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Abstract

We discuss a family of representations of Lie groups related to quantization with respect to the Dirac signature operator. The
combinatorics of these twisted representations is similar to that of the usual irreducible representations, but involve a specialization
of a q-analogue of the Kostant partition function. In particular, we prove signature analogues of the Kostant formula for weight
multiplicities and the Steinberg formula for tensor product multiplicities. Using symmetric functions, we also find, for type A,
analogues of the Weyl branching rule and the Gelfand-Tsetlin theorem.

Résumé

Nous étudions une famille de représentations de groupes de Lie liée à la quantisation par rapport à l’opérateur de signature de
Dirac. Ces représentations obéissent à des règles combinatoires semblables à celles qui régissent le cas classique des représentations
irréductibles, mais font appel à une spécialisation d’un q-analogue de la fonction de partition de Kostant. Nous donnons des
analogues des formules de Kostant, pour les multiplicités de poids, et de Steinberg, pour les multiplicités de facteurs dans les
produits tensoriels. À l’aide de fonctions symétriques, nous trouvons aussi en type A des analogues de la règle de bifurcation de
Weyl et de la théorie de Gelfand-Tsetlin.

Introduction

The results described in this note are closely related to an article of Guillemin, Sternberg and Weitsman [1] on signature quantiza-
tion.

A symplectic manifold (M, ω) is pre-quantizable if the cohomology class of ω is an integral class, i.e. is in the image of the
map H2(M, Z) → H2(M, R). This assumption implies the existence of a pre-quantum structure on M : a line bundle, L, and a
connection, ∇, such that curv(∇) = ω. If g is a Riemannian metric compatible with ω, then, from g and ω, one gets an elliptic
operation ∂/C : S+ → S−, the spin-C Dirac operator, and, by twisting this operator with L, an operator ∂/

L

C : S+⊗L→ S−⊗L.
If M is compact one can “quantize” it by associating with it the virtual vector space

Q(M) = Index ∂/
L

C . (1)

Moreover if G is a compact Lie group and τ a Hamiltonian action of G on M one gets from τ a representation of G on Q(M)

which is well-defined up to isomorphism (independent of the choice of g).

The results described in this note are closely related to two theorems in the article [1]. In this article the authors study the signature
analogue of spin-C quantization: i.e. they define the virtual vector space (1) by replacing ∂/C by the signature operator ∂/sig, and
prove signature versions of a number of standard theorems about quantized symplectic manifolds. The two theorems we’ll be
concerned with in this paper are the following.

1. Let G =
(

S1
)n and let M be a 2n-dimensional toric variety with moment polytope ∆ ⊆ R

n. Then, for spin-C quantization,
the weights of the representation of G on Q(M) are the lattice points, β ∈ ∆∩Z

n, and each weight occurs with multiplicity
1. For signature quantization the weights are the same; however, the weight β occurs with multiplicity 2n if β lies in Int(∆),
with multiplicity 2n−1 if it lies on a facet, and, in general, with multiplicity 2n−i if it lies on i facets. Further details can be
found in the work of Agapito [2].
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2. Let G be a compact simply connected Lie group, λ a dominant weight and Oλ = M the coadjoint orbit of G through λ. In
the spin-C theory, the representation of G on Q(M) is the unique irreducible representation Vλ of G with highest weight λ;
however, in the signature theory, it is the representation

˜Vλ = Vλ−ρ ⊗ Vρ , (2)

where ρ is half the sum of the positive roots. (This is modulo the proviso that λ− ρ be dominant.)

The article [1] also contains a signature version of the Kostant multiplicity formula. We recall that the Kostant multiplicity formula
computes the multiplicity with which a weight, µ, of T occurs in Vλ by the formula

∑

σ∈W

(−1)|σ|K(σ(λ + ρ)− (µ + ρ)) (3)

whereW is the Weyl group, |σ| is the length of σ inW , and K, the Kostant partition function (described below in Definition 1).
The signature version of the Kostant multiplicity formula computes the multiplicity m̃λ(µ) with which the weight µ appears in ˜Vλ

by a similar formula:
m̃λ(µ) =

∑

σ∈W

(−1)|σ|K2(σ(λ) − µ) (4)

where K2 is the q = 2 specialization of a new q-analogue of the Kostant partition function, described below.

Our initial goal in writing this paper was to give a purely algebraic derivation of this result; however we noticed that there are ˜Vλ

analogues of a number of other basic formulas in the representation theory of compact semisimple Lie groups, in particular, an
analogue of the Steinberg formula and, for GLkC, analogues of the Weyl branching rule and the Gelfand-Tsetlin theorem. Some
of the proofs are sketched but details can be found in [3].

