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Abstract. The irreducible representations of the symmetric group Sn are parameter-
ized by combinatorial objects called Young diagrams, or shapes. A given irreducible
representation has a basis indexed by Young tableaux of that shape. In fact, this basis
consists of weight vectors (simultaneous eigenvectors) for a commutative subalgebra F[X]
of the group algebra FSn.

The double affine Hecke algebra (DAHA) is a deformation of the group algebra of the
affine symmetric group and it also contains a commutative subalgebra F[X].

Not every irreducible representation of the DAHA has a basis of weight vectors (and
in fact it is quite difficult to parameterize all of its irreducible representations), but if we
restrict our attention to those that do, these irreducible representations are parameterized
by “affine shapes” and have a basis (of X-weight vectors) indexed by the “affine tableaux”
of that shape. In this talk, we will construct these irreducible representations.

Introduction.

We introduce and study an affine analogue of skew Young diagrams and tableaux on them.
The double affine Hecke algebra of type A acts on the space spanned by standard tableaux
on each diagram. We show that the modules obtained this way are irreducible, and they
exhaust all irreducible modules of a certain class over the double affine Hecke algebra. In
particular, the classification of irreducible modules of this class, announced by Cherednik,
is recovered.

As is well-known, Young diagrams consisting of n boxes parameterize isomorphism
classes of finite dimensional irreducible representations of the symmetric group Sn, and
moreover the structure of each irreducible representation is described in terms of tableaux
on the corresponding Young diagram; namely, a basis of the representation is labeled by
standard tableaux, on which the action of Sn generators is explicitly described. This
combinatorial description due to A. Young has played an essential role in the study of
the representation theory of the symmetric group (or the affine Hecke algebra), and its
generalization for the (degenerate) affine Hecke algebra Hn(q) of GLn has been given in
[Ch1, Ra1, Ra2], where skew Young diagrams appear on combinatorial side.

The purpose of this paper is to introduce an “affine analogue” of skew Young diagrams
and tableaux, which give a parameterization and a combinatorial description of a family
of irreducible representations of the double affine Hecke algebra Ḧn(q) of GLn over a field
F, where q ∈ F is a parameter of the algebra.

The double affine Hecke algebra was introduced by I. Cherednik [Ch2, Ch3] and has
since been used by him and by several authors to obtain important results about diagonal
coinvariants, Macdonald polynomials, and certain Macdonald identities.

In this paper, we focus on the case where q is not a root of 1, and we consider rep-
resentations of Ḧn(q) that are X-semisimple; namely, we consider representations which
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have basis of simultaneous eigenvectors with respect to all elements in the commutative
subalgebra F[X] = F[x±1

1 , x±1
2 , . . . , x±1

n , ξ±1] of Ḧn(q). (In [Ra1, Ra2], such representations
for affine Hecke algebras are referred to as “calibrated.”)

On combinatorial side, we introduce periodic skew diagrams as skew Young diagrams
consisting of infinitely many boxes satisfying certain periodicity conditions. We define a
tableau on a periodic skew diagram as a bijection from the diagram to Z which satisfies
the condition reflecting the periodicity of the diagram.

Periodic skew diagrams are natural generalization of skew Young diagrams and have
appeared in [Ch4] (or implicitly in [AST]), but the notion of tableaux on them seems new.

To connect the combinatorics with the representation theory of the double affine Hecke
algebra Ḧn(q), we construct, for each periodic skew diagram, an Ḧn(q)-module that has
a basis of F[X]-weight vectors labeled by standard tableaux on the diagram by giving the
explicit action of the Ḧn(q) generators.

Such modules are X-semisimple by definition. We show that they are irreducible, and
that our construction gives a one-to-one correspondence between the set of periodic skew
diagrams and the set of isomorphism classes of irreducible representations of the double
affine Hecke algebra that are X-semisimple.

The classification results here recover those of Cherednik’s in [Ch4] (see also [Ch5]),
but in this paper we provide a detailed proof based on purely combinatorial arguments
concerning standard tableaux on periodic skew diagrams.

