HALL-LITTLEWOOD FUNCTIONS AND THE A ${ }_{2}$ ROGERS-RAMANUJAN IDENTITIES

S. OLE WARNAAR

Abstract

We prove an identity for Hall-Littlewood symmetric functions labelled by the Lie algebra A_{2}. Through specialization this yields a simple proof of the A_{2} Rogers-Ramanujan identities of Andrews, Schilling and the author.

Nous démontrons une identité pour les functions symétriques de Hall-Littlewood associée à l'algèbre de Lie A_{2}. En spécialisant cette identité, nous obtenons une démonstration simple des identités du type Rogers-Ramanujan associées á A_{2} d'Andrews, Schilling et l'auteur.

1. Introduction

The Rogers-Ramanujan identities, given by [10]

$$
\begin{equation*}
1+\sum_{n=1}^{\infty} \frac{q^{n^{2}}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}=\prod_{n=1}^{\infty} \frac{1}{\left(1-q^{5 n-1}\right)\left(1-q^{5 n-4}\right)} \tag{1.1a}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\sum_{n=1}^{\infty} \frac{q^{n(n+1)}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}=\prod_{n=1}^{\infty} \frac{1}{\left(1-q^{5 n-2}\right)\left(1-q^{5 n-3}\right)} \tag{1.1b}
\end{equation*}
$$

are two of the most famous q-series identities, with deep connections with number theory, representation theory, statistical mechanics and various other branches of mathematics.

Many different proofs of the Rogers-Ramanujan identities have been given in the literature, some bijective, some representation theoretic, but the vast majority basic hypergeometric. In 1990, J. Stembridge, building on work of I. Macdonald, found a proof of the Rogers-Ramanujan identities quite unlike any of the previously known proofs. In particular he discovered that Rogers-Ramanujan-type identities may be obtained by appropriately specializing identities for Hall-Littlewood polynomials. The Hall-Littlewood polynomials and, more generally, Hall-Littlewood functions are an important class of symmetric functions, generalizing the well-known Schur functions. Stembridge's Hall-Littlewood approach to Rogers-Ramanujan identities has been further generalized in recent work by Fulman [2], Ishikawa et al. [5] and Jouhet and Zeng [7].

Several years ago Andrews, Schilling and the present author generalized the two Rogers-Ramanujan identities to three identities labelled by the Lie algebra $\mathrm{A}_{2}[1]$. The simplest of these, which takes the place of (1.1a) when A_{1} is replaced by A_{2}

[^0]reads
\[

$$
\begin{align*}
\sum_{n_{1}, n_{2}=0}^{\infty} & \frac{q^{n_{1}^{2}-n_{1} n_{2}+n_{2}^{2}}}{(q ; q)_{n_{1}}(q ; q)_{n_{2}}(q ; q)_{n_{1}+n_{2}}} \tag{1.2}\\
& =\prod_{n=1}^{\infty} \frac{1}{\left(1-q^{n}\right)\left(1-q^{7 n-1}\right)^{2}\left(1-q^{7 n-3}\right)\left(1-q^{7 n-4}\right)\left(1-q^{7 n-6}\right)^{2}}
\end{align*}
$$
\]

where $(q ; q)_{0}=1$ and $(q ; q)_{n}=\prod_{i=1}^{n}\left(1-q^{i}\right)$ is a q-shifted factorial.
An important question is whether (1.2) and its companions can again be understood in terms of Hall-Littlewood functions. This question is especially relevant since the A_{n} analogues of the Rogers-Ramanujan identities have so far remained elusive, and an understanding of (1.2) in the context of symmetric functions might provide further insight into the structure of the full A_{n} generalization of (1.1).

In this paper we will show that the theory of Hall-Littlewood functions may indeed be applied to yield a proof of (1.2). In particular we will prove the following A_{2}-type identity for Hall-Littlewood functions.

Theorem 1.1. Let $x=\left(x_{1}, x_{2}, \ldots\right), y=\left(y_{1}, y_{2}, \ldots\right)$ and let $P_{\lambda}(x ; q)$ and $P_{\mu}(y ; q)$ be Hall-Littlewood functions indexed by the partitions λ and μ. Then

$$
\begin{align*}
\sum_{\lambda, \mu} q^{n(\lambda)+n(\mu)-\left(\lambda^{\prime} \mid \mu^{\prime}\right)} P_{\lambda}(x ; q) P_{\mu}(y ; q) & \tag{1.3}\\
& =\prod_{i \geq 1} \frac{1}{\left(1-x_{i}\right)\left(1-y_{i}\right)} \prod_{i, j \geq 1} \frac{1-x_{i} y_{j}}{1-q^{-1} x_{i} y_{j}}
\end{align*}
$$

In the above λ^{\prime} and μ^{\prime} are the conjugates of λ and $\mu,(\lambda \mid \mu)=\sum_{i \geq 1} \lambda_{i} \mu_{i}$, and $n(\lambda)=\sum_{i \geq 1}(i-1) \lambda_{i}$.

An appropriate specialization of Theorem 1.1 leads to a q-series identity of [1] which is the key-ingredient in proving (1.2).

In the next section we give the necessary background material on Hall-Littlewood functions. Section 3 contains a proof of Theorem 1.1 and in Section 4 we present a proof of the A_{2} Rogers-Ramanujan identities (1.2) based on Theorem 1.1.

2. Hall-Littlewood functions

We review some basic facts from the theory of Hall-Littlewood functions. For more details the reader may wish to consult Chapter III of Macdonald's book on symmetric functions [9].

Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ be a partition, i.e., $\lambda_{1} \geq \lambda_{2} \geq \ldots$ with finitely many λ_{i} unequal to zero. The length and weight of λ, denoted by $\ell(\lambda)$ and $|\lambda|$, are the number and sum of the non-zero λ_{i} (called parts), respectively. The unique partition of weight zero is denoted by 0 , and the multiplicity of the part i in the partition λ is denoted by $m_{i}(\lambda)$.

We identify a partition with its diagram or Ferrers graph in the usual way, and, for example, the diagram of $\lambda=(6,3,3,1)$ is given by

The conjugate λ^{\prime} of λ is the partition obtained by reflecting the diagram of λ in the main diagonal. Hence $m_{i}(\lambda)=\lambda_{i}^{\prime}-\lambda_{i+1}^{\prime}$.

A standard statistic on partitions needed repeatedly is

$$
n(\lambda)=\sum_{i \geq 1}(i-1) \lambda_{i}=\sum_{i \geq 1}\binom{\lambda_{i}^{\prime}}{2}
$$

We also need the usual scalar product $(\lambda \mid \mu)=\sum_{i \geq 1} \lambda_{i} \mu_{i}$ (which in the notation of [9] would be $|\lambda \mu|$). We will occasionally use this for more general sequences of integers, not necessarily partitions.

