
HALL–LITTLEWOOD FUNCTIONS AND THE A2

ROGERS–RAMANUJAN IDENTITIES

S. OLE WARNAAR

Abstract. We prove an identity for Hall–Littlewood symmetric functions la-

belled by the Lie algebra A2. Through specialization this yields a simple proof
of the A2 Rogers–Ramanujan identities of Andrews, Schilling and the author.

Nous démontrons une identité pour les functions symétriques de Hall–Littlewood

associée à l’algèbre de Lie A2. En spécialisant cette identité, nous obtenons
une démonstration simple des identités du type Rogers–Ramanujan associées

á A2 d’Andrews, Schilling et l’auteur.

1. Introduction

The Rogers–Ramanujan identities, given by [10]

(1.1a) 1 +
∞∑

n=1

qn2

(1− q)(1− q2) · · · (1− qn)
=

∞∏
n=1

1
(1− q5n−1)(1− q5n−4)

and

(1.1b) 1 +
∞∑

n=1

qn(n+1)

(1− q)(1− q2) · · · (1− qn)
=

∞∏
n=1

1
(1− q5n−2)(1− q5n−3)

,

are two of the most famous q-series identities, with deep connections with number
theory, representation theory, statistical mechanics and various other branches of
mathematics.

Many different proofs of the Rogers–Ramanujan identities have been given in the
literature, some bijective, some representation theoretic, but the vast majority basic
hypergeometric. In 1990, J. Stembridge, building on work of I. Macdonald, found a
proof of the Rogers–Ramanujan identities quite unlike any of the previously known
proofs. In particular he discovered that Rogers–Ramanujan-type identities may be
obtained by appropriately specializing identities for Hall–Littlewood polynomials.
The Hall–Littlewood polynomials and, more generally, Hall–Littlewood functions
are an important class of symmetric functions, generalizing the well-known Schur
functions. Stembridge’s Hall–Littlewood approach to Rogers–Ramanujan identities
has been further generalized in recent work by Fulman [2], Ishikawa et al. [5] and
Jouhet and Zeng [7].

Several years ago Andrews, Schilling and the present author generalized the two
Rogers–Ramanujan identities to three identities labelled by the Lie algebra A2 [1].
The simplest of these, which takes the place of (1.1a) when A1 is replaced by A2
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reads

(1.2)
∞∑

n1,n2=0

qn2
1−n1n2+n2

2

(q; q)n1(q; q)n2(q; q)n1+n2

=
∞∏

n=1

1
(1− qn)(1− q7n−1)2(1− q7n−3)(1− q7n−4)(1− q7n−6)2

,

where (q; q)0 = 1 and (q; q)n =
∏n

i=1(1− qi) is a q-shifted factorial.
An important question is whether (1.2) and its companions can again be under-

stood in terms of Hall–Littlewood functions. This question is especially relevant
since the An analogues of the Rogers–Ramanujan identities have so far remained
elusive, and an understanding of (1.2) in the context of symmetric functions might
provide further insight into the structure of the full An generalization of (1.1).

In this paper we will show that the theory of Hall–Littlewood functions may
indeed be applied to yield a proof of (1.2). In particular we will prove the following
A2-type identity for Hall–Littlewood functions.

Theorem 1.1. Let x = (x1, x2, . . . ), y = (y1, y2, . . . ) and let Pλ(x; q) and Pµ(y; q)
be Hall–Littlewood functions indexed by the partitions λ and µ. Then

(1.3)
∑
λ,µ

qn(λ)+n(µ)−(λ′|µ′)Pλ(x; q)Pµ(y; q)

=
∏
i≥1

1
(1− xi)(1− yi)

∏
i,j≥1

1− xiyj

1− q−1xiyj
.

In the above λ′ and µ′ are the conjugates of λ and µ, (λ|µ) =
∑

i≥1 λiµi, and
n(λ) =

∑
i≥1(i− 1)λi.

An appropriate specialization of Theorem 1.1 leads to a q-series identity of [1]
which is the key-ingredient in proving (1.2).

In the next section we give the necessary background material on Hall–Littlewood
functions. Section 3 contains a proof of Theorem 1.1 and in Section 4 we present a
proof of the A2 Rogers–Ramanujan identities (1.2) based on Theorem 1.1.