Note that the corresponding results for the degenerate double affine Hecke algebra of
GLn easily follow from a parallel argument.

1. The affine root system and Weyl group

1.1. The affine root system. Let n ∈ Z≥2. Let h̃ be an (n+2)-dimensional vector space
over Q with the basis {ε∨1 , ε∨2 , . . . , ε∨n , c, d}:

h̃ =
(
⊕n

i=1Qε∨i
)
⊕Qc⊕Qd.

Introduce the non-degenerate symmetric bilinear form ( | ) on h̃ by

(ε∨i |ε∨j ) = δij , (ε∨i |c) = (ε∨i |d) = 0, (c|d) = 1, (c|c) = (d|d) = 0.

Put h = ⊕n
i=1Qε∨i and ḣ = h⊕Qc. Let h̃∗ = (⊕n

i=1Qεi)⊕Qc∗⊕Qδ be the dual space of h̃,
where εi, c∗ and δ are the dual vectors of ε∨i , c and d respectively. We identify the dual
space ḣ∗ of ḣ as a subspace of h̃∗ via the identification ḣ∗ = h̃∗/Qδ ∼= h∗ ⊕Qc∗.

The natural pairing is denoted by 〈 | 〉 : h̃∗ × h̃ → Q. There exists an isomorphism
h̃∗ → h̃ such that εi 7→ ε∨i , δ 7→ c and c∗ 7→ d. We denote by ζ∨ ∈ h̃ the image of ζ ∈ h̃∗

under this isomorphism. Introduce the bilinear form ( | ) on h̃∗ through this isomorphism.
Note that

(ζ | η) = 〈ζ | η∨〉 = (ζ∨ | η∨), (ζ, η ∈ h̃∗).

Put αij = εi − εj (1 ≤ i 6= j ≤ n) and αi = αii+1 (1 ≤ i ≤ n− 1). Then

R = {αij | i, j ∈ [1, n], i 6= j} , R+ = {αij | i, j ∈ [1, n], i < j} , Π = {α1, α2, . . . , αn−1}

give the system of roots, positive roots and simple roots of type An−1 respectively.
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Put α0 = −α1n + δ, and define the set Ṙ of (real) roots, Ṙ+ of positive roots and Π̇ of
simple roots of type A(1)

n−1 by

Ṙ = {α+ kδ |α ∈ R, k ∈ Z} ,
Ṙ+ = {α+ kδ | α ∈ R+, k ∈ Z≥0} t {−α+ kδ | α ∈ R+, k ∈ Z≥1} ,
Π̇ = {α0, α1, . . . , αn−1} .

1.2. Affine Weyl group.

Definition 1.1. For n ∈ Z≥2, the extended affine Weyl group Ẇn of gln is the group
defined by the following generators and relations:

generators : s0, s1, . . . , sn−1, π
±1.

relations for n ≥ 3 : s2i = 1 (i ∈ [0, n− 1]),

sisj si = sjsisj (i− j ≡ ±1 mod n),

sisj = sjsi (i− j 6≡ ±1 mod n),

πsi = si+1π, (i ∈ [0, n− 2]), πsn−1 = s0π,

ππ−1 = π−1π = 1.

relations for n = 2 : s20 = s21 = 1,

πs0 = s1π, πs1 = s0π, ππ−1 = π−1π = 1.

The subgroup Wn of Ẇn generated by the elements s1, s2, . . . , sn−1 is called the Weyl
group of gln. The group Wn is isomorphic to the symmetric group of degree n.

In the following, we fix n ∈ Z≥2 and denote Ẇ = Ẇn and W = Wn.
Put

P = ⊕n
i=1Zεi.

Put τε1 = πsn−1 · · · s2s1 and τεi = πi−1τε1π
−i+1 (i ∈ [2, n]). Then there exists a group

embedding P → Ẇ such that εi 7→ τεi . By τη we denote the element in Ẇ corresponding
to η ∈ P . It is well-known that the group Ẇ is isomorphic to the semidirect product
P oW with the relation wτηw−1 = τw(η).

