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Abstract. The Ehrhart polynomial of an integral convex polytope counts
the number of lattice points in dilates of the polytope. In [1], the authors
conjectured that for any cyclic polytope with integral parameters, the Ehrhart
polynomial of it is equal to its volume plus the Ehrhart polynomial of its lower
envelope and proved the case when the dimension d = 2. In our article, we
prove the conjecture for any dimension.

1. Introduction

For any integral convex polytope P, that is, a convex polytope whose vertices have

integral coordinates, any positive integer m ∈ N, we denote by i(P, m) the number

of lattice points in mP, where mP = {mx | x ∈ P} is the mth dilate polytope of P.
In our paper, we will focus on a special class of polytopes, cyclic polytopes, which

are defined in terms of the moment curve:

Definition 1.1. The moment curve in R
d is defined by

νd : R→ R
d, t 7→ νd(t) =











t
t2

...

td











.

Let T = {t1, . . . , tn}< be a linearly ordered set. Then the cyclic polytope Cd(T ) =

Cd(t1, . . . , tn) is the convex hull conv{vd(t1), vd(t2), . . . , vd(tn)} of n > d distinct

points νd(ti), 1 ≤ i ≤ n, on the moment curve.

The main theorem in our article is the one conjecured in [1, Conjecture 1.5]:

Theorem 1.2. For any integral cyclic polytope Cd(T ),

i(Cd(T ), m) = Vol(mCd(T )) + i(Cd−1(T ), m).

Hence,

i(Cd(T ), m) =

d
∑

k=0

Volk(mCk(T )) =

d
∑

k=0

Volk(Ck(T ))mk,

where Volk(mCk(T )) is the volume of mCk(T ) in k-dimensional space, and we let
Vol0(mC0(T )) = 1.

One direct result of Theorem 1.2 is that i(Cd(T ), m) is always a polynomial in

m. This result was already shown by Eugène Ehrhart for any integral polytope

in 1962 [2]. Thus, we call i(P, m) the Ehrhart polynomial of P when P is an in-

tegral polytope. There is much work on the coefficients of Ehrhart polynomials.

For instance it’s well known that the leading and second coefficients of i(P, m) are
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the normalized volume of P and one half of the normalized volume of the bound-

ary of P. But there is no known explicit method of describing all the coefficients

of Ehrhart polynomials of general integral polytopes. However, because of some

special properties that cyclic polytopes have, we are able to calculate the Ehrhart

polynomial of cyclic polytopes in the way described in Theorem 1.2.

In this paper, we use a standard triangulation decomposition of cyclic polytopes,

and careful counting of lattice points to reduce Theorem 1.2 to the case n=d+1,

(Theorem 2.9). We then prove Theorem 2.9 with the use of certain linear transfor-

mations and decompositions of polytopes containing our cyclic polytopes.

2. Statements and Proofs

All polytopes we will consider are full-dimensional, so for any convex polytope P,
we use d to denote both the dimension of the ambient space R

d and the dimension of

P. Also, We denote by ∂P and I(P ) the boundary and the interior of P, respectively.

For simplicity, for any region R ⊂ R
d, we denote by L(R) := R ∩ Z

d the set of

lattice points in R.
Consider the projection π : R

d → R
d−1 that forgets the last coordinate. In [1,

Lemma 5.1], the authors showed that the inverse image under π of a lattice point

y ∈ Cd−1(T ) ∩ Z
d−1 is a line that intersects the boundary of Cd(T ) at integral

points. By a similar argument, it’s easy to see that this is true when we replace the

cyclic polytopes by their dilated polytopes. Note that π(mCd(T )) = mCd−1(T ),
so for any lattice point y in mCd−1(T ) the inverse image under π intersects the

boundary at lattice points.

Definition 2.1. For any x in a real space, let l(x) denote the last coordinate of x.
For any polytope P ⊂ R

d and any point y ∈ R
d−1, let ρ(y, P ) = π−1(y) ∩ P be

the intersection of P with the inverse image of y under π. Let p(y, P ) and n(y, P )

be the point in ρ(y, P ) with the largest and smallest last coordinate, respectively.

If ρ(y, P ) is the empty set, i.e., y 6∈ π(P ), then let p(y, P ) and n(y, P ) be empty

sets as well. Clearly, p(y, P ) and n(y, P ) are on the boundary of P. Also, we let

ρ+(y, P ) = ρ(y, P ) \ n(y, P ), and for any S ⊂ R
d−1, ρ+(S, P ) = ∪y∈Sρ+(y, P ).

Define PB(P ) =
⋃

y∈π(P ) p(y, P ) to be the positive boundary of P ; NB(P ) =

∪y∈π(P )n(y, P ) to be the negative boundary of P and Ω(P ) = P \ NB(P ) =

ρ+(π(P ), P ) = ∪y∈π(P )ρ
+(y, P ) to be the nonnegative part of P.