If λ and μ are two partions then $\mu \subset \lambda$ iff $\lambda_{i} \geq \mu_{i}$ for all $i \geq 1$, i.e., the diagram of λ contains the diagram of μ. If $\mu \subset \lambda$ then the skew-diagram $\lambda-\mu$ denotes the set-theoretic difference between λ and μ, and $|\lambda-\mu|=|\lambda|-|\mu|$. For example, if $\lambda=(6,3,3,1)$ and $\mu=(4,3,1)$ then the skew diagram $\lambda-\mu$ is given by the marked squares in

and $|\lambda-\mu|=5$.
For $\theta=\lambda-\mu$ a skew diagram, its conjugate $\theta^{\prime}=\lambda^{\prime}-\mu^{\prime}$ is the (skew) diagram obtained by reflecting θ in the main diagonal. Following [9] we define the components of θ and θ^{\prime} by $\theta_{i}=\lambda_{i}-\mu_{i}$ and $\theta_{i}^{\prime}=\lambda_{i}^{\prime}-\mu_{i}^{\prime}$. Quite often we only require knowledge of the sequence of components of a skew diagram θ, and by abuse of notation we will occasionally write $\theta=\left(\theta_{1}, \theta_{2}, \ldots\right)$, even though the components θ_{i} alone do not fix θ.

A skew diagram θ is a horizontal strip if $\theta_{i}^{\prime} \in\{0,1\}$, i.e., if at most one square occurs in each column of θ. The skew diagram in the above example is a horizontal strip since $\theta^{\prime}=(1,1,1,0,1,1,0,0, \ldots)$.

Let S_{n} be the symmetric group, $\Lambda_{n}=\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}$ be the ring of symmetric polynomials in n independent variables and Λ the ring of symmetric functions in countably many independent variables.

For $x=\left(x_{1}, \ldots, x_{n}\right)$ and λ a partition such that $\ell(\lambda) \leq n$ the Hall-Littlewood polynomials $P_{\lambda}(x ; q)$ are defined by

$$
\begin{equation*}
P_{\lambda}(x ; q)=\sum_{w \in S_{n} / S_{n}^{\lambda}} w\left(x^{\lambda} \prod_{\lambda_{i}>\lambda_{j}} \frac{x_{i}-q x_{j}}{x_{i}-x_{j}}\right) . \tag{2.1}
\end{equation*}
$$

Here S_{n}^{λ} is the subgroup of S_{n} consisting of the permutations that leave λ invariant, and $w(f(x))=f(w(x))$. When $\ell(\lambda)>n$,

$$
\begin{equation*}
P_{\lambda}(x ; q)=0 . \tag{2.2}
\end{equation*}
$$

The Hall-Littlewood polynomials are symmetric polynomials in x, homogeneous of degree $|\lambda|$, with coefficients in $\mathbb{Z}[q]$, and form a $\mathbb{Z}[q]$ basis of $\Lambda_{n}[q]$. Thanks to the stability property $P_{\lambda}\left(x_{1}, \ldots, x_{n}, 0 ; q\right)=P_{\lambda}\left(x_{1}, \ldots, x_{n} ; q\right)$ the Hall-Littlewood polynomials may be extended to the Hall-Littlewood functions in an infinite number of variables x_{1}, x_{2}, \ldots in the usual way, to form a $\mathbb{Z}[q]$ basis of $\Lambda[q]$. The indeterminate q in the Hall-Littlewood symmetric functions serves as a parameter interpolating
between the Schur functions and monomial symmetric functions; $P_{\lambda}(x ; 0)=s_{\lambda}(x)$ and $P_{\lambda}(x ; 1)=m_{\lambda}(x)$.

We will also need the symmetric functions $Q_{\lambda}(x ; q)$ (also referred to as HallLittlewood functions) defined by

$$
\begin{equation*}
Q_{\lambda}(x ; q)=b_{\lambda}(q) P_{\lambda}(x ; q) \tag{2.3}
\end{equation*}
$$

where

$$
b_{\lambda}(q)=\prod_{i=1}^{\lambda_{1}}(q ; q)_{m_{i}(\lambda)}
$$

We already mentioned the homogeneity of the Hall-Littlewood functions;

$$
\begin{equation*}
P_{\lambda}(a x ; q)=a^{|\lambda|} P_{\lambda}(x ; q) \tag{2.4}
\end{equation*}
$$

where $a x=\left(a x_{1}, a x_{2}, \ldots\right)$. Another useful result is the specialization

$$
\begin{equation*}
P_{\lambda}\left(1, q, \ldots, q^{n-1} ; q\right)=\frac{q^{n(\lambda)}(q ; q)_{n}}{(q ; q)_{n-\ell(\lambda)} b_{\lambda}(q)} \tag{2.5}
\end{equation*}
$$

where $1 /(q ; q)_{-m}=0$ for m a positive integer, so that $P_{\lambda}\left(1, q, \ldots, q^{n-1} ; q\right)=0$ if $\ell(\lambda)>n$ in accordance with (2.2). By (2.3) this also implies the particularly simple

$$
\begin{equation*}
Q_{\lambda}\left(1, q, q^{2}, \ldots ; q\right)=q^{n(\lambda)} \tag{2.6}
\end{equation*}
$$

The skew Hall-Littlewood functions $P_{\lambda / \mu}$ and $Q_{\lambda / \mu}$ are defined by

$$
\begin{equation*}
P_{\lambda}(x, y ; q)=\sum_{\mu} P_{\lambda / \mu}(x ; q) P_{\mu}(y ; q) \tag{2.7}
\end{equation*}
$$

and

$$
Q_{\lambda}(x, y ; q)=\sum_{\mu} Q_{\lambda / \mu}(x ; q) Q_{\mu}(y ; q)
$$

so that

$$
\begin{equation*}
Q_{\lambda / \mu}(x ; q)=\frac{b_{\lambda}(q)}{b_{\mu}(q)} P_{\lambda / \mu}(x ; q) \tag{2.8}
\end{equation*}
$$

An important property is that $P_{\lambda / \mu}$ is zero if $\mu \not \subset \lambda$. Some trivial instances of the skew functions are given by $P_{\lambda / 0}=P_{\lambda}$ and $P_{\lambda / \lambda}=1$. By (2.8) similar statements apply to $Q_{\lambda / \mu}$.

