4).

Nous considérons aussi des chemins hamiltoniens traversant un carré. L.e nombre de
tels chemins croit comme TL2+O(L2). Nous donnons une estimation précise et des bornes
supérieures et inférieures pour 7, et nous prouvons que 7 < A.

1. INTRODUCTION

We are considering the problem of self-avoiding walks on the square lattice Z2. For walks
on an infinite lattice, it is generally accepted [9] that the number ¢, of such walks of length
n, considered up to a translation, grows as ¢, ~ const.u™n¥~!, with metric properties, such
as mean-square radius of gyration or mean-square end-to-end distance growing as (R?),, ~
const.n?®, where y = 43/32 and v = 3/4. The growth constant y is lattice dependent, and for
the square lattice is not known exactly, but is indistinguishable numerically from the unique
positive root of the equation 13z* — 722 — 581 = 0. We denote the generating function by
C(x) =3, cpx™, and it will be useful to define a second generating function for those SAW
which start at the origin (0,0) and end at a given point (u,v), as G g,0;u,0)(z). In terms of
this generating function, the mass m(x) is defined [9] to be the rate of decay of G along a
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coordinate axis,

—log Go.0:n
m(z) ;== lim 8T (0.0; ’0)(x). (1)

n— o0 n

Here, we are interested in a restricted class of square lattice SAW which start at the
origin (0,0), end at (L, L), and are entirely contained in the square [0, L] X [0, L]. A fugacity
x is associated with each step of the walk. Historically, this problem seems to have led two
largely independent lives. One as a problem in combinatorics (in which case the fugacity
has been implicitly set to 2 = 1), and one in the statistical mechanics literature where the
behaviour as a function of fugacity x has been of considerable interest, as there is a fugacity
dependent phase transition.

The problem seems to have first been mentioned by Knuth [7], within the framework of
a discussion on how to estimate large numbers. The first full discussion as a mathematical
problem seems to be by Abbott and Hanson [1] in 1978, many of whose results and methods
are still useful today. In [10] there is mention of a version of the problem being due to
earlier work of Hammersley. A key question considered in [1] and in this paper, is the
number of distinct SAW on the constrained lattice, and their growth as a function of the
size of the lattice. Let ¢, (L) denote the number of n-step SAW which start at the origin
(0,0), end at (L,L) and are entirely contained in the square [0, L] x [0, L]. Further, let
Cr(z) := >, cn(L)a™. Then Cr(1) is the number of distinct walks from the origin to the
diagonally opposite corner of an L x L lattice. In [1], and independently in [13] it was proved
that Cp(1) = A"+o(L") The value of A is not known, though bounds and estimates have
been given in [1, 13]. One of our purposes in this paper is to improve on both the bounds
and the estimate.

In the statistical mechanics literature, the problem appears to have been introduced by
Whittington and Guttmann [13] in 1990, who were particularly interested in the phase
transition that takes place as one varies the fugacity associated with the walk length. At a
critical value, z. the average walk length of a path on an L x L lattice changes from being
proportional to L to being proportional to L2. In [13] the critical fugacity proved to be
> 1/p, and conjectured to be z. = 1/u. In [8] the conjecture was proved.

In [1] the more general problem of SAW constrained to an L x M lattice was considered,
where the analogous question was asked: how many self-avoiding paths are there from (0, 0)
to (L, M)?

If one denotes the number of such paths by Cr s, it is clear that, for M fixed, the paths
can be generated by a finite dimensional transfer matrix, and hence that the generating
function is rational. Indeed, in [1] it was proved that

1— 22

Ga(z) = Z Cpozt = (2)

1 2 _ 9,3 _ 4’
iso 1—4z+ 3z 2z z

(where here we have corrected a typographical error). It follows that Cp o ~ const.\3L,

where A\ =, /ﬁ =1.81735....

In this paper we also consider two further problems which can be seen as generalisations
of the stated problem. Firstly, we consider the problem where SAWs are allowed to start
anywhere on the left edge of the square and terminate anywhere on the right edge; so
these are walks spanning the rectangle from left to right. We denote by 77, the number of
such SAWs on an L x L lattice. Secondly, we consider the problem in which there may be
several independent self- and mutually-avoiding walks, each such walk starting and ending
on the perimeter of the square. The SAW are not allowed to take steps along the edges
of the perimeter. Such walks partition the rectangle into distinct regions and by colouring
the regions alternately black and white we get a cow-patch pattern. We denote by Py, the
number of such configurations of SAWs on an L x L lattice. Each problem is illustrated in
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figure 1. These generalisations are introduced as they allow us to establish rigorous bounds
on \, which we do below.

