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Abstract. A new fermionic formula for type A
(1)

n−1 supernomials is presented. This formula is
different from the one given by Hatayama et al. [6]. A new set of unrestricted rigged configurations
is introduced which is in bijection with the unrestricted crystal paths.
Résumé. On présente une nouvelle formule fermionique pour les supernomiales de type A

(1)

n−1. Cette
formule est différente de celle donnée par Hatayama et al. [6]. On présente un nouvel ensemble de
configurations ‘gréées’ sans restriction qui est en bijection avec l’ensemble des chemins cristallins
sans restriction.

1. INTRODUCTION

Supernomial coefficients were first introduced in [15] as q-analogs of the coefficient of x
a in the

expansion of
�

N

j=1
(1+x+x

2 + · · ·+x
j)Lj . They are generalizations of q-multinomial coefficients

and were used to prove Bose-Fermi or Rogers–Ramanujan-type identities. The supernomials of [15]
can be naturally associated with the algebra A

(1)

1 . Motivated by crystal base theory, supernomials
can be defined for any affine Kac–Moody Lie algebra as generating functions of unrestricted paths
with energy statistics [16, 6, 7, 5]. An explicit formula for the A

(1)
n supernomials for completely

symmetric and completely antisymmetric crystals was proved in [6]. This formula is called fermionic
as it is a manifestly positive expression. The purpose of this note is to give a new explicit expression
for supernomials of type A

(1)
n .

Our motivation to seek an explicit expression for supernomials is their appearance in general-
izations of the Bailey lemma [2]. Bailey’s lemma is a very powerful method to prove Rogers–
Ramanujan-type identities. In [16] a type An generalization of Bailey’s lemma was conjectured
which was subsequently proven in [18]. A type A2 Bailey chain, which yields an infinite family of
identities, was given in [1].

Recently, fermionic expressions for generating functions of unrestricted paths for type A
(1)

1 have
also surfaced in connection with box-ball systems. Takagi [17] establishes a bijection between box-
ball systems and a new set of rigged configurations to prove a fermionic formula for the q-binomial
coefficient. This bijection extends a bijection of Kirillov and Reshetikhin [9] between semi-standard
Young tableaux and rigged configurations to unrestricted paths.

In this note we define a new set of unrestricted rigged configurations for type A
(1)
n . A bijection

between this new set and the set of unrestricted crystal paths is given which preserves the statistics.
In particular this yields a new fermionic expression for the supernomial coefficients of type A

(1)
n .

Subsequently, a crystal structure on the new set of rigged configurations has been defined [12] which
can be used to establish the bijection and the correct properties of the statistics. These results gener-
alize to other affine simply-laced root systems. In this note we give an algorithmic definition of the
bijection by extending the definition in [10]. Details will be available in [4].

This paper is structured as follows. In section 2 we review crystals of type A
(1)
n , the definition

of unrestricted paths and the definition of supernomials as generating functions of unrestricted paths
with energy statistics. In section 3 we give our new definition of unrestricted rigged configurations
and derive from this a fermionic expression for the generating function of unrestricted rigged con-
figurations graded by cocharge. Our main results are stated in section 4. The fermionic formula
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of section 3 yield an explicit expression for the supernomials. This result is based on a bijection
between unrestricted paths and unrestricted rigged configurations.

2. UNRESTRICTED PATHS AND SUPERNOMIALS

A
(1)

n−1-supernomials were first introduced in [16] as generating functions of unrestricted paths
graded by an energy function. An unrestricted path is an element in the tensor product of crystals
B = B

rk,sk ⊗ B
rk−1,sk−1 ⊗ · · · ⊗ B

r1,s1 . As a set the crystal B
r,s of type A

(1)

n−1 is the set
of all column-strict Young tableaux of shape (sr) over the alphabet {1, 2, . . . , n}. Kashiwara [8]
introduced the notion of crystals and crystal graphs as a combinatorial means to study representations
of quantum algebras. In particular, there are Kashiwara operators ei, fi defined on the elements in
B

r,s for 0 ≤ i ≤ n. However, for the purpose of this note, we do not require the explicit action of
ei and fi.