The Cauchy identity for (skew) Hall-Littlewood functions is given by [11, Lemma 3.1]

$$
\begin{equation*}
\sum_{\lambda} P_{\lambda / \mu}(x ; q) Q_{\lambda / \nu}(y ; q)=\sum_{\lambda} P_{\nu / \lambda}(x ; q) Q_{\mu / \lambda}(y ; q) \prod_{i, j \geq 1} \frac{1-q x_{i} y_{j}}{1-x_{i} y_{j}} \tag{2.9}
\end{equation*}
$$

We conclude our introduction of the Hall-Littlewood functions with the following two important definitions. Let $\lambda \supset \mu$ be partitions such that $\theta=\lambda-\mu$ is a horizontal strip, i.e., $\theta_{i}^{\prime} \in\{0,1\}$. Let I be the set of integers $i \geq 1$ such that $\theta_{i}^{\prime}=1$ and $\theta_{i+1}^{\prime}=0$. Then

$$
\phi_{\lambda / \mu}(q)=\prod_{i \in I}\left(1-q^{m_{i}(\lambda)}\right) .
$$

Similarly, let J be the set of integers $j \geq 1$ such that $\theta_{j}^{\prime}=0$ and $\theta_{j+1}^{\prime}=1$. Then

$$
\psi_{\lambda / \mu}(q)=\prod_{j \in J}\left(1-q^{m_{j}(\mu)}\right)
$$

For example, if $\lambda=(5,3,2,2)$ and $\mu=(3,3,2)$ then θ is a horizontal strip and $\theta^{\prime}=(1,1,0,1,1,0,0, \ldots)$. Hence $I=\{2,5\}$ and $J=\{3\}$, leading to

$$
\phi_{\lambda / \mu}(q)=\left(1-q^{m_{2}(\lambda)}\right)\left(1-q^{m_{5}(\lambda)}\right)=\left(1-q^{2}\right)(1-q)
$$

and

$$
\psi_{\lambda / \mu}(q)=\left(1-q^{m_{3}(\mu)}\right)=\left(1-q^{2}\right) .
$$

The skew Hall-Littlewood functions $Q_{\lambda / \mu}(x ; q)$ and $P_{\lambda / \mu}(x ; q)$ can be expressed in terms of $\phi_{\lambda / \mu}(q)$ and $\psi_{\lambda / \mu}(q)$ [9, p. 229]. For our purposes we only require a special instance of this result corresponding to the case that x represents a single variable. Then

$$
Q_{\lambda / \mu}(x ; q)= \begin{cases}\phi_{\lambda / \mu}(q) x^{|\lambda-\mu|} & \text { if } \lambda-\mu \text { is a horizontal strip } \tag{2.10a}\\ 0 & \text { otherwise }\end{cases}
$$

and

$$
P_{\lambda / \mu}(x ; q)= \begin{cases}\psi_{\lambda / \mu}(q) x^{|\lambda-\mu|} & \text { if } \lambda-\mu \text { is a horizontal strip } \tag{2.10b}\\ 0 & \text { otherwise }\end{cases}
$$

3. Proof of Theorem 1.1

Throughout this section z represents a single variable.
To establish (1.3) it is enough to show its truth for $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=$ $\left(y_{1}, \ldots, y_{m}\right)$, and by induction on m it then easily follows that we only need to prove

$$
\begin{align*}
& \sum_{\lambda, \mu} q^{n(\lambda)+n(\mu)-\left(\lambda^{\prime} \mid \mu^{\prime}\right)} P_{\lambda}(x ; q) P_{\mu}(y, z ; q) \tag{3.1}\\
&=\frac{1}{1-z} \prod_{i=1}^{n} \frac{1-z x_{i}}{1-q^{-1} z x_{i}} \sum_{\lambda, \mu} q^{n(\lambda)+n(\mu)-\left(\lambda^{\prime} \mid \mu^{\prime}\right)} P_{\lambda}(x ; q) P_{\mu}(y ; q)
\end{align*}
$$

where we have replaced y_{m+1} by z.
If on the left we replace μ by ν and use (2.7) (with $\lambda \rightarrow \nu$ and $x \rightarrow z$) we get

$$
\operatorname{LHS}(3.1)=\sum_{\lambda, \mu, \nu} q^{n(\lambda)+n(\nu)-\left(\lambda^{\prime} \mid \nu^{\prime}\right)} P_{\lambda}(x ; q) P_{\mu}(y ; q) P_{\nu / \mu}(z ; q)
$$

From (2.9) with $\mu=0, x=\left(x_{1}, \ldots, x_{n}\right)$ and $y \rightarrow z / q$ it follows that

$$
P_{\nu}(x ; q) \prod_{i=1}^{n} \frac{1-z x_{i}}{1-q^{-1} z x_{i}}=\sum_{\lambda} Q_{\lambda / \nu}(z / q ; q) P_{\lambda}(x ; q) .
$$

Using this on the right of (3.1) with λ replaced by ν yields

$$
\operatorname{RHS}(3.1)=\frac{1}{1-z} \sum_{\lambda, \mu, \nu} q^{n(\mu)+n(\nu)-\left(\mu^{\prime} \mid \nu^{\prime}\right)} P_{\lambda}(x ; q) P_{\mu}(y ; q) Q_{\lambda / \nu}(z / q ; q)
$$

Therefore, by equating coefficients of $P_{\lambda}(x ; q) P_{\mu}(y ; q)$ we find that the problem of proving (1.3) boils down to showing that

$$
\sum_{\nu} q^{n(\lambda)+n(\nu)-\left(\lambda^{\prime} \mid \nu^{\prime}\right)} P_{\nu / \mu}(z ; q)=\frac{1}{1-z} \sum_{\nu} q^{n(\mu)+n(\nu)-\left(\mu^{\prime} \mid \nu^{\prime}\right)} Q_{\lambda / \nu}(z / q ; q)
$$

Next we use (2.10) to arrive at the equivalent but more combinatorial statement that

$$
\begin{align*}
& \sum_{\substack{\nu \supset \mu \\
\nu-\mu \text { hor. strip }}} q^{n(\lambda)+n(\nu)-\left(\lambda^{\prime} \mid \nu^{\prime}\right)} z^{|\nu-\mu|} \psi_{\nu / \mu}(q) \tag{3.2}\\
& =\frac{1}{1-z} \sum_{\substack{\nu \subset \lambda \\
\lambda-\nu \text { hor. strip }}} q^{n(\mu)+n(\nu)-\left(\mu^{\prime} \mid \nu^{\prime}\right)}(z / q)^{|\lambda-\nu|} \phi_{\lambda / \nu}(q)
\end{align*}
$$

To make further progress we need a lemma [12].
Lemma 3.1. For k a positive integer let $\omega=\left(\omega_{1}, \ldots, \omega_{k}\right) \in\{0,1\}^{k}$, and let $J=$ $J(\omega)$ be the set of integers j such that $\omega_{j}=0$ and $\omega_{j+1}=1$. For $\lambda \supset \mu$ partitions let $\theta^{\prime}=\lambda^{\prime}-\mu^{\prime}$ be a skew diagram. Then

$$
\begin{aligned}
& \sum_{\substack{\lambda \supset \mu \\
-\mu \text { hor. strip } \\
\omega_{i}, i \in\{1, \ldots, k\}}} q^{n(\lambda)} z^{|\lambda-\mu|} \psi_{\lambda / \mu}(q) \\
& =\frac{q^{n(\mu)+\left(\mu^{\prime} \mid \omega\right)} z^{|\omega|}}{1-z}\left(1-z\left(1-\omega_{k}\right) q^{\mu_{k}^{\prime}}\right) \prod_{j \in J}\left(1-q^{m_{j}(\mu)}\right)
\end{aligned}
$$

The restriction $\theta_{i}^{\prime}=\omega_{i}$ for $i \in\{1, \ldots, k\}$ in the sum over λ on the left means that the first k parts of λ^{\prime} are fixed. The remaining parts are free subject only to the condition that $\lambda-\mu$ is a horizontal strip, i.e., that $\lambda_{i}^{\prime}-\mu_{i}^{\prime} \in\{0,1\}$.