For any facet F of P, if F has an interior point in the positive boundary of P,
(it’s easy to see that F ⊂ PB(P )) then we call F a positive facet of P and define

the sign of F as +1 : sign(F ) = +1. Similarly, we can define the negative facets of

P with associated sign −1.

By the argument we gave before Definition 2.1, π induces a bijection of lattice

points between NB(mCd(T )) and π(mCd(T )) = mCd−1(T ). Hence, Theorem 1.2

is equivalent to the following Proposition:

Proposition 2.2. Vol(mCd(T )) = |L(Ω(mCd(T )))|.

From now on, we will consider any polytopes or sets as multisets which allow

negative multiplicities. We can consider any element of a multiset as a pair (x, m),
where m is the multiplicity of element x. (A multiplicity zero for an element x is

used when x does not appear at all in the multiset.) Then for any multisets M1, M2

and any integers m, n and i, we define the following operators:

F. LIU
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EHRHART POLYNOMIALS OF CYCLIC POLYTOPES

(i) Scalar product: iM1 = i ·M1 = {(x, im) | (x, m) ∈M1}.
(ii) Addition: M1 ⊕M2 = {(x, m + n) | (x, m) ∈M1, (x, n) ∈M2}.
(iii) Subtraction: M1 	M2 = M1 ⊕ ((−1) ·M2).

It’s clear that the following holds:

Lemma 2.3.

a) ∀R1, . . . , Rk ⊂ R
d, ∀i1, . . . , ik ∈ Z : L(

⊕k

j=1 ijRj) =
⊕k

j=1 ijL(Rj).

b) For any polytope P ⊂ R
d, ∀R1, . . . , Rk ⊂ R

d−1, ∀i1, . . . , ik ∈ Z :

ρ+





k
⊕

j=1

ijRj , P



 =

k
⊕

j=1

ijρ
+(Rj , P ).

Let P be a convex polytope. For any y an interior point of π(P ), since π is

a continous open map, the inverse image of y contains an interior point of P.
Thus π−1(y) intersects the boundary of P exactly twice. For any y a boundary

point of π(P ), again because π is an open map, we have that ρ(y, P ) ⊂ ∂P, so

ρ(y, P ) = π−1(y) ∩ ∂P is either one point or a line segment. We hope that ρ(y, P )

always has only one point, so we define the following polytopes and discuss several

properties of them.

Definition 2.4. We call a convex polytope P a nice polytope with respect to π
if for any y ∈ ∂π(P ), |ρ(y, P )| = 1 and for any lattice point y ∈ π(P ), π−1(y)

intersects ∂P at lattice points.

Lemma 2.5. A nice polytope P has the following properties:

(i) For any y ∈ I(π(P )), π−1(y) ∩ ∂P = {p(y, P ), n(y, P )}. In particular, if y
is a lattice point, then p(y, P ) and n(y, P ) are each lattice points.

(ii) For any y ∈ ∂π(P ), π−1(y) ∩ ∂P = ρ(y, P ) = p(y, P ) = n(y, P ), so
ρ+(y, P ) = ∅. In particular, when y is a lattice point, ρ(y, P ) is a lattice
point as well.

(iii) L and ρ+ commute: for any R ⊂ R
d−1, L(ρ+(R, P )) = ρ+(L(R), P ).

(iv) Let R be a region containing I(π(P )). Then

Ω(P ) = ρ+(R, P ) =
⊕

y∈R

ρ+(y, P ).

Moreover,

|L(Ω(P ))| =
∑

y∈L(R)

l(p(y, P ))− l(n(y, P )).

(By convention, if y 6∈ π(P ), we let l(p(y, P ))− l(n(y, P )) = 0.)
(v) If P is decomposed into nice polytopes P1, . . . , Pk, i.e., P = P1 ∪ · · · ∪ Pk

and I(Pi) ∩ I(Pj) = ∅ for any distinct i, j, then Ω(P ) =
⊕k

i=1 Ω(Pi), so

L(Ω(P )) =
⊕k

i=1 L(Ω(Pi)).
(vi) The set of facets of P are partitioned into the set of positive facets and the

set of negative facets, i.e., every facet is either positive or negative but not
both.

Proof. The first three and last properties are immediately true. And the fourth

one follows directly from the second one. The fifth property can be checked by

considering the definition of Ω. �
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By using these properties, we are able to give the following proposition about a

nice convex polytope:

Proposition 2.6. Let P be a nice convex polytope with respect to π such π(P ) is
also nice, and all the points in P have nonnegative last coordinate. Suppose further
that for any facet F of P, π(F ) is a nice polytope with respect to π. Then

Ω(P ) =
⊕

F : a facet of P

sign(F )ρ+(Ω(π(F )), conv(F, π(F ))),

where conv(F, π(F )) denotes the convex hull of the set F ∪{(y′, 0)′ | y ∈ π(F )}, i.e.
the region between F and its projection onto the hyperplane {(x1, . . . , xd)

′ | xd = 0}.
(Note, for any vector v, we use v′ to denote its transpose. So for a vertical vector
y, (y′, 0)′ is just the vector obtained from y by attaching a zero to the bottom of y.)