Let λ = (λ1, λ2, . . . , λn) be an n-tuple of nonnegative integers. The set of unrestricted paths
is defined as

P(B,λ) = {b ∈ B | wt(b) = λ}.

Here wt(b) = (w1, . . . , wn) is the weight of b where wi counts the number of letters i in b.

Example 2.1. For B = B
1,1 ⊗B

2,2 ⊗B
3,1 of type A3 and λ = (2, 3, 1, 2) the path

b = 2 ⊗
1 2
2 4

⊗
1
3
4

is in P(B,λ).

There exists a crystal isomorphism R : B
r,s⊗B

r
′
,s

′

→ B
r
′
,s

′

⊗B
r,s, called the combinatorial

R-matrix. Combinatorially it is given as follows. Let b ∈ B
r,s and b

′ ∈ B
r
′
,s

′

. The product b · b′

of two tableaux is defined as the Schensted insertion of b
′ into b. Then R(b ⊗ b

′) = b̃
′ ⊗ b̃ is the

unique pair of tableaux such that b · b′ = b̃
′ · b̃.

The local energy function H : B
r,s ⊗ B

r
′
,s

′

→ � is defined as follows. For b ⊗ b
′ ∈

B
r,s ⊗B

r
′
,s

′

, H(b⊗ b
′) is the number of boxes of the shape of b · b′ outside the shape obtained by

concatenating (sr) and (s′
r
′

).

Example 2.2. For

b⊗ b
′ = 1 2

2 4
⊗

1
3
4

we have

b · b′ =
1 1 3
2 2 4
4

=
1
2
4
· 1 3

2 4
= b̃
′ · b̃.

so that

R(b⊗ b
′) = b̃

′ ⊗ b̃ =
1
2
4
⊗ 1 3

2 4
.

Since the concatentation of and is , the local energy function H(b⊗ b
′) = 0.

Now let B = B
rk,sk ⊗ · · · ⊗ B

r1,s1 be a k-fold tensor product of crystals. The tail energy
function

←−
D : B → � is given by

←−
D =

�

1≤i<j≤k

Hj−1Rj−2 · · ·Ri+1Ri,

where Hi (resp. Ri) is the local energy function (resp. combinatorial R-matrix) acting on the i-th
and (i + 1)-th tensor factors.

102



NEW EXPLICIT EXPRESSION FOR A
(1)
n SUPERNOMIALS

Definition 2.3. The q-supernomial coefficient is the generating function of unrestricted paths graded
by the tail energy function

SB,λ(q) =
�

b∈P(B,λ)

q

←−
D(b)

.

3. UNRESTRICTED RIGGED CONFIGURATIONS AND FERMIONIC FORMULA

Rigged configurations are combinatorial objects invented to label the solutions of the Bethe equa-
tions, which give the eigenvalues of the Hamiltonian of the underlying physical model [3]. Motivated
by the fact that representation theoretically the eigenvectors and eigenvalues can also be labelled by
Young tableaux, Kirillov and Reshetikhin [9] gave a bijection between tableaux and rigged configu-
rations. This result and generalizations thereof were proven in [10].

In terms of crystal base theory, the bijection is between highest weight paths and rigged configu-
rations. The new result of this note is an extension of this bijection to a bijection between unrestricted
paths and a new set of rigged configurations, which we define in this section. In [12] we also define
a crystal structure on this new set of rigged configurations.

Let B = B
rk,sk ⊗ · · · ⊗ B

r1,s1 and denote by L = (L
(a)

i
| (a, i) ∈ H) the multiplicity array

of B, where L
(a)

i
is the multiplicity of B

a,i in B. Here H = I × � >0 and I = {1, 2, . . . , n − 1}

is the index set of the Dynkin diagram An−1. The sequence of partitions ν = {ν(a) | a ∈ I} is a
(L, λ)-configuration if

(3.1)
�

(a,i)∈H

im
(a)

i
αa =

�

(a,i)∈H

iL
(a)

i
Λa − λ,

where m
(a)

i
is the number of parts of length i in partition ν

(a). Note that we do not require λ to be a
dominant weight here. The (quasi-)vacancy number of a configuration is defined as

p
(a)

i
=

�

j≥1

min(i, j)L
(a)

j
−

�

(b,j)∈H

(αa|αb) min(i, j)m
(b)

j
.