The group Ẇ acts on h̃ by

si(h) = h− 〈αi|h〉α∨i for i ∈ [1, n− 1], h ∈ h̃,

τεi(h) = h+ 〈δ|h〉ε∨i −
(
〈εi|h〉+

1
2
〈δ|h〉

)
c for i ∈ [1, n], h ∈ h̃.

The dual action on h̃∗ is given by

si(ζ) = ζ − (αi|ζ)αi for i ∈ [1, n− 1], ζ ∈ h̃∗,

τεi(ζ) = ζ + (δ|ζ)εi −
(

(εi|ζ) +
1
2
(δ|ζ)

)
δ for i ∈ [1, n], h ∈ h̃∗.

With respect to these actions, the inner products on h̃ and h̃∗ are Ẇ -invariant. Note
that the set Ṙ of roots is preserved by the dual action of Ẇ on h̃∗. For α ∈ Ṙ, there
exists i ∈ [0, n − 1] and w ∈ Ẇ such that w(αi) = α. We set sα = wsiw

−1. Then sα is
independent of the choice of i and w, and we have

sα(h) = h− 〈α | h〉α∨
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for h ∈ h̃. The element sα is called the reflection corresponding to α. Note that sαi = si.
For w ∈ Ẇ , set

R(w) = Ṙ+ ∩ w−1Ṙ−,

where Ṙ− = Ṙ\Ṙ+. The length l(w) of w ∈ Ẇ is defined as the number ]R(w) of elements
in R(w). For w ∈ Ẇ , an expression w = πksj1sj2 · · · sjm is called a reduced expression if
m = l(w). It can be seen that

(1.1) R(w) = {sjm · · · sj2(αj1), sjm · · · sj3(αj2), . . . , αjm}

if w = πksj1sj2 · · · sjm is a reduced expression.
Define the Bruhat order � in Ẇ by

x � w ⇔ x is equal to a subexpression of a reduced expression of w.

Let I be a subset of [0, n− 1]. Put

Π̇I = {αi | i ∈ I} ⊆ Π̇, ẆI = 〈si | i ∈ I〉 ⊆ Ẇ , Ṙ+
I = {α ∈ Ṙ+ | sα ∈ ẆI}.

The subgroup ẆI is called the parabolic subgroup corresponding to Π̇I . Define

Ẇ I =
{
w ∈ Ẇ | R(w) ∩ Ṙ+

I = ∅
}
.

1.3. Notation. For any integer i, we introduce the following notation:

εi = εi − kδ ∈ h̃∗, ε∨i = ε∨i − kc ∈ h̃,(1.2)

where i = i+ kn with i ∈ [1, n] and k ∈ Z.
Put αij = εi−εj and α∨ij = ε∨i −ε∨j for any i, j ∈ Z. Noting that ε0−ε1 = δ+εn−ε1 = α0,

we reset αi = εi − εi+1 and α∨i = ε∨i − ε∨i+1 for any i ∈ Z.
Define the action of Ẇ on the set Z of integers by

si(j) = j + 1 for j ≡ i modn, si(j) = j for j 6≡ i, i+ 1 modn,

si(j) = j − 1 for j ≡ i+ 1 modn, π(j) = j + 1 for all j.

It is easy to see that the action of τεi (i ∈ [1, n]) is given by

τεi(j) = j + n for j ≡ i modn, τεi(j) = j for j 6≡ i modn,

and that the following formula holds for any w ∈ Ẇ :

w(j + n) = w(j) + n for all j.

Lemma 1.2. Let w ∈ Ẇ .

(i) w(εj) = εw(j) and w(ε∨j ) = ε∨w(j) for any j ∈ Z.

(ii) w(αij) = αw(i)w(j) and w(α∨ij) = α∨w(i)w(j) for any i, j ∈ Z.