F1GURE 1. An example of a SAW configuration crossing a square (left
panel), spanning a square from left to right (middle panel) and a cow-patch
(right panel).

Following the work in [13], Madras in [8] proved a number of theorems. In fact, most of
Madras’s results were proved for the more general d-dimensional hypercubic lattice, but here
we will quote them in the more restricted two-dimensional setting.

Theorem 1. The following limits,

1/L 1/L?
)

pa(x) == LIEI;O Cr(z) and  pa(x) = LILH;O Cr(x)

are well-defined in R U {+o00}.
More precisely,
(1) pa(z) is finite for 0 < x < 1/u, and is infinite for x > 1/p. Moreover, 0 < ui(z) < 1
for0 <z <1/p and pi(1/p) = 1.
(it) pe(x) is finite for all x > 0. Moreover, us(xz) =1 for 0 <z < 1/p and ps(x) > 1 for
x> 1/p.

The average length of (weighted) walks crossing the L x L square is defined to be
(n(x)) = Z neg (L)x™/ Z en(L)z™. (3)

Let a(x) and b(z) be two functions of some variable z. We write that a(z) = ©(b(z)) as
x — x¢ if there exist two positive constants k1 and ko such that, for = sufficiently close to
Zo,
k1 b(z) < a(x) < kg b(x).

Theorem 2. For 0 < z < 1/p, we have that (n(x))r, = O(L) as L — oo, while for x > 1/,
we have (n(x)), = O(L?).

The situation at = 1/ is unknown. We provide compelling numerical evidence that in
fact (n(1/p))r = O(LY") , where v = 3/4, in accordance with an intuitive suggestion in [8].

Theorem 3. For x > 0, define fi(x) = log u1(x) and fo(x) = log pa(x).
(1) The function f1 is a strictly increasing, negative-valued convex function of logx for
0<z<1/u, and f1(x) = O(—m(x)) as x — 1/u~, where m(x) is the mass, defined
by (1).
(ii) The function fo is a strictly increasing, convex function of logx for x > 1/, and
satisfies 0 < fo(x) < logu + log .
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Some, but not all of the above results were previously proved in [13], but these three
theorems elegantly capture all that is rigorously known.

2. BOUNDS ON THE GROWTH CONSTANT \

For the more general problem of SAW going from (0,0) to (L, M) on an L x M lattice, it
was proved in [1] that

_1
Theorem 4. For each fized M, limy .. C}Y; = A\ exists.

Further, Abbott and Hanson state that a similar proof can be used to establish that
1

limy, o CF7 := X exists. This was proved rather differently in [13].

2.1. UPPER BOUNDS ON \

In [1] an upper bound on the growth constant A was obtained by recasting the problem in
a matrix setting. We give below an alternative method for establishing upper bounds, based
on defining a superset of paths. We then show that these two methods are in fact essentially
identical.

Following [1], consider any non-intersecting path crossing the L x L square. Label each
unit square in the L x L lattice by 1 if it lies to the right of the path, and by 0 if it
lies to the left. This provides a one-to-one correspondence between paths and a subset, of
L x L matrices with elements 0 or 1. Matrices corresponding to allowed paths are called
admissible, otherwise they are inadmissible. Since the total number of L x L 0 — 1 matrices
is 2L2, we immediately have the weak bound Cr, 1 < 2L Of the 16 possible 2 x 2 matrices,
only 14 can correspond to portions of non-intersecting lattice paths. Lote that there are
only 12 actual paths from (0,0) to (2,2), but a further two matrices may correspond to
paths that are embedded in a larger lattice. Thus we find the bound Cp ; < 14(L/2)2, SO
A < 1.9343... Similarly, for 3 x 3 lattices we find 320 admissible matrices (out of a possible
512), so A < 320'/9 = 1.8982.. For 4 x 4 lattices, [1] claims that there are 22662 admissible
matrices, but we believe the correct number to be 22816, giving the bound A < 1.8723... We
have made dramatic extensions of this work, using a combination of finite-lattice methods
and transfer matrices, as described below, and have determined the number of admissible
matrices up to 19 x 19. There are 3.5465202 x 10°° such matrices, giving the bound

A < 1.781684.

This bound is fully equivalent to the bound A < (2PL)1/L2, where P, denotes the number
of cow-patch configurations on the L x L lattice. This equivalence follows if one colours
cow-patches by two colours, such that adjacent regions have different colours. Labelling the
two colours 0 and 1 produces a 0 — 1 matrix representation.