Proof. A special case of Lemma 2.5/(iv) is when R = Ω(π(P )), so we have

Ω(P ) = ρ+(Ω(π(P )), P ) =
⊕

y∈Ω(π(P ))

ρ+(y, P ).

Now for any points a and b, we use (a, b] to denote the half-open line seg-

ment between a(excluding) and b(including). Then, ρ+(y, P ) = (n(y, P ), p(y, P )] =

(((y′, 0)′, p(y, P )]	 ((y′, 0)′, n(y, P )]). Therefore,

Ω(P ) =
⊕

y∈Ω(π(P ))

(((y′, 0)′, p(y, P )]	 ((y′, 0)′, n(y, P )])

=





⊕

y∈Ω(π(P ))

((y′, 0)′, p(y, P )]





⊕





⊕

y∈Ω(π(P ))

(−1) · ((y′, 0)′, n(y, P )]



 .

Let F1, F2, . . . , F` be all the positive facets of P and F`+1, . . . , Fk be all the

negative facets. Then it’s clear that π(F1)∪π(F2)∪ · · · ∪π(F`) and π(F`+1)∪ · · · ∪
π(Fk) both give a decomposition of π(P ). Therefore by Lemma 2.5/(v), we have

that Ω(π(P )) =
⊕`

i=1 Ω(π(Fi)) =
⊕k

j=`+1 Ω(π(Fj)). Hence,

⊕

y∈Ω(π(P ))

((y′, 0)′, p(y, P )] =

`
⊕

i=1

⊕

y∈Ω(π(Fi))

((y′, 0)′, p(y, P )]

=

`
⊕

i=1

ρ+(Ω(π(Fi)), conv(Fi, π(Fi))).

Similarly, we will have

⊕

y∈Ω(π(P ))

(−1) · ((y′, 0)′, n(y, P )] =

k
⊕

j=`+1

(−1)ρ+(Ω(π(Fj )), conv(Fj , π(Fj))).

Thus, by putting them together, we get

Ω(P ) =
⊕

F : a facet of P

sign(F )ρ+(Ω(π(F )), conv(F, π(F ))).

�
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EHRHART POLYNOMIALS OF CYCLIC POLYTOPES

In the last proposition, we used a new notation conv(F, π(F )) to denote certain

polytopes. For polytopes that can be written in this way, we have the following

lemma, whose proof is trivial:

Lemma 2.7. Let H be a hyperplane in R
d such that π(H) = R

d−1. Let S1 ⊂ S2 be
two convex polytopes inside H and the last coordinates of all of their points are non-
negative. Then for any y ∈ π(S1), ρ+(y, conv(S1, π(S1))) = ρ+(y, conv(S2, π(S2))).

Having discussed some properties of nice polytopes with respect to π, we come

back to the dilated cyclic polytopes which are our main interest and show that they

are nice:

Lemma 2.8. mCd(T ) is a nice polytope with respect to π.

Proof. We already argued that mCd(T ) satisfies the second condition to be nice.

So it’s left to check that |ρ(y, Cd(T ))| = 1 for any y ∈ ∂Cd−1(T ).
Let y = (y1, y2, . . . , yd−1)

′ and suppose y is on a facet F of mCd−1(T ) and

without loss of generality, let mνd−1(t1), mνd−1(t2), . . . , mνd−1(td−1) be the d − 1

vertices of F. Then there exist λ1, . . . , λd−1 ∈ R≥0 such that y =
∑d−1

j=1 λjmνd−1(tj)

and
∑d−1

j=1 λj = 1.

Let x ∈ π−1(y)∩mCd(T ). There exist λ′1, . . . , λ
′
n ∈ R≥0 such that x =

∑n

j=1 λ′jmνd(tj)

and
∑n

j=1 λ′j = 1. Then y = π(x) =
∑n

j=1 λ′jmνd−1(tj). Since y is on the facet F,

λ′
j

= 0 unless 1 ≤ j ≤ d − 1. Thus y =
∑d−1

j=1 λ′
j
mνd−1(tj) and

∑d−1

j=1 λ′
j

= 1.

Therefore λj = λ′
j
, 1 ≤ j ≤ d − 1. Hence x =

∑d−1

j=1 λjmνd(tj) is the only point in

π−1(y) ∩mCd(T ). �

We know that for any cyclic polytope Cd(T ) with n = |T | > d + 1, we can

decompose it into n− d cyclic polytopes P1 ∪ · · · ∪ Pn−d, which is a triangulation

of Cd(T ) and where Pi’s are all defined by (d + 1)-element integer sets. E.g., the

pulling triangulation of [4] has this property. Therefore by the fourth property

in Lemma 2.5, we have that L(Ω(Cd(T ))) =
⋃n−d

i=1 L(Ω(Pi)). Thus |L(Ω(P ))| =
∑k

i=1 |L(Ω(Pi))|. Note that we also have Vol(Cd(T )) =
∑n−d

i=1 Vol(Pi). We conclude

that to prove Proposition 2.2, it is enough to prove the following:

Theorem 2.9. For any integer sets T with n = |T | = d + 1, Vol(mCd(T )) =

|L(Ω(mCd(T )))|.