2. Periodic skew diagrams and tableaux on them

Throughout this paper, we let F denote a field whose characteristic is not equal to 2.
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2.1. Periodic skew diagrams. For m ∈ Z≥1 and ` ∈ Z≥0, put

P̂+
m,` = {µ ∈ Zm | µ1 ≥ µ2 ≥ · · · ≥ µm and ` ≥ µ1 − µm},(2.1)

where µi denotes the i-th component of µ, i.e., µ = (µ1, µ2, . . . , µm). Fix n ∈ Z≥2 and
introduce the following subsets of Zm × Zm:

Ĵ n
m,` =

{
(λ, µ) ∈ P̂+

m,` × P̂
+
m,`

∣∣∣∣∣λi ≥ µi (i ∈ [1,m]),
m∑

i=1

(λi − µi) = n

}
,

Ĵ ∗n
m,` =

{
(λ, µ) ∈ P̂+

m,` × P̂
+
m,`

∣∣∣∣∣λi > µi (i ∈ [1,m]),
m∑

i=1

(λi − µi) = n

}
.

For (λ, µ) ∈ Ĵ n
m,`, define the subsets λ/µ and λ̂/µ(m,−`) of Z2 by

λ/µ =
{
(a, b) ∈ Z2 | a ∈ [1,m], b ∈ [µa + 1, λa]

}
,

λ̂/µ(m,−`) =
{
(a+ km, b− k`) ∈ Z2 | (a, b) ∈ λ/µ, k ∈ Z

}
.

Let λ/µ[k] = λ/µ+ k(m,−`). Obviously we have

λ̂/µ(m,−`) =
⊔
k∈Z

λ/µ[k] =
⊔
k∈Z

(λ/µ+ k(m,−`)) .

The set λ/µ is the skew diagram (or skew Young diagram) associated with (λ, µ).
We call the set λ̂/µ(m,−`) the periodic skew diagram associated with (λ, µ).

We will denote λ̂/µ(m,−`) just by λ̂/µ when m and ` are fixed.

Example 2.1. Let n = 7, m = 2 and ` = 3. Put λ = (5, 3), µ = (1, 0). Then (λ, µ) ∈ Ĵ ∗n
m,`

and we have

λ/µ = {(1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3)}.

The set λ/µ is expressed by the following picture (usually, the coordinate in the boxes are
omitted):

1,2 1,3 1,4 1,5

2,1 2,2 2,3

-

?

b

a

The periodic skew diagram

λ̂/µ(2,−3) =
⊔
k∈Z

λ/µ[k] =
⊔
k∈Z

(λ/µ+ k(2,−3))

is expressed by the following picture:
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−1,5
λ/µ[1]

1,2
λ/µ[0] = λ/µ

3,−1
λ/µ[−1]

-

?

b

a

}

2.2. Tableaux on periodic skew diagram. Fix n ∈ Z≥2. Recall that a bijection from
a skew Young diagram λ/µ of degree n to the set [1, n] is called a tableau on λ/µ.

Definition 2.2. Given (λ, µ) ∈ Ĵ n
m,`, γ = (m,−`), a bijection T : λ̂/µ → Z is said to be

a γ-tableau on λ̂/µ if T satisfies

(2.2) T (u+ γ) = T (u) + n for all u ∈ λ̂/µ.

Let

Tab(λ̂/µ) = Tab(m,−`)(λ̂/µ)

denote the set of all γ-tableaux on λ̂/µ.

Remark 2.3. A tableau on λ̂/µ is determined uniquely from the values on a fundamental
domain of λ̂/µ with respect to the action of Zγ. It also holds that any bijection from a
fundamental domain of Zγ to the set [1, n] uniquely extends to a tableau on λ̂/µ.

There exists a unique tableau T
dλ/µ
0 = T0 on λ̂/µ such that

(2.3) T0(i, µi + j) =
i−1∑
k=1

(λk − µk) + j for i ∈ [1,m], j ∈ [1, λi − µi].

We call T0 the row reading tableau on λ̂/µ.

Example 2.4. Let n = 7, m = 2, ` = 3 and λ = (5, 3), µ = (1, 0). The tableau T0 on
λ̂/µ given above is expressed as follows:

T.SUZUKI, M. VARIZANI

342



DOUBLE AFFINE HECKE ALGEBRAS

−6 −5 −4 −3

−2 −1 0

1 2 3 4

5 6 7
λ/µ

8 9 10 11

12 13 14

}

Proposition 2.5. Let (λ, µ) ∈ Ĵ n
m,`. The group Ẇ acts on the set Tab(λ̂/µ) by

(2.4) (wT )(u) = w(T (u))

for w ∈ Ẇ , T ∈ Tab(λ̂/µ) and u ∈ λ̂/µ.