Here (·|·) is the normalized invariant form on the weight lattice P such that (αi|αj) is the Cartan
matrix. Let C(L, λ) be the set of all (L, λ)-configurations. We call p

(a)

i
quasi-vacancy number to

indicate that they can actually be negative in our setting. For the rest of the paper we will simply call
them vacancy numbers.

In the usual setting a rigged configuration (ν, J) consists of a configuration ν ∈ C(L, λ) together
with a double sequence of partitions J = {J (a,i) | (a, i) ∈ H} such that the partition J

(a,i) is
contained in a m

(a)

i
× p

(a)

i
rectangle. In particular this requires that p

(a)

i
≥ 0. For unrestricted paths

we need a bigger set, where the lower bound on the parts in J
(a,i) can be less than zero.

To define the lower bounds we need the following notation. Let λ
′ = (c1, c2, . . . , cn−1)

t where
ck = λk+1 + λk+2 + · · · + λn. We also set c0 = c1. Let A(λ′) be the set of tableaux of shape λ

′

such that the entries in column k are from the set {1, 2, . . . , ck−1} and are strictly decreasing along
each column.

Example 3.1. For n = 4 and λ = (0, 1, 1, 1), the set A(λ′) consists of the following tableaux

3 3 2
2 2
1

3 3 2
2 1
1

3 2 2
2 1
1

3 3 1
2 2
1

3 3 1
2 1
1

3 2 1
2 1
1

.

Given t ∈ A(λ′), we define the lower bound as

M
(a)

i
(t) = −

ca�

j=1

χ(i ≥ tj,a) +

ca+1�

j=1

χ(i ≥ tj,a+1),

where tj,a denotes the entry in row j and column a of t, and χ(S) = 1 if the the statement S is true
and χ(S) = 0 otherwise.
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Let M, p, m ∈ � such that m ≥ 0. A (M, p, m)-quasipartition µ is a tuple of integers µ =
(µ1, µ2, . . . , µm) such that M ≤ µm ≤ µm−1 ≤ · · · ≤ µ1 ≤ p. Each µi is called a part of µ. Note
that for M = 0 this would be a partition with at most m parts each not exceeding p.

Definition 3.2. An unrestricted rigged configuration (ν, J) is a configuration ν ∈ C(L, λ) to-
gether with a sequence J = {J (a,i) | (a, i) ∈ H} where J

(a,i) is a (M
(a)

i
(t), p

(a)

i
, m

(a)

i
)-

quasipartition for some t ∈ A(λ′). Denote the set of all unrestricted rigged configurations cor-
responding to (L, λ) by RC(L, λ).

Remark 3.3.

(1) Note that this definition is similar to the definition of level-restricted rigged configura-
tions [13, Definition 5.5]. Whereas for level-restricted rigged configurations the vacancy
number had to be modified according to tableaux in a certain set, here the lower bounds are
modified.

(2) For type A1 we have λ = (λ1, λ2) so that A = {t} contains just the single tableau

t =

λ2

λ2 − 1
...
1

.

In this case Mi(t) = − � λ2
j=1

χ(i ≥ tj,1) = −i. This agrees with the findings of [17].

The quasipartition J
(a,i) is called singular if it has a part of size p

(a)

i
. It is often useful to view

an (unrestricted) rigged configuration (ν, J) as a sequence of partitions ν where the parts of size i

in ν
(a) are labeled by the parts of J

(a,i). The pair (i, x) where i is a part of ν
(a) and x is a part of

J
(a,i) is called a string of the a-th rigged partition (ν, J)(a). The label x is called a rigging.