2. Hall-Littlewood functions

We review some basic facts from the theory of Hall-Littlewood functions. For
more details the reader may wish to consult Chapter III of Macdonald’s book on
symmetric functions [9].

Let λ = (λ1, λ2, . . . ) be a partition, i.e., λ1 ≥ λ2 ≥ . . . with finitely many
λi unequal to zero. The length and weight of λ, denoted by `(λ) and |λ|, are
the number and sum of the non-zero λi (called parts), respectively. The unique
partition of weight zero is denoted by 0, and the multiplicity of the part i in the
partition λ is denoted by mi(λ).

We identify a partition with its diagram or Ferrers graph in the usual way, and,
for example, the diagram of λ = (6, 3, 3, 1) is given by
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HALL–LITTLEWOOD FUNCTIONS

The conjugate λ′ of λ is the partition obtained by reflecting the diagram of λ in
the main diagonal. Hence mi(λ) = λ′i − λ′i+1.

A standard statistic on partitions needed repeatedly is

n(λ) =
∑
i≥1

(i− 1)λi =
∑
i≥1

(
λ′i
2

)
.

We also need the usual scalar product (λ|µ) =
∑

i≥1 λiµi (which in the notation
of [9] would be |λµ|). We will occasionally use this for more general sequences of
integers, not necessarily partitions.

If λ and µ are two partions then µ ⊂ λ iff λi ≥ µi for all i ≥ 1, i.e., the diagram
of λ contains the diagram of µ. If µ ⊂ λ then the skew-diagram λ− µ denotes the
set-theoretic difference between λ and µ, and |λ − µ| = |λ| − |µ|. For example, if
λ = (6, 3, 3, 1) and µ = (4, 3, 1) then the skew diagram λ−µ is given by the marked
squares in

• •

• •
•

and |λ− µ| = 5.
For θ = λ− µ a skew diagram, its conjugate θ′ = λ′ − µ′ is the (skew) diagram

obtained by reflecting θ in the main diagonal. Following [9] we define the compo-
nents of θ and θ′ by θi = λi − µi and θ′i = λ′i − µ′i. Quite often we only require
knowledge of the sequence of components of a skew diagram θ, and by abuse of
notation we will occasionally write θ = (θ1, θ2, . . . ), even though the components
θi alone do not fix θ.

A skew diagram θ is a horizontal strip if θ′i ∈ {0, 1}, i.e., if at most one square
occurs in each column of θ. The skew diagram in the above example is a horizontal
strip since θ′ = (1, 1, 1, 0, 1, 1, 0, 0, . . . ).

Let Sn be the symmetric group, Λn = Z[x1, . . . , xn]Sn be the ring of symmetric
polynomials in n independent variables and Λ the ring of symmetric functions in
countably many independent variables.

For x = (x1, . . . , xn) and λ a partition such that `(λ) ≤ n the Hall–Littlewood
polynomials Pλ(x; q) are defined by

(2.1) Pλ(x; q) =
∑

w∈Sn/Sλ
n

w
(
xλ

∏
λi>λj

xi − qxj

xi − xj

)
.

Here Sλ
n is the subgroup of Sn consisting of the permutations that leave λ invariant,

and w(f(x)) = f(w(x)). When `(λ) > n,

(2.2) Pλ(x; q) = 0.

The Hall–Littlewood polynomials are symmetric polynomials in x, homogeneous
of degree |λ|, with coefficients in Z[q], and form a Z[q] basis of Λn[q]. Thanks to the
stability property Pλ(x1, . . . , xn, 0; q) = Pλ(x1, . . . , xn; q) the Hall–Littlewood poly-
nomials may be extended to the Hall–Littlewood functions in an infinite number of
variables x1, x2, . . . in the usual way, to form a Z[q] basis of Λ[q]. The indeterminate
q in the Hall–Littlewood symmetric functions serves as a parameter interpolating
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between the Schur functions and monomial symmetric functions; Pλ(x; 0) = sλ(x)
and Pλ(x; 1) = mλ(x).