For each T ∈ Tab(λ̂/µ), define the map ψT : Ẇ → Tab(λ̂/µ) by ψT (w) = wT (w ∈ Ẇ ).

Proposition 2.6. Let (λ, µ) ∈ Ĵ n
m,`. For any T ∈ Tab(λ̂/µ), the correspondence ψT is a

bijection.

Lemma 2.7. T−1(w−1(i)) = (wT )−1(i) for any T ∈ Tab(λ̂/µ), w ∈ Ẇ and i ∈ Z.

2.3. Content and weight. Let C denote the map from Z2 to Z given by C(a, b) = b− a
for (a, b) ∈ Z2.

For a tableau T ∈ Tab(λ̂/µ), define the map C
dλ/µ
T : Z → Z by

C
dλ/µ
T (i) = C(T−1(i)) (i ∈ Z),

and call C
dλ/µ
T the content of T . We simply denote C

dλ/µ
T by CT when (λ, µ) is fixed.

Lemma 2.8. Let T ∈ Tab(λ̂/µ). Then
(i) CT (i+ n) = CT (i)− (`+m) for all i ∈ Z.
(ii) CwT (i) = CT (w−1(i)) for all w ∈ Ẇ and i ∈ Z.

For T ∈ Tab(λ̂/µ), we define ζT ∈ ḣ∗ by

ζT =
n∑

i=1

CT (i)εi + (`+m)c∗.

Then ζT belongs to the lattice Ṗ
def
= P ⊕ Zc∗ = (⊕n

i=1 Zεi)⊕ Zc∗. Note that the action of
Ẇ on ḣ∗ preserves Ṗ . Lemma 2.8 immediately implies the following:
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Lemma 2.9. Let T ∈ Tab(λ̂/µ). Then
(i) 〈ζT | ε∨i 〉 = CT (i) for all i ∈ Z.
(ii) w(ζT ) = ζwT for all w ∈ Ẇ .

2.4. The affine Weyl group and row increasing tableaux. Let (λ, µ) ∈ Ĵ n
m,`.

Definition 2.10. A tableau T ∈ Tab(λ̂/µ) is said to be row increasing (resp. column
increasing) if

(a, b), (a, b+ 1) ∈ λ̂/µ ⇒ T (a, b) < T (a, b+ 1).

(resp. (a, b), (a+ 1, b) ∈ λ̂/µ ⇒ T (a, b) < T (a+ 1, b).)

A tableau T ∈ Tab(λ̂/µ) which is row increasing and column increasing is called a standard
tableau (or a row-column increasing tableau).

Denote by TabR(λ̂/µ) (resp. TabRC(λ̂/µ)) the set of all row increasing (resp. standard)
tableaux on λ̂/µ.

For (λ, µ) ∈ Ĵ n
m,`, put

Iλ,µ = [1, n− 1] \ {n1, n2, . . . , nm−1},

where ni =
∑i

j=1(λj − µj) for i ∈ [1,m− 1].
We write Ṙ+

λ−µ = Ṙ+
Iλ,µ

, Ẇλ−µ = ẆIλ,µ
and Ẇ λ−µ = Ẇ Iλ,µ .

Note that Ṙ+
λ−µ ⊆ R+ and Ẇλ−µ = Wλ1−µ1 ×Wλ2−µ2 × · · · ×Wλm−µm ⊆W .

Recall that the correspondence ψT : Ẇ → Tab(λ̂/µ) given by w 7→ wT is bijective
(Proposition 2.6) for any T ∈ Tab(λ̂/µ).

Proposition 2.11. Let (λ, µ) ∈ Ĵ n
m,`. Then

ψ−1
T0

(TabR(λ̂/µ)) = Ẇ λ−µ,

or equivalently, TabR(λ̂/µ) = Ẇ λ−µT0={wT0 | w ∈ Ẇ λ−µ}.