Example 3.4. Let n = 4, λ = (2, 2, 1, 1), L
(1)

1 = 6 and all other L
(a)

i
= 0. Then

(ν, J) = −2
0

0 −1

is an unrestricted rigged configuration in RC(L, λ), where we have written the parts of J
(a,i) next

to the parts of length i in partition ν
(a). To see that the riggings form quasipartitions, let us write the

vacancy numbers p
(a)

i
next to the parts of length i in partition ν

(a):

0
3

0 −1.

This shows that the labels are indeed all weakly below the vacancy numbers. For

4 4 1
3 3
2
1

∈ A(λ′)

we get the lower bounds
−2

−1 0 −1,

which are less or equal to the riggings in (ν, J).

The following statistics can be defined on the set of unrestricted rigged configurations. For
(ν, J) ∈ RC(L, λ) let

cc(ν, J) = cc(ν) +
�

(a,i)∈H

|J(a,i)|,

where |J (a,i)| is the sum of all parts of the quasipartition J
(a,i) and

cc(ν) =
1

2

�

a,b∈I

�

j,k≥1

(αa | αb) min(j, k)m
(a)

j
m

(b)

k
.
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Definition 3.5. The RC polynomial is defined as

RCL,λ(q) =
�

(ν,J)∈RC(L,λ)

q
cc(ν,J)

.

The RC polynomial is in fact Sn-symmetric in the weight λ. This is not obvious from its definition
as both (3.1) and the lower bounds are not symmetric with respect to λ.

Let SA(λ′) be the set of all nonempty subsets of A(λ′) and set

M
(a)

i
(S) = max{M

(a)

i
(t) | t ∈ S} for S ∈ SA(λ′).

By inclusion-exclusion the set of all allowed riggings for a given ν ∈ C(L, λ) is�
S∈SA(λ′)

(−1)|S|+1{J | J(a,i) is a (M
(a)

i
(S), p

(a)

i
, m

(a)

i
)-quasipartition}.

The q-binomial coefficient � m+p

m � , defined as�
m + p

m � =
(q)m+p

(q)m(q)p

where (q)n = (1 − q)(1 − q
2) · · · (1 − q

n), is the generating function of partitions with at most m

parts each not exceeding p. Hence the polynomial RCL,λ(q) may be rewritten as

RCL,λ(q) =
�

S∈SA(λ′)

(−1)|S|+1
�

ν∈C(L,λ)

q
cc(ν)+ � (a,i)∈H m

(a)
i

M
(a)
i

(S)

× �
(a,i)∈H

�
m

(a)

i
+ p

(a)

i
−M

(a)

i
(S)

m
(a)

i
�

called fermionic formula.

4. MAIN RESULTS

In this section we relate the fermionic formula for the RC polynomial of section 3 and the q-
supernomial coefficients of section 2.

Theorem 4.1. If L is the multiplicity array for the crystal B, then SB,λ(q) = RCL,λ(q).

This theorem follows immediately from the following result.

Theorem 4.2. There exists a bijection Φ : P(B,λ)→ RC(L, λ) which preserves the statistics, that

is,
←−
D (b) = cc(Φ(b)) for all b ∈ P(B,λ).

A proof of Theorem 4.2 is given in [4, 12].
In [12] a crystal structure is defined on the set of unrestricted rigged configurations which is

the same as the crystal structure on paths. The highest weight elements are given by the usual
rigged configurations and highest weight paths, respectively, for which Theorem 4.2 is known to hold
by [10]. Since the statistics is constant on all classical crystal components, the proof of Theorem 4.2
follows in general. It should be noted that the results in [12] hold for all for all simply-laced types,
not just type A

(1)

n−1. Hence Theorem 4.2 holds whenever there is a corresponding bijection for the
highest weight elements (for example for type D

(1)
n for symmetric powers [14] and antisymmetric

powers [11]). It is expected that using virtual crystals and the method of folding Dynkin diagrams,
these results can be extended to other affine root systems.