We will also need the symmetric functions Qλ(x; q) (also referred to as Hall-
Littlewood functions) defined by

(2.3) Qλ(x; q) = bλ(q)Pλ(x; q),

where

bλ(q) =
λ1∏
i=1

(q; q)mi(λ).

We already mentioned the homogeneity of the Hall–Littlewood functions;

(2.4) Pλ(ax; q) = a|λ|Pλ(x; q),

where ax = (ax1, ax2, . . . ). Another useful result is the specialization

(2.5) Pλ(1, q, . . . , qn−1; q) =
qn(λ)(q; q)n

(q; q)n−`(λ)bλ(q)
,

where 1/(q; q)−m = 0 for m a positive integer, so that Pλ(1, q, . . . , qn−1; q) = 0 if
`(λ) > n in accordance with (2.2). By (2.3) this also implies the particularly simple

(2.6) Qλ(1, q, q2, . . . ; q) = qn(λ).

The skew Hall–Littlewood functions Pλ/µ and Qλ/µ are defined by

(2.7) Pλ(x, y; q) =
∑

µ

Pλ/µ(x; q)Pµ(y; q)

and
Qλ(x, y; q) =

∑
µ

Qλ/µ(x; q)Qµ(y; q),

so that

(2.8) Qλ/µ(x; q) =
bλ(q)
bµ(q)

Pλ/µ(x; q).

An important property is that Pλ/µ is zero if µ 6⊂ λ. Some trivial instances of the
skew functions are given by Pλ/0 = Pλ and Pλ/λ = 1. By (2.8) similar statements
apply to Qλ/µ.

The Cauchy identity for (skew) Hall–Littlewood functions is given by [11, Lemma
3.1]

(2.9)
∑

λ

Pλ/µ(x; q)Qλ/ν(y; q) =
∑

λ

Pν/λ(x; q)Qµ/λ(y; q)
∏

i,j≥1

1− qxiyj

1− xiyj
.

We conclude our introduction of the Hall–Littlewood functions with the following
two important definitions. Let λ ⊃ µ be partitions such that θ = λ − µ is a
horizontal strip, i.e., θ′i ∈ {0, 1}. Let I be the set of integers i ≥ 1 such that θ′i = 1
and θ′i+1 = 0. Then

φλ/µ(q) =
∏
i∈I

(1− qmi(λ)).

Similarly, let J be the set of integers j ≥ 1 such that θ′j = 0 and θ′j+1 = 1. Then

ψλ/µ(q) =
∏
j∈J

(1− qmj(µ)).
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HALL–LITTLEWOOD FUNCTIONS

For example, if λ = (5, 3, 2, 2) and µ = (3, 3, 2) then θ is a horizontal strip and
θ′ = (1, 1, 0, 1, 1, 0, 0, . . . ). Hence I = {2, 5} and J = {3}, leading to

φλ/µ(q) = (1− qm2(λ))(1− qm5(λ)) = (1− q2)(1− q)

and
ψλ/µ(q) = (1− qm3(µ)) = (1− q2).

The skew Hall–Littlewood functions Qλ/µ(x; q) and Pλ/µ(x; q) can be expressed
in terms of φλ/µ(q) and ψλ/µ(q) [9, p. 229]. For our purposes we only require a
special instance of this result corresponding to the case that x represents a single
variable. Then

(2.10a) Qλ/µ(x; q) =

{
φλ/µ(q)x|λ−µ| if λ− µ is a horizontal strip,
0 otherwise

and

(2.10b) Pλ/µ(x; q) =

{
ψλ/µ(q)x|λ−µ| if λ− µ is a horizontal strip,
0 otherwise.

3. Proof of Theorem 1.1

Throughout this section z represents a single variable.
To establish (1.3) it is enough to show its truth for x = (x1, . . . , xn) and y =

(y1, . . . , ym), and by induction on m it then easily follows that we only need to
prove

(3.1)
∑
λ,µ

qn(λ)+n(µ)−(λ′|µ′)Pλ(x; q)Pµ(y, z; q)

=
1

1− z

n∏
i=1

1− zxi

1− q−1zxi

∑
λ,µ

qn(λ)+n(µ)−(λ′|µ′)Pλ(x; q)Pµ(y; q),

where we have replaced ym+1 by z.
If on the left we replace µ by ν and use (2.7) (with λ→ ν and x→ z) we get

LHS(3.1) =
∑
λ,µ,ν

qn(λ)+n(ν)−(λ′|ν′)Pλ(x; q)Pµ(y; q)Pν/µ(z; q).