2.2. LOWER BOUNDS ON A\
In [1] the useful bound
M
A>T
is proved.
The above evaluation of Ay, see (2), immediately yields A > 1.4892.. ..

Based on exact enumeration, we have found the exact generating functions Gp(z) =
> Cr.mz" for M < 6. For M = 3 we find:

[1,—4,—4,36,—39, —26, 50,6, —15,1]
[1,—12,54, —124, 133,16, — 175,94, 69, —40, —12,4,1]’

where we denote by [ag,ai,...,ay] the polynomial ag + a1z + -+ + an,2™. As explained
above, all the generating functions Gj(z) are rational. For M = 4,5,6, their numerator

Gs(z) =
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and denominators are found to have degree (26,27), (71,75) and (186, 186) respectively, in
an obvious notation.

From these, we find the following values: A3 = 1.76331..., Ay = 1.75146..., \s =
1.74875 ... and \g = 1.74728 ... from which we obtain the bound A > 1.61339.. ..

However, an alternative lower bound can be obtained from spanning SAWs, defined in
Section 1. If T, denotes the number of spanning SAW on the L x L lattice, then we prove
in the full version of this paper that

= T(L)l/((L+1)(L+2)). (4)
This gives the improved bound A > 1.6284.
Combining our results for lower and upper bounds finally gives

1.6284 < X\ < 1.781684.

3. COMPUTER ENUMERATION

In the following we give a fairly detailed description of the algorithm we use to enumerate
the number of walks crossing a square and briefly outline how this basic algorithm is mod-
ified in order to include a step fugacity, study SAWs spanning a square and the cow-patch
configurations.

3.1. THE ALGORITHM

The basic algorithm used to enumerate self-avoiding walks crossing a square is based on
the method of Conway et al. [2] for enumerating ordinary self-avoiding walks. The number
of walks crossing an L x M rectangle is counted using a transfer matrix algorithm. The
transfer matrix technique involves drawing a boundary line through the rectangle intersecting

FI1GURE 2. The left panel shows a snapshot of the intersection (dashed
line) during the transfer matrix calculation. Walks within a rectangle are
enumerated by successive moves of the kink in the boundary, as exemplified
by the position given by the dotted line, so that the L x M rectangle is
built up one vertex at a time. To the left of the boundary we have drawn
an example of a partially completed walk. Numbers along the boundary
indicate the encoding of this particular configuration. The right panel shows
some of the local configurations which occur as the kink in the intersection
is moved one step.
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up to M + 2 edges. For each configuration of occupied or empty edges we maintain a
count of partially completed walks intersecting the boundary in that pattern. Walks in
rectangles are counted by moving the boundary, adding one vertex at a time (see figure 2).
Rectangles are built up column by column with each column constructed one vertex at a
time. Configurations are represented by lists of states {o;}, where the value of the state
o; must indicate if the ith edge of the boundary is occupied or empty. An empty edge is
indicated by o; = 0. An occupied edge is either free (that is, not connected to other edges of
the boundary by a path located to the left of the boundary) or connected to exactly one such
edge. We indicate this by o; = 1 for a free end, o; = 2 for the lower end of a loop and o; = 3
for the upper end of loop connecting two edges. Since we are studying self-avoiding walks on
a two-dimensional lattice the compact encoding given above uniquely specifies which ends
are paired. Read from the bottom the configuration along the intersection in figure 2 is
{2203301203} (prior to the move) and {2300001203} (after the move).

There are major restrictions on the possible configurations and their updating rules.
Firstly, since the walk has to cross the rectangle there is exactly one free end in any config-
uration. Secondly, all remaining occupied edges are connected by a path to the left of the
intersection and we cannot close a loop. It is therefore clear that the total number of 2’s
equals the total number of 3’s. Furthermore, as we look through the configuration from the
bottom the number of 2’s is never smaller than the number of 3’s (so that configurations can
be seen as well-balanced parentheses systems). We also have to ensure that the graphs we
construct have only one connected component. In the following we shall briefly show how
this is achieved.

TABLE 1. The various ‘input’ states and the ‘output’ states which arise as
the boundary line is moved in order to include one more vertex. Each panel
contains up to three possible ‘output’ states or other allowed actions.