In this note, which is a summary of [4], we take a different approach and define the map Φ
algorithmically which generalizes the bijection of [10]. To define Φ we first need to define certain
maps on paths and rigged configurations. These maps correspond to the following operations on
crystals:

(1) If B = B
1,1 ⊗B

′, let lh(B) = B
′. This operation is called left-hat.
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(2) If B = B
r,s ⊗ B

′ with s ≥ 2, let ls(B) = B
r,1 ⊗B

r,s−1 ⊗ B
′. This operation is called

left-split.
(3) If B = B

r,1 ⊗B
′ with r ≥ 2, let lb(B) = B

1,1 ⊗B
r−1,1 ⊗B

′. This operation is called
box-split.

In analogy we define lh(L) (resp. ls(L), lb(L)) to be the multiplicity array of lh(B) (resp. ls(B),
lb(B)), if L is the multiplicity array of B. The corresponding maps on crystal elements are given
by:

(1) Let b = c⊗ b
′ ∈ B

1,1 ⊗B
′. Then lh(b) = b

′.
(2) Let b = c ⊗ b

′ ∈ B
r,s ⊗ B

′, where c = c1c2 · · · cs and ci denotes the i-th column of c.
Then ls(b) = c1 ⊗ c2 · · · cs ⊗ b

′.

(3) Let b =

b1

b2

...
br

⊗ b
′ ∈ B

r,1⊗B
′, where b1 < · · · < br . Then lb(b) = br ⊗

b1

...
br−1

⊗ b
′.

In the next subsection we define the corresponding maps on rigged configurations, and give the
bijection in subsection 4.2.

4.1. Operations on rigged configurations. Suppose L
(1)

1 > 0. The main algorithm on rigged
configurations as defined in [9, 10] for admissible rigged configurations can be extended to our
setting. For a tuple of nonnegative integers λ = (λ1, . . . , λn), let λ

− be the set of all nonnegative
tuples µ = (µ1, . . . , µn) such that λ − µ = er for some 1 ≤ r ≤ n where er is the canonical
r-th unit vector in � n. Define δ : RC(L, λ) → �

µ∈λ− RC(lh(L), µ) by the following algorithm.
Let (ν, J) ∈ RC(L, λ). Set `

(0) = 1 and repeat the following process for a = 1, 2, . . . , n − 1 or
until stopped. Find the smallest index i ≥ `

(a−1) such that J
(a,i) is singular. If no such i exists, set

rk(ν, J) = a and stop. Otherwise set `
(a) = i and continue with a + 1. Set all undefined `

(a) to∞.
The new rigged configuration (ν̃, J̃) = δ(ν, J) is obtained by removing a box from the selected

strings and making the new strings singular again. Explicitly

m
(a)

i
(ν̃) = m

(a)

i
(ν) +

��� �� 1 if i = `
(a) − 1

−1 if i = `
(a)

0 otherwise.

The partition J̃
(a,i) is obtained from J

(a,i) by removing a part of size p
(a)

i
(ν) for i = `

(a), adding
a part of size p

(a)

i
(ν̃) for i = `

(a) − 1, and leaving it unchanged otherwise. Then δ(ν, J) ∈
RC(lh(L), µ) where µ = λ− erk(ν,J).

Example 4.3. Let L be the multiplicity array of B = B
1,1⊗B

2,1⊗B
2,3 and λ = (2, 2, 2, 1, 1, 1).

Then

(ν, J) = −1
0

0
−1
−1

0 −1 −1 ∈ RC(L, λ).

Writing the vacancy numbers next to each part instead of the riggings we get

−1
0

0
−1
−1

1 −1 −1.

Hence `
(1) = `

(2) = 1 and all other `
(a) =∞, so that

δ(ν, J) = −1 0
−1 0 −1 −1.