From (2.9) with µ = 0, x = (x1, . . . , xn) and y → z/q it follows that

Pν(x; q)
n∏

i=1

1− zxi

1− q−1zxi
=
∑

λ

Qλ/ν(z/q; q)Pλ(x; q).

Using this on the right of (3.1) with λ replaced by ν yields

RHS(3.1) =
1

1− z

∑
λ,µ,ν

qn(µ)+n(ν)−(µ′|ν′)Pλ(x; q)Pµ(y; q)Qλ/ν(z/q; q).

Therefore, by equating coefficients of Pλ(x; q)Pµ(y; q) we find that the problem of
proving (1.3) boils down to showing that∑

ν

qn(λ)+n(ν)−(λ′|ν′)Pν/µ(z; q) =
1

1− z

∑
ν

qn(µ)+n(ν)−(µ′|ν′)Qλ/ν(z/q; q).

353



Next we use (2.10) to arrive at the equivalent but more combinatorial statement
that

(3.2)
∑
ν⊃µ

ν−µ hor. strip

qn(λ)+n(ν)−(λ′|ν′)z|ν−µ|ψν/µ(q)

=
1

1− z

∑
ν⊂λ

λ−ν hor. strip

qn(µ)+n(ν)−(µ′|ν′)(z/q)|λ−ν|φλ/ν(q).

To make further progress we need a lemma [12].

Lemma 3.1. For k a positive integer let ω = (ω1, . . . , ωk) ∈ {0, 1}k, and let J =
J(ω) be the set of integers j such that ωj = 0 and ωj+1 = 1. For λ ⊃ µ partitions
let θ′ = λ′ − µ′ be a skew diagram. Then∑

λ⊃µ
λ−µ hor. strip

θ′i=ωi, i∈{1,...,k}

qn(λ)z|λ−µ|ψλ/µ(q)

=
qn(µ)+(µ′|ω)z|ω|

1− z
(1− z(1− ωk)qµ′k)

∏
j∈J

(1− qmj(µ)).

The restriction θ′i = ωi for i ∈ {1, . . . , k} in the sum over λ on the left means
that the first k parts of λ′ are fixed. The remaining parts are free subject only to
the condition that λ− µ is a horizontal strip, i.e., that λ′i − µ′i ∈ {0, 1}.

In view of Lemma 3.1 it is natural to rewrite the left side of (3.2) as

LHS(3.2) =
∑

ω∈{0,1}λ1

∑
ν⊃µ

ν−µ hor. strip
θ′i=ωi, i∈{1,...,λ1}

qn(λ)+n(ν)−(λ′|µ′)−(λ′|ω)z|ν−µ|ψν/µ(q),

where θ = ν − µ, and where we have used that θ′i ∈ {0, 1} as follows from the fact
that ν − µ is a horizontal strip.

Now the sum over ν can be performed by application of Lemma 3.1 with λ→ ν
and k → λ1, resulting in

LHS(3.2) =
qn(λ)+n(µ)−(λ′|µ′)

1− z

∑
ω∈{0,1}λ1

q(µ
′|ω)−(λ′|ω)z|ω|

× (1− z(1− ωλ1)q
µ′λ1 )

∏
j∈J

(1− qmj(µ))

with J = J(ω) ⊂ {1, . . . , λ1 − 1} the set of integers j such that ωj < ωj+1.
For the right-hand side of (3.2) we introduce the notation τi = λ′i − ν′i, so that

the sum over ν can be rewritten as a sum over τ ∈ {0, 1}λ1 . Using that

n(ν) =
λ1∑
i=1

(
ν′i
2

)
=

λ1∑
i=1

(
λ′i − τi

2

)
= n(λ)− (λ′|τ) + |τ |

this yields

RHS(3.2) =
qn(λ)+n(µ)−(λ′|µ′)

1− z

∑
τ∈{0,1}λ1

q(µ
′|τ)−(λ′|τ)z|τ |

∏
i∈I

(1− qmi(λ)),
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HALL–LITTLEWOOD FUNCTIONS

with I = I(τ) ⊂ {1, . . . , λ1} the set of integers i such that τi > τi+1 (with the
convention that λ1 ∈ I if τλ1 = 1).