In view of Lemma 3.1 it is natural to rewrite the left side of (3.2) as

$$
\operatorname{LHS}(3.2)=\sum_{\omega \in\{0,1\}^{\lambda_{1}}} \sum_{\substack{\nu \supset \mu \\ \theta_{i}^{\prime}=\omega_{i},, \text { hor. strip } \\ i \in\left\{1, \ldots, \lambda_{1}\right\}}} q^{n(\lambda)+n(\nu)-\left(\lambda^{\prime} \mid \mu^{\prime}\right)-\left(\lambda^{\prime} \mid \omega\right)} z^{|\nu-\mu|} \psi_{\nu / \mu}(q),
$$

where $\theta=\nu-\mu$, and where we have used that $\theta_{i}^{\prime} \in\{0,1\}$ as follows from the fact that $\nu-\mu$ is a horizontal strip.

Now the sum over ν can be performed by application of Lemma 3.1 with $\lambda \rightarrow \nu$ and $k \rightarrow \lambda_{1}$, resulting in

$$
\begin{aligned}
& \operatorname{LHS}(3.2)=\frac{q^{n(\lambda)+n(\mu)-\left(\lambda^{\prime} \mid \mu^{\prime}\right)}}{1-z} \sum_{\omega \in\{0,1\}^{\lambda_{1}}} q^{\left(\mu^{\prime} \mid \omega\right)-\left(\lambda^{\prime} \mid \omega\right)} z^{|\omega|} \\
& \times\left(1-z\left(1-\omega_{\lambda_{1}}\right) q^{\mu_{\lambda_{1}}^{\prime}}\right) \prod_{j \in J}\left(1-q^{m_{j}(\mu)}\right)
\end{aligned}
$$

with $J=J(\omega) \subset\left\{1, \ldots, \lambda_{1}-1\right\}$ the set of integers j such that $\omega_{j}<\omega_{j+1}$.
For the right-hand side of (3.2) we introduce the notation $\tau_{i}=\lambda_{i}^{\prime}-\nu_{i}^{\prime}$, so that the sum over ν can be rewritten as a sum over $\tau \in\{0,1\}^{\lambda_{1}}$. Using that

$$
n(\nu)=\sum_{i=1}^{\lambda_{1}}\binom{\nu_{i}^{\prime}}{2}=\sum_{i=1}^{\lambda_{1}}\binom{\lambda_{i}^{\prime}-\tau_{i}}{2}=n(\lambda)-\left(\lambda^{\prime} \mid \tau\right)+|\tau|
$$

this yields

$$
\operatorname{RHS}(3.2)=\frac{q^{n(\lambda)+n(\mu)-\left(\lambda^{\prime} \mid \mu^{\prime}\right)}}{1-z} \sum_{\tau \in\{0,1\}^{\lambda_{1}}} q^{\left(\mu^{\prime} \mid \tau\right)-\left(\lambda^{\prime} \mid \tau\right)} z^{|\tau|} \prod_{i \in I}\left(1-q^{m_{i}(\lambda)}\right)
$$

with $I=I(\tau) \subset\left\{1, \ldots, \lambda_{1}\right\}$ the set of integers i such that $\tau_{i}>\tau_{i+1}$ (with the convention that $\lambda_{1} \in I$ if $\tau_{\lambda_{1}}=1$).

Equating the above two results for the respective sides of (3.2) gives

$$
\begin{aligned}
& \sum_{\omega \in\{0,1\}^{\lambda_{1}}} q^{\left(\mu^{\prime} \mid \omega\right)-\left(\lambda^{\prime} \mid \omega\right)} z^{|\omega|}\left(1-z\left(1-\omega_{\lambda_{1}}\right) q^{\mu_{\lambda_{1}}^{\prime}}\right) \prod_{j \in J}\left(1-q^{m_{j}(\mu)}\right) \\
&=\sum_{\tau \in\{0,1\}^{\lambda_{1}}} q^{\left(\mu^{\prime} \mid \tau\right)-\left(\lambda^{\prime} \mid \tau\right)} z^{|\tau|} \prod_{i \in I}\left(1-q^{m_{i}(\lambda)}\right) .
\end{aligned}
$$

Using that $m_{i}(\lambda)=\lambda_{i}^{\prime}-\lambda_{i+1}^{\prime}$ it is not hard to see that this is the

$$
k \rightarrow \lambda_{1}, \quad b_{k+1} \rightarrow 1, \quad a_{i} \rightarrow z q^{\mu_{i}^{\prime}}, \quad b_{i} \rightarrow q^{\lambda_{i}^{\prime}}, \quad i \in\left\{1, \ldots, \lambda_{1}\right\}
$$

specialization of the more general

$$
\begin{aligned}
\sum_{\omega \in\{0,1\}^{k}}(a / b)^{\omega}\left(1-\left(1-\omega_{k}\right) a_{k} / b_{k+1}\right) \prod_{j \in J}(1- & \left.a_{j} / a_{j+1}\right) \\
& =\sum_{\tau \in\{0,1\}^{k}}(a / b)^{\tau} \prod_{i \in I}\left(1-b_{i} / b_{i+1}\right),
\end{aligned}
$$

where $(a / b)^{\omega}=\prod_{i=1}^{k}\left(a_{i} / b_{i}\right)^{\omega_{i}}$ and $(a / b)^{\tau}=\prod_{i=1}^{k}\left(a_{i} / b_{i}\right)^{\tau_{i}}$. Obviously, the set $J \subset\{1, \ldots, k-1\}$ should now be defined as the set of integers j such that $\omega_{j}<\omega_{j+1}$ and the the set $I \subset\{1, \ldots, k\}$ as the set of integers i such that $\tau_{i}>\tau_{i+1}$ (with the convention that $k \in I$ if $\tau_{k}=1$).