Bottom\TOp 0 1 2 3
0 00 23 01 10 Res|02 20|03 30
1 01 10 Res 00 00
2 02 20 00 00
3 03 30 00 00 00

We call the configuration before and after the move the ‘source’ and ‘target’, respectively.
Initially we have just one configuration with a single ‘1’ at position 0 (all other entries ‘0’)
thus ensuring that we start in the bottom-left corner. As the boundary line is moved one
step, we run through all the existing sources. Each source gives rise to one or two targets
and the count of the source is added to the count of the target (the initial count of a target
being zero). After a source has been processed it can be discarded since it will make no
further contribution. Table 1 lists the possible local ‘input’ states and the ‘output’ states
which arise as the kink in the boundary is propagated one step, and the various symbols
are explained below. Firstly, the values of the 'Bottom’ and 'Top’ table entries refer to the
edge-states of the kink prior to the move. The Top (Bottom) entry is the state of the edge
intersected by (below) the horizontal part of the boundary. Some of the update rules are
illustrated further in figure 2. The topmost panels represent the input state ‘00’ having the
allowed output states ‘00" and ‘23’ corresponding to leaving the edges empty or inserting
a new loop, respectively. The middle panels represents the input state ‘20’ with output
states ‘20" and ‘02’ from the two ways of continuing the loop-end (note that the loop has
to be continued since we would otherwise generate an additional free end not located at the
allowed positions in the corners). The bottommost panels represents the input state ‘22’
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as part of the configuration {02233}. In this case we connect two loop-ends and we thus
join two separate loops into a single larger loop. The matching upper end of the innermost
loop becomes the new lower end of the joined loop. The relabeling of the matching loop-end
when connecting two ‘2’s (or two ‘3’s) is denoted by over-lining in Table 1. When we join
loop-ends to a free end (inputs ‘12°, 217, ‘13’, and ’31’) we have to relabel the matching
loop-end as a free end. This type of relabeling is indicated by the symbol 00. The input
state ‘11’ never occurs since there is only one free end. The input state ‘23’ is not, allowed
since connecting the two ends results in a closed loop. Finally, we have marked two outputs,
from the inputs ‘01’ and ‘10’ with ‘Res’, indicating situations where we terminate free ends.
This results in completed partial walks and is only allowed if there are no other occupied
edges in the source (otherwise we would produce graphs with separate pieces) and if we are
at the top-most vertex (otherwise we would not cross the rectangle). The count for this
configuration is the number of walks crossing a rectangle of height M and length L equal to
the number of completed columns.

3.2. COMPLEXITY

The time required to obtain the number of walks on L x M rectangles grows exponentially
with M and linearly with L. Time and memory requirements are basically proportional to
the maximal number of distinct configurations along the boundary line. When there is no
kink in the intersection (a column has just been completed) we can calculate this number,
Neont(M), exactly. Obviously the free end cuts the boundary line configuration into two
separate pieces. Each of these pieces consists of ‘0’s and an equal number of ‘2’s and ‘3’s
with the latter forming a well-balanced parenthesis system.

Each piece thus corresponds to a Motzkin path [12, Ch. 6] (just map 0 to a horizontal step,
2 to a north-east step, and 3 to a south-east step). The number of Motzkin paths M,, with
n steps is easily derived from the generating function M(z) = > M,z"™, which satisfies
M =1+ zM + 22 M2, so that

M(z) =1 —z — (14 z)(1 — 3x))"/?]/222. (5)
The number of configurations Neons(M) for a rectangle of height M is simply obtained

by inserting a free end between two Motzkin paths, so that the generating function
> Neont(M)z™ is simply M (z)%. The Lagrange inversion formula gives

(M +1)!
Neont (M) =2 Z i+ 2)1(M — 20)!”
>0
When the boundary line has a kink the number of configurations exceeds Neont(M) but
clearly is less than Neong(M + 1). From (5) we see that asymptotically Neons(M) grows
like 3™ (up to a power of M). So the same is true for the maximal number of boundary
line configurations and hence for the computational complexity of the algorithm. Note that
the total number a walks grows like A“M and our algorithm thus leads to a better than
exponential improvement over direct enumeration.