Equating the above two results for the respective sides of (3.2) gives∑
ω∈{0,1}λ1

q(µ
′|ω)−(λ′|ω)z|ω|(1− z(1− ωλ1)q

µ′λ1 )
∏
j∈J

(1− qmj(µ))

=
∑

τ∈{0,1}λ1

q(µ
′|τ)−(λ′|τ)z|τ |

∏
i∈I

(1− qmi(λ)).

Using that mi(λ) = λ′i − λ′i+1 it is not hard to see that this is the

k → λ1, bk+1 → 1, ai → zqµ′i , bi → qλ′i , i ∈ {1, . . . , λ1}

specialization of the more general∑
ω∈{0,1}k

(a/b)ω(1− (1− ωk)ak/bk+1)
∏
j∈J

(1− aj/aj+1)

=
∑

τ∈{0,1}k

(a/b)τ
∏
i∈I

(1− bi/bi+1),

where (a/b)ω =
∏k

i=1(ai/bi)ωi and (a/b)τ =
∏k

i=1(ai/bi)τi . Obviously, the set
J ⊂ {1, . . . , k−1} should now be defined as the set of integers j such that ωj < ωj+1

and the the set I ⊂ {1, . . . , k} as the set of integers i such that τi > τi+1 (with the
convention that k ∈ I if τk = 1).

Next we split both sides into the sum of two terms as follows:( ∑
ω∈{0,1}k

−(ak/bk+1)
∑

ω∈{0,1}k

ωk=0

)
(a/b)ω

∏
j∈J

(1− aj/aj+1)

=

( ∑
τ∈{0,1}k

−(bk/bk+1)
∑

τ∈{0,1}k

τk=1

)
(a/b)τ

∏
i∈I
i 6=k

(1− bi/bi+1).

Equating the first sum on the left with the first sum on the right yields

(3.3)
∑

ω∈{0,1}k

(a/b)ω
∏
j∈J

(1− aj/aj+1) =
∑

τ∈{0,1}k

(a/b)τ
∏
i∈I
i 6=k

(1− bi/bi+1).

If we equate the second sum on the left with the second sum on the right and use that
k−1 6∈ J(ω) if ωk = 0 and k−1 6∈ I(τ) if τk = 1, we obtain (ak/bk+1)((3.3)k→k−1).

Slightly changing our earlier convention we thus need to prove that

(3.4)
∑

ω∈{0,1}k

(a/b)ω
∏
j∈J

(1− aj/aj+1) =
∑

τ∈{0,1}k

(a/b)τ
∏
i∈I

(1− bi/bi+1),

where from now on I ⊂ {1, . . . , k−1} denotes the set of integers i such that τi > τi+1

(so that no longer k ∈ I if τk = 1). It is not hard to see by multiplying out the
respective products that boths sides yield ((1+

√
2)k+1−(1−

√
2)k+1)/(2

√
2) terms.

To see that the terms on the left and right are in one-to-one correspondence we
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again resort to induction. First, for k = 1 it is readily checked that both sides yield
1 + a1/b1. For k = 2 we on the left get

1︸︷︷︸
ω=(0,0)

+ (a1/b1)︸ ︷︷ ︸
ω=(1,0)

+ (a2/b2)(1− a1/a2)︸ ︷︷ ︸
ω=(0,1)

+ (a1a2/b1b2)︸ ︷︷ ︸
ω=(1,1)

and on the right

1︸︷︷︸
τ=(0,0)

+ (a1/b1)(1− b1/b2)︸ ︷︷ ︸
τ=(1,0)

+ (a2/b2)︸ ︷︷ ︸
τ=(0,1)

+ (a1a2/b1b2)︸ ︷︷ ︸
τ=(1,1)

which both give

1 + a1/b1 + a2/b2 − a1/b2 + a1a2/b1b2.

Let us now assume that (3.4) has been shown to be true for 1 ≤ k ≤ K − 1 with
K ≥ 3 and prove the case k = K.