Next we split both sides into the sum of two terms as follows:

$$
\begin{aligned}
\left(\sum_{\omega \in\{0,1\}^{k}}-\left(a_{k} / b_{k+1}\right)\right. & \left.\sum_{\substack{\omega \in\{0,1\}^{k} \\
\omega_{k}=0}}\right)(a / b)^{\omega} \prod_{j \in J}\left(1-a_{j} / a_{j+1}\right) \\
& =\left(\sum_{\tau \in\{0,1\}^{k}}-\left(b_{k} / b_{k+1}\right) \sum_{\substack{\tau \in\{0,1\}^{k} \\
\tau_{k}=1}}\right)(a / b)^{\tau} \prod_{\substack{i \in I \\
i \neq k}}\left(1-b_{i} / b_{i+1}\right) .
\end{aligned}
$$

Equating the first sum on the left with the first sum on the right yields

$$
\begin{equation*}
\sum_{\omega \in\{0,1\}^{k}}(a / b)^{\omega} \prod_{j \in J}\left(1-a_{j} / a_{j+1}\right)=\sum_{\tau \in\{0,1\}^{k}}(a / b)^{\tau} \prod_{\substack{i \in I \\ i \neq k}}\left(1-b_{i} / b_{i+1}\right) . \tag{3.3}
\end{equation*}
$$

If we equate the second sum on the left with the second sum on the right and use that $k-1 \notin J(\omega)$ if $\omega_{k}=0$ and $k-1 \notin I(\tau)$ if $\tau_{k}=1$, we obtain $\left(a_{k} / b_{k+1}\right)\left((3.3)_{k \rightarrow k-1}\right)$.

Slightly changing our earlier convention we thus need to prove that

$$
\begin{equation*}
\sum_{\omega \in\{0,1\}^{k}}(a / b)^{\omega} \prod_{j \in J}\left(1-a_{j} / a_{j+1}\right)=\sum_{\tau \in\{0,1\}^{k}}(a / b)^{\tau} \prod_{i \in I}\left(1-b_{i} / b_{i+1}\right), \tag{3.4}
\end{equation*}
$$

where from now on $I \subset\{1, \ldots, k-1\}$ denotes the set of integers i such that $\tau_{i}>\tau_{i+1}$ (so that no longer $k \in I$ if $\tau_{k}=1$). It is not hard to see by multiplying out the respective products that boths sides yield $\left((1+\sqrt{2})^{k+1}-(1-\sqrt{2})^{k+1}\right) /(2 \sqrt{2})$ terms. To see that the terms on the left and right are in one-to-one correspondence we
again resort to induction. First, for $k=1$ it is readily checked that both sides yield $1+a_{1} / b_{1}$. For $k=2$ we on the left get

$$
\underbrace{1}_{\omega=(0,0)}+\underbrace{\left(a_{1} / b_{1}\right)}_{\omega=(1,0)}+\underbrace{\left(a_{2} / b_{2}\right)\left(1-a_{1} / a_{2}\right)}_{\omega=(0,1)}+\underbrace{\left(a_{1} a_{2} / b_{1} b_{2}\right)}_{\omega=(1,1)}
$$

and on the right

$$
\underbrace{1}_{\tau=(0,0)}+\underbrace{\left(a_{1} / b_{1}\right)\left(1-b_{1} / b_{2}\right)}_{\tau=(1,0)}+\underbrace{\left(a_{2} / b_{2}\right)}_{\tau=(0,1)}+\underbrace{\left(a_{1} a_{2} / b_{1} b_{2}\right)}_{\tau=(1,1)}
$$

which both give

$$
1+a_{1} / b_{1}+a_{2} / b_{2}-a_{1} / b_{2}+a_{1} a_{2} / b_{1} b_{2}
$$

Let us now assume that (3.4) has been shown to be true for $1 \leq k \leq K-1$ with $K \geq 3$ and prove the case $k=K$.

On the left of (3.4) we split the sum over ω according to

$$
\sum_{\omega \in\{0,1\}^{k}}=\sum_{\substack{\omega \in\{0,1\}^{k} \\ \omega_{1}=1}}+\sum_{\substack{\omega \in\{0,1\}^{k} \\ \omega_{1}=\omega_{2}=0}}+\sum_{\substack{\omega \in\{0,1\}^{k} \\ \omega_{1}=0, \omega_{2}=1}} .
$$

Defining $\bar{\omega} \in\{0,1\}^{k-1}$ and $\overline{\bar{\omega}} \in\{0,1\}^{k-2}$ by $\bar{\omega}=\left(\omega_{2}, \ldots, \omega_{\underline{k}}\right)$ and $\overline{\bar{\omega}}=\left(\omega_{3}, \ldots, \omega_{k}\right)$, and also setting and $\bar{a}_{j}=a_{j+1}, \bar{b}_{j}=b_{j+1}$, and $\overline{\bar{a}}_{j}=a_{j+2}, \overline{\bar{b}}_{j}=b_{j+2}$, this leads to

$$
\begin{aligned}
\operatorname{LHS}(3.4)= & \left(a_{1} / b_{1}\right) \sum_{\bar{\omega} \in\{0,1\}^{k-1}}(\bar{a} / \bar{b})^{\bar{\omega}} \prod_{j \in J(\bar{\omega})}\left(1-\bar{a}_{j} / \bar{a}_{j+1}\right) \\
& +\sum_{\substack{\bar{\omega} \in\{0,1\}^{k-1} \\
\bar{\omega}_{1}=0}}(\bar{a} / \bar{b})^{\bar{\omega}} \prod_{j \in J(\bar{\omega})}\left(1-\bar{a}_{j} / \bar{a}_{j+1}\right) \\
& +\left(1-a_{1} / a_{2}\right) \sum_{\bar{\omega} \in\{0,1\}^{k-1}}(\bar{a} / \bar{b})^{\bar{\omega}} \prod_{j \in J(\bar{\omega})}\left(1-\bar{a}_{j} / \bar{a}_{j+1}\right) \\
= & \left(1+a_{1} / b_{1}\right) \sum_{\bar{\omega} \in\{0,1\}^{k-1}}(\bar{a} / \bar{b})^{\bar{\omega}} \prod_{j \in J(\bar{\omega})}\left(1-\bar{a}_{j} / \bar{a}_{j+1}\right) \\
& -\left(a_{1} / a_{2}\right) \sum_{\bar{\omega} \in\{0,1\}^{k-1}}(\bar{a} / \bar{b})^{\bar{\omega}} \prod_{j \in J(\bar{\omega})}\left(1-\bar{a}_{j} / \bar{a}_{j+1}\right) \\
= & \left(1+a_{1} / b_{1}\right) \sum_{\bar{\omega} \in\{0,1\}^{k-1}}(\bar{a} / \bar{b})^{\bar{\omega}} \prod_{j \in J(\bar{\omega})}\left(1-\bar{a}_{j} / \bar{a}_{j+1}\right) \\
& -\left(a_{1} / b_{2}\right) \sum_{\overline{\bar{\omega}} \in\{0,1\}^{k-2}}(\overline{\bar{a}} / \overline{\bar{b}})^{\bar{\omega}} \prod_{j \in J(\overline{\bar{\omega}})}\left(1-\overline{\bar{a}}_{j} / \overline{\bar{a}}_{j+1}\right) .
\end{aligned}
$$

On the right of (3.4) we split the sum over τ according to

$$
\sum_{\tau \in\{0,1\}^{k}}=\sum_{\substack{\tau \in\{0,1\}^{k} \\ \tau_{1}=0}}+\sum_{\substack{\tau \in\{0,1\}^{k} \\ \tau_{1}=\tau_{2}=1}}+\sum_{\substack{\tau \in\{0,1\}^{k} \\ \tau_{1}=1, \tau_{2}=0}}
$$