2.5. The set of standard tableaux. The next lemma follows easily:

Lemma 2.12. Let (λ, µ) ∈ Ĵ n
m,` and T ∈ TabRC(λ̂/µ). If (a, b) ∈ λ̂/µ and (a+1, b+1) ∈

λ̂/µ, then T (a+ 1, b+ 1)− T (a, b) > 1.

Proposition 2.13. Let (λ, µ) ∈ Ĵ n
m,` and T, S ∈ TabRC(λ̂/µ). If CT = CS then T = S.

For T ∈ TabRC(λ̂/µ), put

Ż
dλ/µ
T =

{
w ∈ Ẇ

∣∣∣ 〈ζT | α∨〉 6∈ {−1, 1} for all α ∈ R(w)
}
.(2.5)

Theorem 2.14. Let (λ, µ) ∈ Ĵ n
m,` and T ∈ TabRC(λ̂/µ). Then

ψ−1
T (TabRC(λ̂/µ)) = Ż

dλ/µ
T ,

or equivalently, TabRC(λ̂/µ) = Ż
dλ/µ
T T.
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For m ∈ Z≥1, define an automorphism ωm of Zm by

(2.6) ωm · λ = (λm + `+ 1, λ1 + 1, λ2 + 1, . . . , λm−1 + 1),

for λ = (λ1, λ2, . . . , λm) ∈ Zm. Let 〈ωm〉 denote the free group generated by ωm, and let
〈ωm〉 act on Zm × Zm by ωm · (λ, µ) = (ωm · λ, ωm · µ) for (λ, µ) ∈ Zm × Zm. Note that
〈ωm〉 preserves the subsets Ĵ n

m,` and Ĵ ∗n
m,` of Zm × Zm.

Proposition 2.15. Let m,m′ ∈ [1, n] and `, `′ ∈ Z≥0. Let (λ, µ) ∈ Ĵ ∗n
m,` and (η, ν) ∈

Ĵ ∗n
m′,`′. The following are equivalent:

(a) C
dλ/µ
T = C

dη/ν
S for some T ∈ TabRC(λ̂/µ) and S ∈ TabRC(η̂/ν),

(b) m = m′, ` = `′ and λ̂/µ = η̂/ν + (r, r) for some r ∈ Z.
(c) m = m′, ` = `′ and (η, ν) = ωr

m · (λ, µ) for some r ∈ Z.

3. Representations of the double affine Hecke algebra

Let F denote a field whose characteristic is not equal to 2.

3.1. Double affine Hecke algebra of type A. Let q ∈ F.
The double affine Hecke algebra was introduced by Cherednik [Ch2, Ch3].

Definition 3.1. Let n ∈ Z≥2.

(i) The double affine Hecke algebra Ḧn(q) of GLn is the unital associative algebra over F
defined by the following generators and relations:

generators : t0, t1, . . . , tn−1, π
±1, x±1

1 , x±1
2 , . . . , x±1

n , ξ±1.

relations for n ≥ 3 : (ti − q)(ti + 1) = 0 (i ∈ [0, n− 1]),

titjti = tjtitj (j ≡ i± 1 mod n), titj = tjti (j 6≡ i± 1 mod n),

ππ−1 = π−1π = 1,

πtiπ
−1 = ti+1 (i ∈ [0, n− 2]), πtn−1π

−1 = t0,

xix
−1
i = x−1

i xi = 1 (i ∈ [1, n]), xixj = xjxi (i, j ∈ [1, n]),

tixiti = qxi+1 (i ∈ [1, n− 1]), t0xnt0 = ξ−1qx1

tixj = xjti (j 6≡ i, i+ 1 mod n),

πxiπ
−1 = xi+1 (i ∈ [1, n− 1]), πxnπ

−1 = ξ−1x1,

ξξ−1 = ξ−1ξ = 1, ξ±1h = hξ±1 (h ∈ Ḧn(q)).