Definition 2.10. A map ϕ : R
d → R

d is structure perserving if it preserves volume

and it commutes with the following operations:

(i) L : taking lattice points of a region R ⊂ R
d;

(ii) conv : taking the convex hull of a collection of points;

(iii) Ω : taking the nonnegative part of a convex polytope;

(iv) PB : taking the positive boundary of a convex polytope;

(v) NB : taking the negative boundary of a convex polytope.

Remark 2.11. Here ϕ commuting with conv implies (or is equivalent to) that for

any set of points x1, . . . , xk ∈ R
d, and for any λ1, . . . , λk ∈ R

≥0 with
∑k

i=1 λi = 1,

T (
∑k

i=1 λixi) =
∑k

i=1 λiT (xi). Therefore ϕ is an affine transformation, which can

be defined by a d × d matrix A and a vector u ∈ R
d : T (x) = Ax + u. Moreover,

ϕ commuting with PB and NB implies that ϕ preserves the positive facets and

negative facets of a convex polytope.
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Lemma 2.12. Let A be a d × d integral lower triangular matrix with 1’s on its
diagonal, and u be an integral vector in R

d. Then ϕ : x 7→ Ax + u gives a map
which is structure preserving, and so does ϕ−1. Therefore, ϕ is a bijection from Z

d

to Z
d. Hence, for any subset S ∈ R

d, |L(S)| = |L(ϕ(S))|.
Moreover, for any y ∈ R

d−1, if we define ϕ̃(y) = Ãy + ũ, where Ã is the right
upper (d−1)×(d−1) matrix of A and ũ = π(u), then ρ+(ϕ̃(y), ϕ(P )) = ϕ(ρ+(y, P )),
for any polytope P.

Proof. The determinant of A is 1, hence ϕ is volume preserving. It’s easy to check

that ϕ commutes with L and conv. To show that ϕ commutes with Ω, PB and NB,
it suffices to show that for all x1, x2 ∈ R

d with π(x1) = π(x2) and l(x1) > l(x2),
then π(ϕ(x1)) = π(ϕ(x2)) and l(ϕ(x1)) > l(ϕ(x2)). This is not hard to check using

the fact that A is a lower triangular matrix with 1’s on its diagonal. Hence, ϕ is

structure preserving.

Note that ϕ−1 maps x to A−1x−A−1u. But we know that A−1 is also an integral

lower triangular matrix with 1’s on its diagonal and −A−1u is an integral vector.

So ϕ−1 is structure preserving as well.

It’s clear that ϕ̃ = π ◦ϕ ◦π−1, which implies that π−1 ◦ ϕ̃ = ϕ ◦π−1. So we have

x ∈ ϕ(ρ+(y, P ))⇔ ϕ−1(x) ∈ ρ+(y, P ) = π−1(y) ∩ P

⇔ x ∈ ϕ(π−1(y)) ∩ ϕ(P ) = π−1(ϕ̃(y)) ∩ ϕ(P )⇔ x ∈ ρ+(ϕ̃(y), ϕ(P )).

�

Now for any real numbers r1, r2, . . . , rd, we consider the d × d lower triangular

matrices

Ar1,...,rd
(i, j) =

{

(−1)i−jei−j(r1, . . . , ri), i ≥ j
0, i < j

and

Br1,...,rd
(i, j) =







1, i = j
0, i 6= j&i < d
(−1)i−jei−j(r1, . . . , ri), j 6= i = d

where ek(r1, . . . , rl) =
∑

i1<i2<···<ik
ri1ri2 . . . rik

is the kth elementary symmetric

function in r1, . . . , rl.
For simplicity, we allow a map originally defined on R

d to work in higher dimen-

sion, by applying the map to the first d coordinates. Then it’s not hard to see that

Ar1,...,rd
= Ar1,...,rd−1

Br1,...,rd
= Br1,...,rd

Ar1,...,rd−1
.

We also define vectors

ur1,...,rd
=















−r1

r1r2

−r1r2r3

...

(−1)dr1r2 . . . rd















=















−e1(r1)

e2(r1, r2)

−e3(r1, r2, r3)
...

(−1)ded(r1, r2, . . . , rd)















,

and

vr1,...,rd
=















0

0
...

0

(−1)dr1r2 . . . rd















=















0

0
...

0

(−1)ded(r1, r2, . . . , rd)















.
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Similarly, we allow the addition operation between two vectors of different dimen-

sions by adding the lower dimension one to the first corresponding coordinates of

the higher one. Thus, ur1,...,rd
= ur1,...,rd−1

+ vr1,...,rd
.

Now we define maps ϕr1,...,rd
: x 7→ Ar1,...,rd

x + ur1,...,rd
and φr1,...,rd

: x 7→
Br1,...,rd

x + vr1,...,rd
. Unlike ϕr1,...,rd

, φr1,...,rd
does not depend on the order of ri’s.