Defining $\bar{\tau} \in\{0,1\}^{k-1}$ and $\overline{\bar{\tau}} \in\{0,1\}^{k-2}$ by $\bar{\tau}=\left(\tau_{2}, \ldots, \tau_{k}\right)$ and $\overline{\bar{\tau}}=\left(\tau_{3}, \ldots, \tau_{k}\right)$, this yields

$$
\begin{aligned}
\operatorname{RHS}(3.4)= & \sum_{\bar{\tau} \in\{0,1\}^{k-1}}(\bar{a} / \bar{b})^{\bar{\tau}} \prod_{j \in J(\bar{\tau})}\left(1-\bar{b}_{j} / \bar{b}_{j+1}\right) \\
& +\left(a_{1} / b_{1}\right) \sum_{\substack{\bar{\tau} \in\{0,1\}^{k-1} \\
\bar{\tau}_{1}=1}}(\bar{a} / \bar{b})^{\bar{\tau}} \prod_{j \in J(\bar{\tau})}\left(1-\bar{b}_{j} / \bar{b}_{j+1}\right) \\
& +\left(a_{1} / b_{1}\right)\left(1-b_{1} / b_{2}\right) \sum_{\substack{\bar{\tau} \in\{0,1\}^{k-1} \\
\bar{\tau}_{1}=0}}(\bar{a} / \bar{b})^{\bar{\tau}} \prod_{j \in J(\bar{\tau})}\left(1-\bar{b}_{j} / \bar{b}_{j+1}\right) \\
= & \left(1+a_{1} / b_{1}\right) \sum_{\bar{\tau} \in\{0,1\}^{k-1}}(\bar{a} / \bar{b})^{\bar{\tau}} \prod_{j \in J(\bar{\tau})}\left(1-\bar{b}_{j} / \bar{b}_{j+1}\right) \\
& -\left(a_{1} / b_{2}\right) \sum_{\bar{\tau} \in\{0,1\}^{k-1}}(\bar{a} / \bar{b})^{\bar{\tau}} \prod_{j \in J(\bar{\tau})}\left(1-\bar{b}_{j} / \bar{b}_{j+1}\right) \\
= & \left(1+a_{1} / b_{1}\right) \sum_{\bar{\tau}=0}(\bar{a} / \bar{b})^{\bar{\tau}} \prod_{j \in J, 1\}^{k-1}}\left(1-\bar{b}_{j} / \bar{b}_{j+1}\right) \\
& -\left(a_{1} / b_{2}\right) \sum_{\overline{\bar{\tau}} \in\{0,1\}^{k-2}}(\overline{\bar{a}} / \overline{\bar{b}})^{\bar{\tau}} \prod_{j \in J(\bar{\tau})}\left(1-\overline{\bar{b}}_{j} / \overline{\bar{b}}_{j+1}\right) .
\end{aligned}
$$

By our induction hypothesis this equates with the previous expression for the lefthand side of (3.4), completing the proof.

4. The A_{2} Rogers-Ramanujan identities

Let $(a ; q)_{0}=1,(a ; q)_{n}=\prod_{i=1}^{n}\left(1-a q^{i-1}\right)$ and $\left(a_{1}, \ldots, a_{k} ; q\right)_{n}=\left(a_{1} ; q\right)_{n} \cdots\left(a_{k} ; q\right)_{n}$.
Proposition 4.1. There holds

$$
\begin{equation*}
\sum_{\lambda, \mu} \frac{a^{|\lambda|} b^{|\mu|} q^{\left(\lambda^{\prime} \mid \lambda^{\prime}\right)+\left(\mu^{\prime} \mid \mu^{\prime}\right)-\left(\lambda^{\prime} \mid \mu^{\prime}\right)}}{(q ; q)_{n-\ell(\lambda)}(q ; q)_{m-\ell(\mu)} b_{\lambda}(q) b_{\mu}(q)}=\frac{(a b q ; q)_{n+m}}{(q, a q, a b q ; q)_{n}(q, b q, a b q ; q)_{m}} \tag{4.1}
\end{equation*}
$$

Proof. In Theorem 1.1 set $x_{i}=a q^{i}$ for $1 \leq i \leq n, x_{i}=0$ for $i>n, y_{j}=b q^{j}$ for $1 \leq j \leq m$ and $y_{j}=0$ for $j>m$. Using the homogeneity (2.4) and specialization (2.5), and noting that $2 n(\lambda)+|\lambda|=\left(\lambda^{\prime} \mid \lambda^{\prime}\right)$, gives (4.1).

We remark that (4.1) is a bounded version of the A_{2} case of the following identity for the A_{n} root system due to Hua [4] (and corrected in [3]):

$$
\begin{equation*}
\sum_{\lambda^{(1)}, \ldots, \lambda^{(n)}} \frac{q^{\frac{1}{2} \sum_{i, j=1}^{n} C_{i j}\left(\lambda^{(i)} \mid \lambda^{\left.(j)^{\prime}\right)}\right)} \prod_{i=1}^{n} a_{i}^{\left|\lambda^{(i)}\right|}}{\prod_{i=1}^{n} b_{\lambda^{(i)}}(q)}=\prod_{\alpha \in \Delta_{+}} \frac{1}{\left(a^{\alpha} q ; q\right)_{\infty}} . \tag{4.2}
\end{equation*}
$$

Here $C_{i j}=2 \delta_{i, i}-\delta_{i, j-1}-\delta_{i, j+1}$ is the (i, j) entry of the A_{n} Cartan matrix and Δ_{+}is the set of positive roots of A_{n}, i.e., the set (of cardinality $\binom{n+1}{2}$) of roots of the form $\alpha_{i}+\alpha_{i+1}+\cdots+\alpha_{j}$ with $1 \leq i \leq j \leq n$, where $\alpha_{1}, \ldots, \alpha_{n}$ are the simple roots of A_{n}. Furthermore, if $\alpha=\alpha_{i}+\alpha_{i+1}+\cdots+\alpha_{j}$ then $a^{\alpha}=a_{i} a_{i+1} \cdots a_{j}$.