The Kostant partition function and its q-analogues

We start by introducing the Kostant partition function.

Definition 1 The Kostant partition function for a root system Φ, given a choice of positive roots Φ+, is the function

K(µ) =

∣

∣

∣

{

(kα)
α∈Φ+

∈ N
|Φ+| :

∑

α∈Φ+

kαα = µ
}∣

∣

∣
, (5)

i.e. K(µ) is the number of ways that µ can be written as a sum of positive roots (see [4]).

Note that K(µ) can also be computed as the number of integer points inside the polytope

Qµ =
{

(kα)
α∈Φ+

∈ R
|Φ+|
≥0 :

∑

α∈Φ+

kαα = µ
}

. (6)

We can write down a generating function for the K(µ) that is very similar to Euler’s generating function for the number of partitions
(see [4, Section 25.2]):

∑

µ

K(µ)eµ =
∏

α∈Φ+

1

1− eα
. (7)

The classical q-analogue ̂Kq(µ) of K(µ), due to Lusztig [5], keeps track of how many times the roots appear:

̂Kq(µ) =
∑

(kα)α∈Qµ

q
�

kα , (8)

corresponding to the generating function

∑

µ

̂Kq(µ)eµ =
∏

α∈Φ+





∑

m≥0

qmemα



 =
∏

α∈Φ+

1

1− qeα
. (9)
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The q-analogue Kq(µ) that interests us here is the one that counts the integer points of Qµ according to how many of the kα’s are
nonzero:

Kq(µ) =
∑

(kα)
α
∈Qµ

q|{kα>0}| . (10)

In terms of generating functions, this translates to

∑

µ

Kq(µ)eµ =
∏

α∈Φ+



1 + q
∑

m≥1

eα



 =
∏

α∈Φ+

1 + (q − 1)eα

1− eα
. (11)

The representations Ṽλ = Vλ−ρ ⊗ Vρ

We are working in the context of a complex semisimple Lie algebra g with root system Φ, choice of positive roots Φ+ , and Weyl
groupW ; ρ is half the sum of the positive roots (or the sum of the fundamental weights). For a dominant weight λ, we denote by
Vλ the irreducible representation of g with highest weight λ. We will call a weight λ strictly dominant if λ − ρ is dominant. We
will use the notation Λ+ for the set of dominant weights, and Λ+

S
for the set of strictly dominant weights. For a strictly dominant

weight, we define the representation
˜Vλ = Vλ−ρ ⊗ Vρ (12)

and its character
χ̃

λ
= χ

Vλ−ρ⊗Vρ
= χ

λ−ρ
· χρ . (13)

The following theorem of Guillemin, Sternberg, and Weitsman [1] provides a formula for the multiplicities of the weights in
the weight space decomposition of ˜Vλ. This formula is very similar to the Kostant multiplicity formula (3), but uses the q = 2

specialization of the q-analogue of the Kostant partition function Kq(µ) introduced above, instead of the usual Kostant partition
function. The formula for the ˜Vλ multiplicities further distinguishes itself from the Kostant formula by being free of the ρ factors.

An analogue of the Kostant multiplicity formula for the Ṽλ

Theorem 2 (Guillemin-Sternberg-Weitsman [1]) Let λ be a strictly dominant weight. Then the multiplicity of the weight ν in
the tensor product ˜Vλ = Vλ−ρ ⊗ Vρ is given by

m̃λ(ν) = dim
(

˜Vλ

)

ν
=
∑

ω∈W

(−1)|ω|K2(ω(λ)− ν) , (14)

where |ω| is the length of ω in the Weyl group.

Proof. We give a simple proof here using the Weyl character formula. This formula expresses the character χ
λ

of Vλ as the
quotient

χ
λ

=
Aλ+ρ

Aρ

, (15)

where Aµ =
∑

ω∈W

(−1)|ω|eω(µ) . For ρ, we get the nice expression [4, Lemma 24.3]

Aρ =
∏

α∈Φ+

(

eα/2 − e−α/2
)

= eρ
∏

α∈Φ+

(

1− e−α
)

, (16)

which means, in particular, that we get

χ
ρ

=
A2ρ

Aρ

=

e2ρ
∏

α∈Φ+

(

1− e−2α
)

eρ

∏

α∈Φ+

(

1− e−α
)