On the left of (3.4) we split the sum over ω according to∑
ω∈{0,1}k

=
∑

ω∈{0,1}k

ω1=1

+
∑

ω∈{0,1}k

ω1=ω2=0

+
∑

ω∈{0,1}k

ω1=0, ω2=1

.

Defining ω̄ ∈ {0, 1}k−1 and ¯̄ω ∈ {0, 1}k−2 by ω̄ = (ω2, . . . , ωk) and ¯̄ω = (ω3, . . . , ωk),
and also setting and āj = aj+1, b̄j = bj+1, and ¯̄aj = aj+2, ¯̄bj = bj+2, this leads to

LHS(3.4) = (a1/b1)
∑

ω̄∈{0,1}k−1

(ā/b̄)ω̄
∏

j∈J(ω̄)

(1− āj/āj+1)

+
∑

ω̄∈{0,1}k−1

ω̄1=0

(ā/b̄)ω̄
∏

j∈J(ω̄)

(1− āj/āj+1)

+ (1− a1/a2)
∑

ω̄∈{0,1}k−1

ω̄1=1

(ā/b̄)ω̄
∏

j∈J(ω̄)

(1− āj/āj+1)

= (1 + a1/b1)
∑

ω̄∈{0,1}k−1

(ā/b̄)ω̄
∏

j∈J(ω̄)

(1− āj/āj+1)

− (a1/a2)
∑

ω̄∈{0,1}k−1

ω̄1=1

(ā/b̄)ω̄
∏

j∈J(ω̄)

(1− āj/āj+1)

= (1 + a1/b1)
∑

ω̄∈{0,1}k−1

(ā/b̄)ω̄
∏

j∈J(ω̄)

(1− āj/āj+1)

− (a1/b2)
∑

¯̄ω∈{0,1}k−2

(¯̄a/¯̄b) ¯̄ω
∏

j∈J(¯̄ω)

(1− ¯̄aj/¯̄aj+1).

On the right of (3.4) we split the sum over τ according to∑
τ∈{0,1}k

=
∑

τ∈{0,1}k

τ1=0

+
∑

τ∈{0,1}k

τ1=τ2=1

+
∑

τ∈{0,1}k

τ1=1, τ2=0

.
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Defining τ̄ ∈ {0, 1}k−1 and ¯̄τ ∈ {0, 1}k−2 by τ̄ = (τ2, . . . , τk) and ¯̄τ = (τ3, . . . , τk),
this yields

RHS(3.4) =
∑

τ̄∈{0,1}k−1

(ā/b̄)τ̄
∏

j∈J(τ̄)

(1− b̄j/b̄j+1)

+ (a1/b1)
∑

τ̄∈{0,1}k−1

τ̄1=1

(ā/b̄)τ̄
∏

j∈J(τ̄)

(1− b̄j/b̄j+1)

+ (a1/b1)(1− b1/b2)
∑

τ̄∈{0,1}k−1

τ̄1=0

(ā/b̄)τ̄
∏

j∈J(τ̄)

(1− b̄j/b̄j+1)

= (1 + a1/b1)
∑

τ̄∈{0,1}k−1

(ā/b̄)τ̄
∏

j∈J(τ̄)

(1− b̄j/b̄j+1)

− (a1/b2)
∑

τ̄∈{0,1}k−1

τ̄1=0

(ā/b̄)τ̄
∏

j∈J(τ̄)

(1− b̄j/b̄j+1)

= (1 + a1/b1)
∑

τ̄∈{0,1}k−1

(ā/b̄)τ̄
∏

j∈J(τ̄)

(1− b̄j/b̄j+1)

− (a1/b2)
∑

¯̄τ∈{0,1}k−2

(¯̄a/¯̄b)¯̄τ
∏

j∈J(¯̄τ)

(1− ¯̄bj/¯̄bj+1).

By our induction hypothesis this equates with the previous expression for the left-
hand side of (3.4), completing the proof.

4. The A2 Rogers–Ramanujan identities

Let (a; q)0 = 1, (a; q)n =
∏n

i=1(1−aqi−1) and (a1, . . . , ak; q)n = (a1; q)n · · · (ak; q)n.