For $M=\left(M_{1}, \ldots, M_{n}\right)$ with M_{i} a non-negative integer, we define the following bounded analogue of the sum in (4.2):

$$
R_{M}\left(a_{1}, \ldots, a_{n} ; q\right)=\sum_{\lambda^{(1)}, \ldots, \lambda^{(n)}} \frac{q^{\frac{1}{2} \sum_{i, j=1}^{n} C_{i j}\left(\lambda^{(i)^{\prime}} \mid \lambda^{\left(j^{\prime}\right)}\right)} \prod_{i=1}^{n} a_{i}^{\left|\lambda^{(i)}\right|}}{\prod_{i=1}^{n}(q ; q)_{M_{i}-\ell\left(\lambda^{(i)}\right)} b_{\lambda^{(i)}}(q)}
$$

By construction $R_{M}\left(a_{1}, \ldots, a_{n} ; q\right)$ satisfies the following invariance property.
Lemma 4.1. We have

$$
\sum_{r_{1}=0}^{M_{1}} \cdots \sum_{r_{n}=0}^{M_{n}} \frac{q^{\frac{1}{2} \sum_{i, j=1}^{n} C_{i j} r_{i} r_{j}} \prod_{i=1}^{n} a_{i}^{r_{i}}}{\prod_{i=1}^{n}(q ; q)_{M_{i}-r_{i}}} R_{r}\left(a_{1}, \ldots, a_{n} ; q\right)=R_{M}\left(a_{1}, \ldots, a_{n} ; q\right)
$$

Proof. Take the definition of R_{M} given above and replace each of $\lambda^{(1)}, \ldots, \lambda^{(n)}$ by its conjugate. Then introduce the non-negative integer r_{i} and the partition $\mu^{(i)}$ with largest part not exceeding r_{i} through $\lambda^{(i)}=\left(r_{i}, \mu_{1}^{(i)}, \mu_{2}^{(i)}, \ldots\right)$. Since $b_{\lambda^{\prime}}(q)=(q ; q)_{r-\mu_{1}} b_{\mu^{\prime}}(q)$ for $\lambda=\left(r, \mu_{1}, \mu_{2}, \ldots\right)$ this implies the identity of the lemma after again replacing each of $\mu^{(1)}, \ldots, \mu^{(n)}$ by its conjugate.

Next is the observation that the left-hand side of (4.1) corresponds to $R_{(n, m)}(a, b ; q)$. Hence we may reformulate the A_{2} instance of Lemma 4.1.

Theorem 4.1. For M_{1} and M_{2} non-negative integers

$$
\begin{array}{r}
\sum_{r_{1}=0}^{M_{1}} \sum_{r_{2}=0}^{M_{2}} \frac{a^{r_{1}} b^{r_{2}} q^{r_{1}^{2}-r_{1} r_{2}+r_{2}^{2}}}{(q ; q)_{M_{1}-r_{1}}(q ; q)_{M_{2}-r_{2}}} \frac{(a b q ; q)_{r_{1}+r_{2}}}{(q, a q, a b q ; q)_{r_{1}}(q, b q, a b q ; q)_{r_{2}}} \tag{4.3}\\
=\frac{(a b q ; q)_{M_{1}+M_{2}}}{(q, a q, a b q ; q)_{M_{1}}(q, b q, a b q ; q)_{M_{2}}}
\end{array}
$$

To see how this leads to the A_{2} Rogers-Ramanujan identity (1.2) and its higher moduli generalizations, let k_{1}, k_{2}, k_{3} be integers such that $k_{1}+k_{2}+k_{3}=0$. Making the substitutions

$$
\begin{array}{lll}
r_{1} \rightarrow r_{1}-k_{1}-k_{2}, & a \rightarrow q^{k_{2}-k_{3}}, & M_{1} \rightarrow M_{1}-k_{1}-k_{2}, \\
r_{2} \rightarrow r_{2}-k_{1}, & b \rightarrow q^{k_{1}-k_{2}}, & M_{2} \rightarrow M_{2}-k_{1},
\end{array}
$$

in (4.3), we obtain

$$
\begin{array}{r}
\sum_{r_{1}=0}^{M_{1}} \sum_{r_{2}=0}^{M_{2}} \frac{q^{r_{1}^{2}-r_{1} r_{2}+r_{2}^{2}}}{(q ; q)_{M_{1}-r_{1}}(q ; q)_{M_{2}-r_{2}}(q ; q)_{r_{1}+r_{2}}^{2}}\left[\begin{array}{l}
r_{1}+r_{2} \\
r_{1}+k_{1}
\end{array}\right]\left[\begin{array}{l}
r_{1}+r_{2} \\
r_{1}+k_{2}
\end{array}\right]\left[\begin{array}{l}
r_{1}+r_{2} \\
r_{1}+k_{3}
\end{array}\right] \tag{4.4}\\
=\frac{q^{\frac{1}{2}\left(k_{1}^{2}+k_{2}^{2}+k_{3}^{2}\right)}}{(q)_{M_{1}+M_{2}}^{2}}\left[\begin{array}{c}
M_{1}+M_{2} \\
M_{1}+k_{1}
\end{array}\right]\left[\begin{array}{c}
M_{1}+M_{2} \\
M_{1}+k_{2}
\end{array}\right]\left[\begin{array}{c}
M_{1}+M_{2} \\
M_{1}+k_{3}
\end{array}\right]
\end{array}
$$

where

$$
\left[\begin{array}{c}
n \\
m
\end{array}\right]=\left[\begin{array}{c}
n \\
m
\end{array}\right]_{q}= \begin{cases}\frac{\left(q^{n-m+1} ; q\right)_{m}}{(q ; q)_{m}} & \text { for } m \geq 0 \\
0 & \text { otherwise }\end{cases}
$$

is a q-binomial coefficient. The identity (4.4) which is equivalent to the type-II A_{2} Bailey lemma of [1, Theorem 4.3].

The idea is now to apply (4.4) to the A_{2} Euler identity [1, Equation (5.15)]

$$
\begin{align*}
& \sum_{k_{1}+k_{2}+k_{3}=0} q^{\frac{3}{2}\left(k_{1}^{2}+k_{2}^{2}+k_{3}^{2}\right)} \tag{4.5}\\
& \quad \times \sum_{w \in S_{3}} \epsilon(w) \prod_{i=1}^{3} q^{\frac{1}{2}\left(3 k_{i}-w_{i}+i\right)^{2}-w_{i} k_{i}}\left[\begin{array}{c}
M_{1}+M_{2} \\
M_{1}+3 k_{i}-w_{i}+i
\end{array}\right]=\left[\begin{array}{c}
M_{1}+M_{2} \\
M_{1}
\end{array}\right],
\end{align*}
$$

where $w \in S_{3}$ is a permutation of $(1,2,3)$ and $\epsilon(w)$ denotes the signature of w.
Replacing M_{1}, M_{2} by r_{1}, r_{2} in (4.5), then multiplying both sides by

$$
\frac{q^{r_{1}^{2}-r_{1} r_{2}+r_{2}^{2}}}{(q ; q)_{M_{1}-r_{1}}(q ; q)_{M_{2}-r_{2}}(q ; q)_{r_{1}+r_{2}}^{2}}
$$

and finally summing over r_{1} and r_{2} using (4.4) (with $k_{i} \rightarrow 3 k_{i}-w_{i}+i$), yields

$$
\begin{gather*}
\sum_{k_{1}+k_{2}+k_{3}=0} q^{\frac{3}{2}\left(k_{1}^{2}+k_{2}^{2}+k_{3}^{2}\right)} \sum_{w \in S_{3}} \epsilon(w) \prod_{i=1}^{3} q^{\left(3 k_{i}-w_{i}+i\right)^{2}-w_{i} k_{i}}\left[\begin{array}{c}
M_{1}+M_{2} \\
M_{1}+3 k_{i}-w_{i}+i
\end{array}\right] \tag{4.6}\\
=\sum_{r_{1}=0}^{M_{1}} \sum_{r_{2}=0}^{M_{2}} \frac{q^{r_{1}^{2}-r_{1} r_{2}+r_{2}^{2}}(q ; q)_{M_{1}+M_{2}}^{2}}{(q ; q)_{M_{1}-r_{1}}(q ; q)_{M_{2}-r_{2}}(q ; q)_{r_{1}}(q ; q)_{r_{2}}(q ; q)_{r_{1}+r_{2}}} .
\end{gather*}
$$