The integers occurring in the expansion become very large so the calculation was per-
formed using modular arithmetic [6]. This involves performing the calculation modulo var-
ious prime numbers p; and then reconstructing the full integer coefficients at the end. We
used primes of the form p; = 23° —r;, where r; are distinct integers, less than 1000, such that
p; is a (different) prime for each value of i. The Chinese remainder theorem ensures that any
integer has a unique representation in terms of residues. If the largest integer occurring in
the final expansion is m, then we have to use a number of primes k such that pyps - - - pr > m.
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3.3. EXTENSIONS OF THE ALGORITHM

The algorithm is easily generalised to include a step fugacity x. The count associated
with the boundary line configuration has to be replaced by a generating function for partial
walks. Since we only use this generalisation to study walks crossing a square, the generating
function is a polynomial of degree (at most) M? in z. The coefficient of 2™ in this polynomial
is the number of walks of length n intersecting the boundary line in the pattern specified by
the configuration. When the boundary is updated, if m additional steps are inserted, the
generating function of the source is multiplied by 2™ and added to the generating function
of the target. Not all M? terms in the polynomials need be retained. Firstly, only terms
with n even are non-zero and only these are retained. Secondly, in order to construct a given
boundary line configuration, a certain minimal number of steps nyi, are required and terms
with n < npin can be discarded.

The generalisation to spanning walks is also quite simple. Firstly, we have M + 1 initial
configurations which are empty except for a free end at position 0 < 7 < M. This corresponds
to the M + 1 possible starting positions for the walk on the left boundary. Secondly, we have
to change how we produce the final counts. The easiest way to ensure that a walk spans the
rectangle and that only single component graphs are counted is as follows: When column
L + 1 has been completed we look at the M + 1 configurations with a single free end and
add the counts from all of them. This is the number of walks spanning an L x M rectangle.

The generalisation to cow-patch patterns is more complicated. Graphs can now have many
separate components and there can be many free ends in a boundary line configuration. Note
also that each free end has to start and terminate with a step perpendicular to the border of
the rectangle and there are no steps along the edges of the borders of the rectangle. There
are 2M~1 initial configurations since any of the edges in the first column from position 1 to
M — 1 can be occupied by a free end or be empty. There is an extra updating rule in the
bulk in that we can have the local input ‘11’ (joining of two free ends) with the only possible
output being ‘00’. Also the updating rules at the upper and lower borders of the rectangle
are different in this case. At the upper border we only have the input ‘00’ with the outputs
‘00" and ‘10’ corresponding to the insertion of a free end on a vertical edge at the upper
border. There is no ‘23’ or ‘01’ outputs since these would produce an occupied edge along
the upper border. At the lower border we have inputs ‘00’, ‘01°, and ‘02’ and in each case
the only possible output is ‘00’ (with the appropriate relabeling in the ‘02’ case). Finally,
the count of the number of cow-patch patterns is obtained by summing over all boundary
line configurations after the completion of a column.

3.4. RESULTS

As discussed above, in order to obtain the exact value of the number of SAW crossing a
square, some of which are integers with nearly 100 digits, we performed the enumerations
several times, each time modulo a different prime. The enumerations were then reconstructed
using the Chinese Remainder Theorem. Each run for a 19 x 19 lattice took about 72 hours
using 8 processors of a multiprocessor 1 GHz Compaq Alpha computer. Ten such runs were
needed to uniquely specify the resultant numbers.

Proceeding as above, we have calculated ¢, (L) for all n for L < 17. In other words, we
have obtained the polynomials Cp,(z) for L < 17. In addition, we have computed Cig(1) and
C19(1), the total number of SAW crossing an 18 x 18 and 19 x 19 square respectively. We
have also computed the corresponding quantities for cow-patch and spanning SAWs, denoted
Pr(1) and T (1) respectively, for L < 19.

1
Finally, in [1] the question was asked whether C/%/, is decreasing in both L and M. We
can answer this in the negative, based on our enumerations.
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4. NUMERICAL ANALYSIS
1

It has been proved [1, 13] that limy_ CLT,QL = )\ exists. From this it is reasonable to
expect (but not a logical consequence) that Ry, = Cr41.1+1/CrL. ~ A2l so the generating
function R(x) = Y., Rra’ has a radius of convergence x. = 1/A?, which we can estimate
accurately using differential approximants [4]. We estimate in this way that for the crossing
problem z. = 0.32858(5), for the spanning problem z. = 0.3282(6) and for the cow-patch
problem z, = 0.328574(2). So we see that A is the same for the three problems, and we
estimate that A = 1.744550(5). It is not difficult to prove that A defined for SAW crossing a
square, and for spanning walks takes the same value. For cow-patch walks, this is somewhat
more difficult, but we have done so (see the full version of this paper).

We now speculate on the sub-dominant terms. For SAW on an infinite lattice, it is widely
accepted (but not proved) that ¢, ~ const.u™n?, where ¢, is the number of n step SAW
equivalent up to a translation.