In other words, for any permutation σ ∈ Sd, φr1,...,rd
= φrσ(1) ,...,rσ(d)

.
Note that φr1,...,rd

only changes the dth coordinate of a vector, so we have the

following lemma:

Lemma 2.13. ϕr1,...,rd
= ϕr1,...,rd−1

◦ φr1,...,rd
.

Remark 2.14. When we consider ϕr1,...,rd
and φr1,...,rd

operating on the moment

curve, we have

ϕr1,...,rd
(νd(t)) = Ar1,...,rd











t
t2

...

td











+ ur1,...,rd
=











(t− r1)

(t− r1)(t− r2)
...

(t− r1)(t− r2) · · · (t− rd)











,

φr1,...,rd
(νd(t)) = Br1,...,rd











t
t2

...

td











+ vr1,...,rd
=















t
t2

...

td−1

(t− r1)(t− r2) · · · (t− rd)















.

Remark 2.15. When r1, . . . , rd are integers, ϕr1,...,rd
, φr1,...,rd

and their inverse maps

are structure preserving by Lemma 2.12.

Now by using φ’s (or ϕ’s), we are able to determine the sign of the facets of

dilated cyclic polytopes:

Proposition 2.16. Let P = mCd(T ), where m ∈ N and T = {t1, t2, . . . , tn}< an
integral ordered set. Let F be a facet of P determined by vertices νd(ti1), νd(ti2), . . . , νd(tid

).
Let k be the smallest element of the set {1, 2, . . . , n} \ {i1, . . . , id}, then sign(F ) =

(−1)d−k. In particular, when |T | = n = d + 1, let Fk be the facet of P determined
by all the vertices of P except νd(tik

), then for k ∈ [d], sign(Fk) = sign(σk), where
σk = (k, k + 1, · · · , d) ∈ Sd and sign(Fd+1) = −1.

Proof. We first consider the case when m = 1, i.e. P is a cyclic polytope. Without

loss of generality, we assume that i1 < i2 < · · · < id. Consider the polytope

Q = φti1 ,...,tid
(P ). For j = 1, 2, . . . , n, the last coordinate of the vertex of Q which

mapped from νd(tj) is l(φti1 ,...,tid
(νd(tj))) = (tj − ti1)(tj − ti2) · · · (tj − tid

). Hence

the last coordinates of the vertices of φti1 ,...,tid
(F ) are all 0’s. So φti1 ,...,tid

(F ) is on

the hyperplane obtained by setting the last coordinate to 0. Since k is the smallest

element not in {i1, . . . , id}, i1 = 1, i2 = 2, . . . , ik−1 = k − 1, ik > k. So tk − til
> 0

when l = 1, 2, . . . , k − 1; and tk − til
< 0 when l = k, k + 1, . . . , d. Therefore

sign(l(φti1 ,...,tid
(νd(tk))) = (−1)d−k+1. By using Gale’s evenness condition [3], it’s

not hard to see that sign(l(φti1 ,...,tid
(νd(tl))) = (−1)d−k+1, for all l 6∈ {i1, . . . , id}.

Thus we can conclude that l(φti1 ,...,tid
(P )) is nonnegative if d − k is odd, and is

nonpositive if d− k is even. Hence φti1 ,...,tid
(F ) and F are negative facets if d− k

is odd, and positive facets if d − k is even. So sign(F ) = (−1)d−k. For n = d + 1,
it’s easy to see that sign(σk) = (−1)d−k = sign(Fk).
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For m > 1, we just need to consider the map x 7→ Bti1 ,...,tid
x + mvti1 ,...,tid

instead of φti1 ,...,tid
, and then we will have similar results.

�

Lemma 2.17. For all d ∈ R
+, for all s1, . . . , sd ∈ N, let x0 = 1 and Ps1,...,sd

=

{(x1, . . . , xd) ∈ R
d | ∀i ∈ [d] : 0 ≤ xi ≤ sixi−1}, Rs1,...,sd

= Ω(Ps1,...,sd
). Then

Rs1,...,sd
= Ps1,...,sd

∩{xd > 0} and for all d ≥ 2 : Rs1,...,sd
= ρ+(Rs1,...,sd−1

, Ps1,...,sd
).

Moreover, the vertices of Ps1,...,sd
are











0

0
...
0











,











s1

0
...
0











,















s1

s1s2

0
...
0















, . . . ,















s1

s1s2

s1s2s3

...
s1s2 · · · sd















and the positive boundary of Ps1,...,sd
is just the convex hull of the first d−1 vertices

and the last one. Note the first d − 1 vertices span a (d − 2)-dimensional space
{(x1, . . . , xd)

′ | xd = xd−1 = 0}. Hence PB(Ps1,...,sd
) is in the hyperplane spanned

by this (d− 2)-dimensional space and the last vertex.