relations for n = 2 : (ti − q)(ti + 1) = 0 (i ∈ [0, 1]),

ππ−1 = π−1π = 1, πt0π
−1 = t1, πt1π

−1 = t0,

xix
−1
i = x−1

i xi = 1 (i ∈ [1, 2]), x1x2 = x2x1,

t1x1t1 = qx2, t0x2t0 = ξ−1qx1

πx1π
−1 = x2, πx2π

−1 = ξ−1x1,

ξξ−1 = ξ−1ξ = 1, ξ±1h = hξ±1 (h ∈ Ḧ2(q)).
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(ii) Define the affine Hecke algebra Ḣn(q) of GLn as the subalgebra of Ḧn(q) generated
by {t0, t1, . . . , tn−1, π

±1}.

Remark 3.2. It is known that the subalgebra of Ḧn(q) generated by

{t1, t2, . . . , tn−1, x
±1
1 , x±1

2 , . . . , x±1
n }

is also isomorphic to Ḣn(q).

For ν =
∑n

i=1 νiεi + νcc
∗ ∈ Ṗ , put

xν = xν1
1 x

ν2
2 . . . xνn

n ξνc .

Let X denote the commutative group {xν | ν ∈ Ṗ} ⊆ Ḧn(q). The group algebra
F[X] = F[x±1

1 , x±1
2 , . . . , x±1

n , ξ±1] is a commutative subalgebra of Ḧn(q).
For w ∈ Ẇ with a reduced expression w = πrsi1si2 · · · sik , put

tw = πrti1ti2 · · · tik .

Then tw does not depend on the choice of the reduced expression, and {tw}w∈Ẇ forms a
basis of the affine Hecke algebra Ḣn(q) ⊂ Ḧn(q).

It is easy to see that {twxν}w∈Ẇ ,ν∈Ṗ and {xνtw}w∈Ẇ ,ν∈Ṗ respectively form bases of
Ḧn(q).

Let X∗ denote the set of characters of X:

X∗ = Hom group(X,GL1(F)).

Consider the correspondence Ṗ → X∗ which maps ζ ∈ Ṗ to the character qζ ∈ X∗ defined
by

qζ(xi) = q〈ζ|ε
∨
i 〉 (i ∈ [1, n]), qζ(ξ) = q〈ζ|c〉,

or equivalently, defined by qζ(xν) = q〈ζ|ν
∨〉 (ν ∈ Ṗ ). Through this correspondence, Ṗ is

identified with the subset

{χ ∈ X∗ | χ(xν) ∈ qZ (∀ν ∈ Ṗ )}

of X∗, where qZ = {qr | r ∈ Z}.
For an Ḧn(q)-module M and ζ ∈ Ṗ , define the weight space Mζ and the generalized

weight space Mgen
ζ of weight ζ with respect to the action of F[X] by

Mζ =
{
v ∈M

∣∣∣ (xν − q〈ζ|ν
∨〉)v = 0 for any ν ∈ Ṗ

}
,

Mgen
ζ =

⋃
k≥1

{
v ∈M

∣∣∣ (xν − q〈ζ|ν
∨〉)kv = 0 for any ν ∈ Ṗ

}
.

For an Ḧn(q)-module M , an element ζ ∈ Ṗ is called a weight of M if Mζ 6= 0, and an
element v ∈Mζ (resp. Mgen

ζ ) is called a weight vector (resp. generalized weight vector) of
weight ζ.

For ζ ∈ Ṗ , put

(3.1) Żζ = {w ∈ Ẇ | 〈ζ | α∨〉 /∈ {−1, 1} for all α ∈ R(w)}.

Note that ŻζT
= Ż

dλ/µ
T for (λ, µ) ∈ Ĵ n

m,` and T ∈ TabRC(λ̂/µ).
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3.2. X-semisimple modules. Fix n ∈ Z≥2. Let q ∈ F and suppose that q is not a root
of 1.

Fix κ ∈ Z and put Pκ = P + κc∗ = {ζ ∈ Ṗ | 〈ζ | c〉 = κ}.

Definition 3.3. Define Oss
κ (Ḧn(q)) as the set consisting of those Ḧn(q)-modules M which

are finitely generated and admit a decomposition

M =
⊕
ζ∈Pκ

Mζ

with dimMζ <∞ for all ζ ∈ Pκ.