It seems reasonable to speculate that, the number of SAWs crossing an L x L lattice is
equivalent to AN’ HPL Lo We have investigated this possibility numerically, and found it to
be well supported by the data.

For cow-patches we find b ~ 0.8558 and « ~ —0.500. For transverse walks and walks
crossing a square b is quite small, possibly zero. For transverse walks we find « =~ 1.75 while
for walks crossing the square @ ~ 0. This suggests asymptotic behaviours Ap\L*+0-8558L /\ /T
AT)\LQL7/4 and AW)\L2 log L respectively, where Ap, Ar, and Ay can be estimated, and
the log L term (or some power of a logartihm) would follow if o were exactly zero.

As remarked in the introduction, we have also studied (numerically) the behaviour of
(n(1/w))r, by a log-log plot as well as other numerical methods. The results are totally
consistent with the conjecture [8], that (n(1/p))y, is proportional to L'/¥, where v = 3/4.

5. ASYMPTOTICS FOR WALKS OF “SMALL” LENGTH CROSSING A SQUARE

We now consider walks of length 2L + 2K crossing an L x L square. Note that walks
of length 2L are the minimal possible length. With K = 0 the number of possible walks is

(QLL) This result is obvious, as there are 2L steps in the path, of which L must be in the

positive = (and of course positive y) direction. Note that this has the asymptotic expansion

2L 4L 1 1 5
= (1-= LY.
(L) Nz ( 17 " o8z + 1oaare O )>

With K = 1 we have proved that the number of possible paths is given by 2L(L2f2). This
result has the asymptotic expansion

2L L4l 33 1345 23835
2L == (2= 0 LY.
(L + 2) VI ( 17 "oz siare O ))

For K = 2 we have proved that the number of possible paths is given by

2(2L)!
L\(L +4)!

(48 4 90L + 8L* — 28L% — 3L* + 4L° + L%) — 4.

This has asymptotic expansion

L24F 49 2913 92971 _3

—\2 g teme szt (L ) ‘

NaX 4L  64L 512L

Our technique can be, in theory, extended to count walks of length 2L + 2K, for any given

value of K. It proves that the sequence of numbers thus obtained is always P-recursive.
That is to say, it satisfies a linear recurrence relation with polynomial coefficients [11]. But,
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even for K = 3, the number of special cases that must be treated becomes very large. We
have resorted to a numerical study for higher values of K, and for K = 3 we found

L3451 /4 49 193141
i I O Y ) Pt
VIt <3 6L + 6412 +0( )) ’
while the corresponding result for K =4 is
L4l /211
—— [+ —=+0(L7%).
v L (3 + 4L * ( )>

We can give an heuristic argument for the general form of the leading term in the asymptotic

k
expansion of the case K = k, which leads to the leading order term \;L% (25!) . Here the first
term is given by the number of ways of choosing the “backbone”, (2LL) ~ ;—27 and the second

is given by the number of ways of placing k defects (or backward steps) on a path of length
2L, which is just (2L). The defects are indistinguishable, introducing the factor k!.

This argument can be refined into a proof, for K = o(L'/3) by following the steps, mutatis
mutandis in the proof of a similar result given in [3].

6. HAMILTONIAN WALKS CROSSING A SQUARE

Hamiltonian walks can only exist on 2L x 2L lattices. For lattices with an odd number

of edges, one site must be missed. A Hamiltonian walk is of length 4L(L 4+ 1) on a 2L x 2L

lattice. The number of such walks grows as T4L2, where we find 7 ~ 1.472 based on exact

enumeration up to 17 x 17 lattices. This is about 20% less than A, the growth constant
for all SAWs. In [5] the estimate of the growth constant for Hamiltonian SAW on the
unconstrained square lattice 1.472801 4+ 0.00001 was given. This should be precisely the
same as the corresponding result for Hamiltonian walks on an L x L lattice, in the large L
limit. Tn [1] it is proved that 21/3 < 7 < 121/4 that is to say, 1.260 < 7 < 1.861. We can
improve on these bounds as follows: we define generalized cow-patch walks to be Hamiltonian
if every vertex of the square not belonging to the border of the square belongs to one of the
SAWs of the cow-patch. Then the upper bounds given above translate verbatim into upper
bounds for 7, while lower bounds are given by Hamiltonian spanning walks and (4). In this
way we find 1.429 < 7 < 1.52999. As we have shown above that 1.6284 < A, this proves that
T <A
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