Letting M_{1} and M_{2} tend to infinity, and using the Vandermonde determinant

$$
\sum_{w \in S_{3}} \epsilon(w) \prod_{i=1}^{3} x_{i}^{i-w_{i}}=\prod_{1 \leq i<j \leq 3}\left(1-x_{j} x_{i}^{-1}\right)
$$

with $x_{i} \rightarrow q^{7 k_{i}+2 i}$, gives

$$
\begin{aligned}
& \frac{1}{(q ; q)_{\infty}^{3}} \sum_{k_{1}+k_{2}+k_{3}=0} q^{\frac{21}{2}\left(k_{1}^{2}+k_{2}^{2}+k_{3}^{2}\right)-k_{1}-2 k_{2}-3 k_{3}} \\
& \times\left(1-q^{7\left(k_{2}-k_{1}\right)+2}\right)\left(1-q^{7\left(k_{3}-k_{2}\right)+2}\right)\left(1-q^{7\left(k_{3}-k_{1}\right)+4}\right) \\
&=\sum_{r_{1}, r_{2}=0}^{\infty} \frac{q^{r_{1}^{2}-r_{1} r_{2}+r_{2}^{2}}}{(q ; q)_{r_{1}}(q ; q)_{r_{2}}(q ; q)_{r_{1}+r_{2}}} .
\end{aligned}
$$

Finally, by the A_{2} Macdonald identity [8]

$$
\begin{aligned}
& \sum_{k_{1}+k_{2}+k_{3}=0} \prod_{i=1}^{3} x_{i}^{3 k_{i}} q^{\frac{3}{2} k_{i}^{2}-i k_{i}} \prod_{1 \leq i<j \leq 3}\left(1-x_{j} x_{i}^{-1} q^{k_{j}-k_{i}}\right) \\
&=(q ; q)_{\infty}^{2} \prod_{1 \leq i<j \leq 3}\left(x_{i}^{-1} x_{j}, q x_{i} x_{j}^{-1} ; q\right)_{\infty}
\end{aligned}
$$

with $q \rightarrow q^{7}$ and $x_{i} \rightarrow q^{2 i}$ this becomes

$$
\sum_{r_{1}, r_{2}=0}^{\infty} \frac{q^{r_{1}^{2}-r_{1} r_{2}+r_{2}^{2}}}{(q ; q)_{r_{1}}(q ; q)_{r_{2}}(q ; q)_{r_{1}+r_{2}}}=\frac{\left(q^{2}, q^{2}, q^{3}, q^{4}, q^{5}, q^{5}, q^{7}, q^{7} ; q^{7}\right)_{\infty}}{(q ; q)_{\infty}^{3}}
$$

This result is easily recognized as the A_{2} Rogers-Ramanujan identity (1.2).
The identity (4.6) can be further iterated using (4.4). Doing so and repeating the above calculations (requiring the Vandermonde determinant with $x_{i} \rightarrow q^{(3 n+1) k_{i}+n i}$
and the Macdonald identity with $q \rightarrow q^{3 n+1}$ and $x_{i} \rightarrow q^{n i}$) yields the following A_{2} Rogers-Ramanujan-type identity for modulus $3 n+1$ [1, Theorem $5.1 ; i=k]$:

$$
\begin{aligned}
& \sum_{\substack{\lambda, \mu \\
\ell(\lambda), \ell(\mu) \leq n-1}} \frac{q^{(\lambda \mid \lambda)+(\mu \mid \mu)-(\lambda \mid \mu)}}{b_{\lambda^{\prime}}(q) b_{\mu^{\prime}}(q)(q ; q)_{\lambda_{n-1}+\mu_{n-1}}} \\
&=\frac{\left(q^{n}, q^{n}, q^{n+1}, q^{2 n}, q^{2 n+1}, q^{2 n+1}, q^{3 n+1}, q^{3 n+1} ; q^{3 n+1}\right)_{\infty}}{(q ; q)_{\infty}^{3}}
\end{aligned}
$$

In the large n limit ones recovers the A_{2} case of Hua's identity (4.2) with $a_{1}=a_{2}=$ 1.

References

1. G. E. Andrews, A. Schilling and S. O. Warnaar, An A_{2} Bailey lemma and Rogers-Ramanujantype identities, J. Amer. Math. Soc. 12 (1999), 677-702.
2. J. Fulman, The Rogers-Ramanujan identities, the finite general linear groups, and the HallLittlewood polynomials, Proc. Amer. Math. Soc. 128 (2000), 17-25.
3. J. Fulman, A probabilistic proof of the Rogers-Ramanujan identities, Bull. London Math. Soc. 33 (2001), 397-407.
4. J. Hua, Counting representations of quivers over finite fields, J. Algebra 226 (2000), 10111033.
5. M. Ishikawa, F. Jouhet and J. Zeng, A generalization of Kawanaka's identity for HallLittlewood polynomials and applications, preprint.
6. F. Jouhet and J. Zeng, Some new identities for Schur functions, Adv. Appl. Math. 27 (2001), 493-509.
7. F. Jouhet and J. Zeng, New identities of Hall-Littlewood polynomials and applications, The Ramanujan J., to appear.
8. I. G. Macdonald, Affine root systems and Dedekind's η-function, Inv. Math. 15 (1972), 91143.
9. I. G. Macdonald, Symmetric functions and Hall polynomials, second edition, (Oxford University Press, New-York, 1995).
10. L. J. Rogers, Second memoir on the expansion of certain infinite products, Proc. London Math. Soc. 25 (1894), 318-343.
11. J. R. Stembridge, Hall-Littlewood functions, plane partitions, and the Rogers-Ramanujan identities, Trans. Amer. Math. Soc. 319 (1990), 469-498.
12. S. O. Warnaar, Hall-Littlewood functions and the A_{2} Rogers-Ramanujan identities, Adv. Math. to appear, ArXiv:math.CO/0410592.

Department of Mathematics and Statistics, The University of Melbourne, ViC 3010, Australia

E-mail address: warnaar@ms.unimelb.edu.au

[^0]: Work supported by the Australian Research Council.