A module in Oss
κ (Ḧn(q)) is also called X-semisimple. We remark that the structure of

all irreducible X-semisimple modules, without requiring the eigenvalues of the xk to live
in {qi | i ∈ Z}, is easily obtained once we understand the modules in Oss

κ (Ḧn(q)).

3.3. Representations associated with periodic skew diagrams. In the rest of this
paper, we always assume that q is not a root of 1.

Let n ∈ Z≥2, m ∈ Z≥1 and ` ∈ Z≥0.
For (λ, µ) ∈ Ĵ n

m,`, set

(3.2) V̈ (λ, µ) =
⊕

T∈TabRC(dλ/µ)

FvT .

Define linear operators x̃i (i ∈ [1, n]), π̃ and t̃i (i ∈ [0, n− 1]) on V̈ (λ, µ) by

x̃ivT = qCT (i)vT ,(3.3)

π̃vT = vπT ,(3.4)

t̃ivT =

{
1−q1+τi

1−qτi vsiT −
1−q

1−qτi vT if siT ∈ TabRC(λ̂/µ),

− 1−q
1−qτi vT if siT /∈ TabRC(λ̂/µ),

(3.5)

where
τi = CT (i)− CT (i+ 1) = 〈ζT | α∨i 〉 (i ∈ [0, n− 1]).

The following lemma is easy and ensures that the operator t̃i is well-defined:

Lemma 3.4. CT (i)− CT (i+ 1) 6= 0 for any i ∈ [0, n− 1] and T ∈ TabRC(λ̂/µ).

Theorem 3.5. Let (λ, µ) ∈ Ĵ n
m,`. There exists an algebra homomorphism θλ,µ : Ḧn(q) →

End F(V̈ (λ, µ)) such that

θλ,µ(ti) = t̃i (i ∈ [0, n− 1]), θλ,µ(π) = π̃,

θλ,µ(xi) = x̃i (i ∈ [1, n]), θλ,µ(ξ) = q`+m.

Theorem 3.6. Let (λ, µ) ∈ Ĵ n
m,`.

(i) V̈ (λ, µ) =
⊕

T∈TabRC(dλ/µ)
V̈ (λ, µ)ζT

, and V̈ (λ, µ)ζT
= FvT for all T ∈ TabRC(λ̂/µ).

(ii) The Ḧn(q)-module V̈ (λ, µ) is irreducible.
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3.4. Classification of X-semisimple modules. Fix n ∈ Z≥2 and κ ∈ Z≥1. Let q ∈ F
and suppose that q is not a root of 1.

Theorem 3.7. Let n ∈ Z≥2 and κ ∈ Z≥1. Let L be an irreducible Ḧn(q)-module which
belongs to Oss

κ (Ḧn(q)). Then there exist m ∈ [1, κ] and (λ, µ) ∈ Ĵ ∗n
m,κ−m such that L ∼=

V̈ (λ, µ).

Theorem 3.8. Let m,m′ ∈ Z≥1 and `, `′ ∈ Z≥0. Let (λ, µ) ∈ Ĵ ∗n
m,` and (η, ν) ∈ Ĵ ∗n

m′,`′.
Then the following are equivalent:
(a) V̈ (λ, µ) ∼= V̈ (η, ν).

(b) m = m′, ` = `′ and λ̂/µ = η̂/ν + (r, r) for some r ∈ Z.
(c) m = m′, ` = `′ and (η, ν) = ωr

m · (λ, µ) for some r ∈ Z.

Remark 3.9. Combining Theorem 3.7 and Theorem 3.8, the classification we obtain agrees
with that announced in [Ch4], where he also considers general q and ξ.

An alternative approach to prove these results is to use the result in [Va, Su], where
the classification of irreducible modules over Ḧn(q) of a more general class is obtained.
Actually, it is easy to see that the Ḧn(q)-module V̈ (λ, µ) coincides with the unique simple
quotient L̈(λ, µ) of the induced module M̈(λ, µ) with the notation in [Su].
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