Proposition 4.1. There holds

(4.1)
∑
λ,µ

a|λ|b|µ|q(λ
′|λ′)+(µ′|µ′)−(λ′|µ′)

(q; q)n−`(λ)(q; q)m−`(µ)bλ(q)bµ(q)
=

(abq; q)n+m

(q, aq, abq; q)n(q, bq, abq; q)m
.

Proof. In Theorem 1.1 set xi = aqi for 1 ≤ i ≤ n, xi = 0 for i > n, yj = bqj for
1 ≤ j ≤ m and yj = 0 for j > m. Using the homogeneity (2.4) and specialization
(2.5), and noting that 2n(λ) + |λ| = (λ′|λ′), gives (4.1). �

We remark that (4.1) is a bounded version of the A2 case of the following identity
for the An root system due to Hua [4] (and corrected in [3]):

(4.2)
∑

λ(1),...,λ(n)

q
1
2

∑n
i,j=1 Cij(λ

(i)′|λ(j)′)∏n
i=1 a

|λ(i)|
i∏n

i=1 bλ(i)(q)
=
∏

α∈∆+

1
(aαq; q)∞

.

Here Cij = 2δi,i − δi,j−1 − δi,j+1 is the (i, j) entry of the An Cartan matrix and
∆+ is the set of positive roots of An, i.e., the set (of cardinality

(
n+1

2

)
) of roots of

the form αi + αi+1 + · · ·+ αj with 1 ≤ i ≤ j ≤ n, where α1, . . . , αn are the simple
roots of An. Furthermore, if α = αi + αi+1 + · · ·+ αj then aα = aiai+1 · · · aj .
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For M = (M1, . . . ,Mn) with Mi a non-negative integer, we define the following
bounded analogue of the sum in (4.2):

RM (a1, . . . , an; q) =
∑

λ(1),...,λ(n)

q
1
2

∑n
i,j=1 Cij(λ

(i)′|λ(j)′)∏n
i=1 a

|λ(i)|
i∏n

i=1(q; q)Mi−`(λ(i))bλ(i)(q)
.

By construction RM (a1, . . . , an; q) satisfies the following invariance property.

Lemma 4.1. We have
M1∑

r1=0

· · ·
Mn∑

rn=0

q
1
2

∑n
i,j=1 Cijrirj

∏n
i=1 a

ri
i∏n

i=1(q; q)Mi−ri

Rr(a1, . . . , an; q) = RM (a1, . . . , an; q).

Proof. Take the definition of RM given above and replace each of λ(1), . . . , λ(n)

by its conjugate. Then introduce the non-negative integer ri and the partition
µ(i) with largest part not exceeding ri through λ(i) = (ri, µ

(i)
1 , µ

(i)
2 , . . . ). Since

bλ′(q) = (q; q)r−µ1bµ′(q) for λ = (r, µ1, µ2, . . . ) this implies the identity of the
lemma after again replacing each of µ(1), . . . , µ(n) by its conjugate. �

Next is the observation that the left-hand side of (4.1) corresponds toR(n,m)(a, b; q).
Hence we may reformulate the A2 instance of Lemma 4.1.

Theorem 4.1. For M1 and M2 non-negative integers

(4.3)
M1∑

r1=0

M2∑
r2=0

ar1br2qr2
1−r1r2+r2

2

(q; q)M1−r1(q; q)M2−r2

(abq; q)r1+r2

(q, aq, abq; q)r1(q, bq, abq; q)r2

=
(abq; q)M1+M2

(q, aq, abq; q)M1(q, bq, abq; q)M2

.

To see how this leads to the A2 Rogers–Ramanujan identity (1.2) and its higher
moduli generalizations, let k1, k2, k3 be integers such that k1 +k2 +k3 = 0. Making
the substitutions

r1 → r1 − k1 − k2, a→ qk2−k3 , M1 →M1 − k1 − k2,

r2 → r2 − k1, b→ qk1−k2 , M2 →M2 − k1,

in (4.3), we obtain

(4.4)
M1∑

r1=0

M2∑
r2=0

qr2
1−r1r2+r2

2

(q; q)M1−r1(q; q)M2−r2(q; q)2r1+r2

[
r1 + r2
r1 + k1

][
r1 + r2
r1 + k2

][
r1 + r2
r1 + k3

]

=
q

1
2 (k2

1+k2
2+k2

3)

(q)2M1+M2

[
M1 +M2

M1 + k1

][
M1 +M2

M1 + k2

][
M1 +M2

M1 + k3

]
,

where [
n

m

]
=
[
n

m

]
q

=


(qn−m+1; q)m

(q; q)m
for m ≥ 0,

0 otherwise

is a q-binomial coefficient. The identity (4.4) which is equivalent to the type-II A2

Bailey lemma of [1, Theorem 4.3].