Proof. The first result is immediate by considering the definition of Ω.
We have Rs1,...,sd−1

⊂ Ps1,...,sd−1
, so

ρ+(Rs1,...,sd−1
, Ps1,...,sd

) ⊂ ρ+(Ps1,...,sd−1
, Ps1,...,sd

) = ρ+(π(Ps1 ,...,sd
), Ps1,...,sd

)

= Ω(Ps1,...,sd
) = Rs1,...,sd

.

But for x = (x1, . . . , xd) ∈ Rs1,...,sd
, we have that xd > 0 which implies that

sdxd−1 > 0, so xd−1 > 0. Therefore π(x) ∈ Rs1,...,sd−1
. Thus, x ∈ ρ+(Rs1,...,sd−1

, Ps1,...,sd
).

Now we can conclude that Rs1,...,sd
= ρ+(Rs1,...,sd−1

, Ps1,...,sd
).

�

Theorem 2.18. Let d ∈ N and T = {t1, t2, . . . , td+1}< be an integral ordered set,
then

Ω(Cd(T )) =
⊕

σ∈Sd

sign(σ)ϕ−1
tσ(1) ,...,tσ(d)

(Rtd+1−tσ(1),...,td+1−tσ(d)
).

Proof. We proceed by induction on d. When d = 1, Cd(T ) is just the interval

[t1, t2]. Then the only element σ ∈ S1 is the identity map. Rt2−t1 = (0, t2− t1]. And

ϕt1 : x 7→ x− t1, so ϕ−1
t1

: x 7→ x + t1. Thus ϕ−1
t1

((0, t2 − t1]) = (t1, t2] = Ω([t1, t2]).
Now we assume the theorem is true for dimensions less than d, and we will prove

the case of dimension d(≥ 2). Let P = φt1,...,td
(Cd(T )), and let vi = φt1,...,td

(νd(ti)), i ∈

[d + 1], be the vertices of P. Then for i ∈ [d], vi =

(

νd−1(ti)
0

)

and for i = d + 1,

vd+1 =

(

νd−1(td+1)
∏d

i=1(td+1 − ti))

)

. Since
∏d

i=1(td+1 − ti)) > 0, the last coordinates of

all the points in P are nonnegative. By Proposition 2.6, we have that

Ω(P ) =
⊕

F : a facet of P

sign(F )ρ+(Ω(π(F )), conv(F, π(F ))).

F. LIU
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As in Proposition 2.16, we let Fk be the facet of Cd(T ) determined by all the

vertices of Cd(T ) except νd(tik
), then

Ω(P ) =
⊕

k∈[d+1]

sign(φt1,...,td
(Fk))ρ+(Ω(π(φt1 ,...,td

(Fk))), conv(φt1,...,td
(Fk), π(φt1 ,...,td

(Fk)))).

For k = d + 1, F̃ = φt1,...,td
(Fd+1) = conv({vi}di=1) is on the hyperplane H0 =

{(x1, . . . , xd)
′ ∈ R

d | xd = 0}. So conv(F̃ , π(F̃ )) is just F̃ . Thus ρ+(Ω(π(F̃ )), conv(F̃ , π(F̃ )))

is an empty set.

And for k ∈ [d], by Proposition 2.16, sign(Fk) = sign(σk), where σk = (k, k +

1, · · · , d) ∈ Sd. Let Tk = T \ {tk}, then π(φt1 ,...,td
(Fk)) = π(Fk) = Cd−1(Tk),

because φt1,...,td
just changes the last coordinates. It’s easy to see that

conv(φt1,...,td
(Fk), π(φt1 ,...,td

(Fk))) = conv({vi}i 6=k ∪ {v
′
d+1}),

where v′
d+1 =

(

νd−1(td+1)

0

)

is the projection of vd+1 to the hyperplane H0.

Hence,

Ω(P ) =
⊕

k∈[d]

sign(σk)ρ+(Ω(Cd−1(Tk)), conv({vi}i 6=k ∪ {v
′
d+1})).

For any k ∈ [d], Tk = {tσk(1), tσk(2), . . . , tσk(d−1), td+1}<. By the induction

hypothesis, we have that

Ω(Cd−1(Tk)) =
⊕

τ∈Sd−1

sign(τ)ϕ−1
tσk (τ(1)) ,...,tσk(τ(d−1))

(Rtd+1−tσk(τ(1)) ,...,td+1−tσk(τ(d−1))
).

So,

sign(σk)φ−1
t1,...,td

(Ω(Cd−1(Tk)))

=
⊕

τ∈Sd−1

sign(σk) sign(τ)ϕ−1
tσk (τ(1)) ,...,tσk(τ(d−1))

(Rtd+1−tσk(τ(1)) ,...,td+1−tσk(τ(d−1))
)

=
⊕

σ∈Sd:σ(d)=k

sign(σ)ϕ−1
tσ(1) ,...,tσ(d−1)

(Rtd+1−tσ(1),...,td+1−tσ(d−1)
). (let σ = σkτ )

Let Hk be the hyperplane determined by φt1,...,td
(Fk), and H+

k
= {x ∈ Hk | l(x) ≥

0}. We claim that for all σ ∈ Sd with σ(d) = k, we have

ϕ−1
tσ(1) ,...,tσ(d−1)

(PB(Ptd+1−tσ(1) ,...,td+1−tσ(d−1) ,td+1−tσ(d)
)) ⊂ H+

k
.