Also cc(ν, J) = 2.
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Let s ≥ 2. Suppose B = B
r,s ⊗ B

′ and L the corresponding multiplicity array. Note that
C(L, λ) ⊂ C(ls(L), λ). Under this inclusion map, the vacancy number p

(a)

i
for ν increases by

δa,rχ(i < s). Hence there is a well-defined injective map i : RC(L, λ) → RC(ls(L), λ) given by
i(ν, J) = (ν, J).

Suppose r ≥ 2 and B = B
r,1 ⊗ B

′ with multiplicity array L. Then there is an injection
j : RC(L, λ) → RC(lb(L), λ) defined by adding singular strings of length 1 to (ν, J)(a) for
1 ≤ a < r. Moreover the vacancy numbers stay the same.

4.2. Bijection. The map Φ : P(B,λ) → RC(L, λ) is defined by various commutative diagrams.
Note that it is possible to go from B = B

rk,sk ⊗ B
rk−1,sk−1 ⊗ · · · ⊗ B

r1,s1 to the empty crystal
via successive application of lh, ls and lb.

Definition 4.4. Define that map Φ : P(B,λ) → RC(L, λ) such that the empty path maps to the
empty rigged configuration, and:

(1) Suppose B = B
1,1 ⊗B

′. Then the diagram

P(B, λ)
Φ

−−−−−→ RC(L, λ)

lh ��� ��� δ�
µ∈λ−

P(lh(B), µ) −−−−−→
Φ

�
µ∈λ−

RC(lh(L), µ)

commutes.
(2) Suppose B = B

r,s ⊗B
′ with s ≥ 2. Then the following diagram commutes:

P(B,λ)
Φ

−−−−−→ RC(L, λ)

ls ��� ��� i

P(ls(B), λ) −−−−−→
Φ

RC(ls(L), λ)

(3) Suppose B = B
r,1 ⊗B

′ with r ≥ 2. Then the following diagram commutes:

P(B,λ)
Φ

−−−−−→ RC(L, λ)

lb ��� ��� j

P(lb(B), λ) −−−−−→
Φ

RC(lb(L), λ)

It is shown in [4] that the map Φ of Definition 4.4 is indeed a well-defined bijection.

Example 4.5. Let B = B
1,1 ⊗B

2,1 ⊗B
2,3 and λ = (2, 2, 2, 1, 1, 1). Then

b = 3 ⊗
1
2
⊗ 1 2 3

4 5 6
∈ P(B, λ)

and Φ(b) is the rigged configuration (ν, J) of Example 4.3. We have
←−
D(b) = cc(ν, J) = 2.

Example 4.6. Let n = 4, B = B
2,2 ⊗ B

2,1 and λ = (2, 2, 1, 1). Then the multiplicity array
is L

(2)

1 = 1, L
(2)

2 = 1 and L
(a)

i
= 0 for all other (a, i). There are 7 possible unrestricted paths in

P(B,λ). For each path b ∈ P(B,λ) the corresponding rigged configuration (ν, J) = Φ(b) together
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with the tail energy and cocharge is summarized below.

b = 1 1
2 2

⊗ 3
4

(ν, J) = 0
−1
−1 0

←−
D(b) = 0 = cc(ν, J)

b = 1 1
2 4

⊗ 2
3

(ν, J) = −1 0
0

0
←−
D(b) = 1 = cc(ν, J)

b = 1 2
2 3

⊗ 1
4

(ν, J) = 0
0
0

−1
←−
D(b) = 1 = cc(ν, J)

b = 1 2
2 4

⊗ 1
3

(ν, J) = 0
0
−1 0

←−
D(b) = 1 = cc(ν, J)

b = 1 3
2 4

⊗ 1
2

(ν, J) = 0
0
0

0
←−
D(b) = 2 = cc(ν, J)

b = 1 1
2 3

⊗ 2
4

(ν, J) = −1 0 −1
←−
D(b) = 0 = cc(ν, J)

b = 1 2
3 4

⊗ 1
2

(ν, J) = −1 1 −1
←−
D(b) = 1 = cc(ν, J)

The supernomial in this case is RCL,λ(q) = 2 + 4q + q
2 = SB,λ(q).
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