S. OLE WARMAAR
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HALL–LITTLEWOOD FUNCTIONS

The idea is now to apply (4.4) to the A2 Euler identity [1, Equation (5.15)]

(4.5)
∑

k1+k2+k3=0

q
3
2 (k2

1+k2
2+k2

3)

×
∑

w∈S3

ε(w)
3∏

i=1

q
1
2 (3ki−wi+i)2−wiki

[
M1 +M2

M1 + 3ki − wi + i

]
=
[
M1 +M2

M1

]
,

where w ∈ S3 is a permutation of (1, 2, 3) and ε(w) denotes the signature of w.
Replacing M1,M2 by r1, r2 in (4.5), then multiplying both sides by

qr2
1−r1r2+r2

2

(q; q)M1−r1(q; q)M2−r2(q; q)2r1+r2

,

and finally summing over r1 and r2 using (4.4) (with ki → 3ki − wi + i), yields

(4.6)
∑

k1+k2+k3=0

q
3
2 (k2

1+k2
2+k2

3)
∑

w∈S3

ε(w)
3∏

i=1

q(3ki−wi+i)2−wiki

[
M1 +M2

M1 + 3ki − wi + i

]

=
M1∑

r1=0

M2∑
r2=0

qr2
1−r1r2+r2

2 (q; q)2M1+M2

(q; q)M1−r1(q; q)M2−r2(q; q)r1(q; q)r2(q; q)r1+r2

.

Letting M1 and M2 tend to infinity, and using the Vandermonde determinant∑
w∈S3

ε(w)
3∏

i=1

xi−wi
i =

∏
1≤i<j≤3

(1− xjx
−1
i )

with xi → q7ki+2i, gives

1
(q; q)3∞

∑
k1+k2+k3=0

q
21
2 (k2

1+k2
2+k2

3)−k1−2k2−3k3

× (1− q7(k2−k1)+2)(1− q7(k3−k2)+2)(1− q7(k3−k1)+4)

=
∞∑

r1,r2=0

qr2
1−r1r2+r2

2

(q; q)r1(q; q)r2(q; q)r1+r2

.

Finally, by the A2 Macdonald identity [8]

∑
k1+k2+k3=0

3∏
i=1

x3ki
i q

3
2 k2

i−iki

∏
1≤i<j≤3

(1− xjx
−1
i qkj−ki)

= (q; q)2∞
∏

1≤i<j≤3

(x−1
i xj , qxix

−1
j ; q)∞

with q → q7 and xi → q2i this becomes
∞∑

r1,r2=0

qr2
1−r1r2+r2

2

(q; q)r1(q; q)r2(q; q)r1+r2

=
(q2, q2, q3, q4, q5, q5, q7, q7; q7)∞

(q; q)3∞
.

This result is easily recognized as the A2 Rogers–Ramanujan identity (1.2).
The identity (4.6) can be further iterated using (4.4). Doing so and repeating the

above calculations (requiring the Vandermonde determinant with xi → q(3n+1)ki+ni

359



and the Macdonald identity with q → q3n+1 and xi → qni) yields the following A2

Rogers–Ramanujan-type identity for modulus 3n+ 1 [1, Theorem 5.1; i = k]:∑
λ,µ

`(λ),`(µ)≤n−1

q(λ|λ)+(µ|µ)−(λ|µ)

bλ′(q)bµ′(q)(q; q)λn−1+µn−1

=
(qn, qn, qn+1, q2n, q2n+1, q2n+1, q3n+1, q3n+1; q3n+1)∞

(q; q)3∞
.

In the large n limit ones recovers the A2 case of Hua’s identity (4.2) with a1 = a2 =
1.
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