Given this, we can pick a convex polytope Sk ⊂ Hk, such that

a) The last coordinates of the points in Sk are nonnegative;

b) Sk contains ϕ−1
tσ(1) ,...,tσ(d−1)

(PB(Ptd+1−tσ(1),...,td+1−tσ(d−1),td+1−tσ(d)
)), for all

σ ∈ Sd with σ(d) = k;

c) Sk contains φt1,...,td
(Fk).

Note that π(Hk) contains π(φt1 ,...,td
(Fk)) = π(Fk) = Cd−1(Tk), which has dimen-

sion d− 1. So π(Hk) = R
d−1.
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Hence, by Lemma 2.7

Ω(Cd(T ))

= φ−1
t1,...,td

(Ω(P ))

=
⊕

k∈[d]

sign(σk)φ−1
t1,...,td

(ρ+(Ω(Cd−1(Tk)), conv({vi}i 6=k ∪ {v
′
d+1})))

=
⊕

k∈[d]

sign(σk)φ−1
t1,...,td

(ρ+(Ω(Cd−1(Tk)), conv(Sk, π(Sk))))

=
⊕

k∈[d]

sign(σk)φ−1
t1,...,td

(ρ+(
⊕

τ∈Sd−1

sign(τ)ϕ−1
tσk (τ(1)) ,...,tσk(τ(d−1))

(Rtd+1−tσk(τ(1)) ,...,td+1−tσk(τ(d−1))
),

conv(Sk, π(Sk))))

=
⊕

k∈[d]

⊕

σ∈Sd,σ(d)=k

sign(σ)φ−1
t1 ,...,td

(ρ+(ϕ−1
tσ(1) ,...,tσ(d−1)

(Rtd+1−tσ(1) ,...,td+1−tσ(d−1)
),

ϕ−1
tσ(1) ,...,tσ(d−1)

(Ptd+1−tσ(1) ,...,td+1−tσ(d−1),td+1−tσ(d)
)))

=
⊕

σ∈Sd

sign(σ)φ−1
t1 ,...,td

ϕ−1
tσ(1) ,...,tσ(d−1)

(ρ+(Rtd+1−tσ(1),...,td+1−tσ(d−1)
,

Ptd+1−tσ(1) ,...,td+1−tσ(d−1),td+1−tσ(d)
))

=
⊕

σ∈Sd

sign(σ)ϕ−1
tσ(1) ,...,tσ(d)

(Rtd+1−tσ(1),...,td+1−tσ(d−1),td+1−tσ(d)
).

Thus the claim implies the theorem.

Showing the claim is equivalent to showing that

PB(Ptd+1−tσ(1),...,td+1−tσ(d−1),td+1−tσ(d)
) ⊂ ϕtσ(1) ,...,tσ(d−1)

(H+
k

).

Both ϕtσ(1) ,...,tσ(d−1)
and its inverse only work on the first d− 1 coordinates of any

point in R
d. Thus ϕtσ(1) ,...,tσ(d−1)

(H+
k

) is just ϕtσ(1) ,...,tσ(d−1)
(Hk)∩{x ∈ R

d | l(x) ≥

0}. But it’s clear that PB(Ptd+1−tσ(1),...,td+1−tσ(d−1),td+1−tσ(d)
) is in {x ∈ R

d | l(x) ≥
0}. So it’s enough to show that

PB(Ptd+1−tσ(1) ,...,td+1−tσ(d−1) ,td+1−tσ(d)
) ⊂ ϕtσ(1) ,...,tσ(d−1)

(Hk).

By Lemma 2.17, PB(Ptd+1−tσ(1),...,td+1−tσ(d−1),td+1−tσ(d)
) lies in the hyperplane H

which is spanned by {(x1, . . . , xd)′ | xd = xd−1 = 0} and















td+1 − tσ(1)

(td+1 − tσ(1))(td+1 − tσ(2))

(td+1 − tσ(1))(td+1 − tσ(2))(td+1 − tσ(3))
...

(td+1 − tσ(1))(td+1 − tσ(2)) · · · (td+1 − tσ(d))















.

So we need show that ϕtσ(1) ,...,tσ(d−1)
(Hk) = H. Since Hk is the hyperplane contain-

ing φt1,...,td
(Fk), it’s enough to show that ϕtσ(1) ,...,tσ(d−1)

(φt1,...,td
(Fk)) = ϕtσ(1) ,...,tσ(d)

(Fk)

is contained in H. However, Fk = conv(νd(Tk)). Meanwhile, by remark 2.14, we have

ϕtσ(1) ,...,tσ(d)
(νd(t)) =











(t− tσ(1))

(t− tσ(1))(t− tσ(2))
...

(t− tσ(1))(t− tσ(2)) · · · (t− tσ(d))











.
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Since σ(d) = k, for any i ∈ [d], i 6= k, ϕtσ(1) ,...,tσ(d)
(νd(ti)) has the last two coor-

dinates equal to 0. And for i = d + 1, ϕtσ(1) ,...,tσ(d)
(νd(td+1)) is exactly the last

vertex of Ptd+1−tσ(1),...,td+1−tσ(d−1),td+1−tσ(d)
, which completes the proof the claim

and hence the theorem.

�

Remark 2.19. If we define ϕm,r1,...,rd
: x 7→ Ar1,...,rd

x + mur1,...,rd
, then similarly

we can prove that

Ω(mCd(T )) =
⊕

σ∈Sd

sign(σ)ϕ−1
m,tσ(1) ,...,tσ(d)

(mRtd+1−tσ(1) ,...,td+1−tσ(d)
).

Corollary 2.20.

L(Ω(mCd(T ))) =
⊕

σ∈Sd

sign(σ)L(ϕ−1
m,tσ(1) ,...,tσ(d)

(mRtd+1−tσ(1),...,td+1−tσ(d)
)).

Hence,

|L(Ω(mCd(T )))| =
∑

σ∈Sd

sign(σ)|L(mRtd+1−tσ(1),...,td+1−tσ(d)
)|.

It’s easy to see that mRs1,...,sd
= Rms1,s2,...,sd

. Moreover,

|L(Rs1,...,sd
)| =

s1
∑

x1=1

s2x1
∑

x2=1

. . .

snxn−1
∑

xn=1

1.

Therefore, it’s natural to look at the following:

Lemma 2.21. For any nonnegative integers a1, a2, . . . , an, let

h(a1, a2, . . . , an) =

a1
∑

x1=1

a2x1
∑

x2=1

. . .

anxn−1
∑

xn=1

1.

Then the only highest degree term of h is 1
n!

an
1an−1

2 an−2
3 . . . an. This is also true

when we consider h as a polynomial just in the variable a1.

Proof of Lemma 2.21: We will prove it by induction on n.
When n = 1, h(a1) =

∑a1

x1=1 1 = a1. Thus the lemma holds.

Assume the lemma is true for n, and note that h(a1, a2, . . . , an+1) =
∑a1

x1=1 h(a2x1, a3, . . . , an+1).

By assumption, 1
n!

an
2an−1

3 . . . an+1x
n
1 is the only highest degree term of h(a2x1, a3, . . . , an+1)

when we consider it as polynomial both in y = a2x1, a3, . . . , an+1 and in y. This im-

plies that 1
n!

an
2an−1

3 . . . an+1x
n
1 is the only highest degree term of h(a2x1, a3, . . . , an+1)

when we consider it both in a2, a3, . . . , an+1 and in x1. Then our lemma immediately

follows from the fact that the highest degree term of
∑a1

x1=1 xn
1 is 1

n+1
an+1
1 .

�

Proposition 2.22. For any nonnegative integers a1, a2, . . . , an, let Hm(a1, a2, . . . , an) =
∑

σ∈Sn
sign(σ)h(maσ(1), aσ(2) . . . , aσ(n)). Then

Hm(a1, a2, . . . , an) =
mn

n!

n
∏

i=1

ai

∏

1≤i<j≤n

(ai − aj).
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Proof of Proposition 2.22:
Clearly if any of ai’s is 0, then Hm(a1, . . . , an) = 0. Also for 1 ≤ i < j ≤ n, Hm

changes sign when we switch ai and aj , i.e.,

Hm(. . . , ai, . . . , aj , . . . ) = −Hm(. . . , aj , . . . , ai, . . . ).

Therefore, Hm(a1, . . . , an) must be a multiple of

n
∏

i=1

ai

∏

1≤i<j≤n

(ai − aj),

which has degree 1
2
n(n + 1).

So now it’s enough to show that Hm(a1, . . . , an) is of degree 1
2
n(n + 1) and

the coefficient of an
1an−1

2 an−2
3 . . . an in Hm(a1, . . . , an) is m

n

n!
, which follows from

Lemma 2.21. �

Proof of Theorem 2.9: By Corollary 2.20,

|L(Ω(mCd(T )))| =
∑

σ∈Sd

sign(σ)|L(mRtd+1−tσ(1),...,td+1−tσ(d)
)|

= Hm(td+1 − tσ(1), td+1 − tσ(2), . . . , td+1 − tσ(d))

=
md

d!

d
∏

i=1

(td+1 − ti)
∏

1≤i<j≤d

(ti − tj)

=
md

d!

∏

1≤i<j≤d+1

(ti − tj) = Vol(mCd(T )).

�

As we argued earlier in our paper, the proof of Theorem 2.9 completes the proof

of Proposition 2.2 and thus proof of our main Theorem 1.2.
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