= eρ
∏

α∈Φ+

(

1 + e−α
)

. (17)
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Thus, for λ strictly dominant,

χ̃
λ

= χ
λ−ρ
· χ

ρ
=

∑

ω∈W

(−1)|ω| eω(λ)
∏

α∈Φ+

1 + e−α

1− e−α
(18)

=
∑

ω∈W

(−1)|ω| eω(λ)
∑

µ

K2(µ) e−µ

=
∑

µ

∑

ω∈W

(−1)|ω|K2(µ) eω(λ)−µ . (19)

Extracting the coefficient of eν on both sides gives (14). �

The next step will be to use a formula due to Atiyah and Bott for the characters of the Vλ and ˜Vλ to break down ˜Vλ into its
irreducible components and find their multiplicities. The Atiyah-Bott formula [6, 7] gives the character of Vµ as

χ
µ

=
∑

ω∈W

eω(µ)
∏

α∈Φ+

1

1− e−ω(α)
. (20)

Remark 3 We can deduce this formula from the Weyl character formula (equation (15)) by first observing that
∏

α∈Φ+

(

1− e−ω(α)
)

= (−1)|ω|e
�
{α∈Φ+ : ω(α)∈Φ−}

∏

α∈Φ+

(

1− e−α
)

(21)

Also,
ρ− ω(ρ) =

∑

{α ∈ Φ+ : ω(α) ∈ Φ−} . (22)

Combining (21) with (22) gives
∏

α∈Φ+

(

1− e−ω(α)
)

= (−1)|ω|eρ−ω(ρ)
∏

α∈Φ+

(

1− e−α
)

, (23)

and we can translate Weyl’s character formula into the Atiyah-Bott formula using this equation.

For any ω ∈ W ,

χ
ρ

= eρ
∏

α∈Φ+

(

1 + e−α
)

= eω(ρ)
∏

α∈Φ+

(

1 + e−ω(α)
)

, (24)

since characters are invariant under the Weyl group action. Using this and the Atiyah-Bott formula, we can write1

χ̃
λ

= χ
λ−ρ
· χ

ρ
=

∑

ω∈W

eω(λ)
∏

α∈Φ+

1 + e−ω(α)

1− e−ω(α)
(25)

=
∑

ω∈W

eω(λ)
∏

α∈Φ+

1

1− e−ω(α)

∑

I⊆Φ+

e−ω(αI)

1Alternatively, we can obtain equation (25) from equation (18) by observing that for ω ∈ W ,

ω ·

����
α∈Φ+

1 + e−α

1 − e−α

��
=

�
α∈Φ+

1 + e−ω(α)

1 − e−ω(α)
= (−1)|ω|

�
α∈Φ+

1 + e−α

1 − e−α
.
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where as before, αI =
∑

α∈I

α . This gives

χ̃
λ

=
∑

I⊆Φ+





∑

ω∈W

eω(λ−αI )
∏

α∈Φ+

1

1− e−ω(α)



 . (26)

Letting, λI = λ− αI , we observe that if λI is dominant, the Atiyah-Bott formula tells us that

∑

ω∈W

eω(λ−αI )
∏

α∈Φ+

1

1− e−ω(α)
(27)

is the character χ
λI

of the irreducible representation VλI
, so that

χ̃
λ

=
∑

I⊆Φ+

χ
λI

and ˜Vλ = Vλ−ρ ⊗ Vρ =
⊕

I⊆Φ+

VλI
(28)

if all the λI are dominant.

Finally, since αI and αI′ can be equal for different subsets I and I ′, certain highest weights appear multiple times in the above
sums. For the weight µ = λI = λ − αI , we will get Vµ as many times as we can write αI = λ − µ as a sum of positive roots,
where each positive root appears at most once. Hence

˜Vλ =
∑

µ

P (λ− µ) Vµ , (29)

where the sum is over all µ such that µ = λI for some I , and P (ν) is given by

∑

ν

P (ν)eν =
∏

α∈Φ+

(1 + eα) . (30)

Remark 4 David Vogan pointed out to us that this decomposition is well-known and can be deduced from the Steinberg formula.
For type An, the number of distinct µ’s in the above sum is the number of forests of labelled unrooted tree on n + 1 vertices [8, 9].

A tensor product formula for the Ṽλ

We will derive here an analogue of the Steinberg formula for the ˜Vλ. Given two representations ˜Vλ and ˜Vµ, the problem is to
determine whether their tensor product ˜Vλ ⊗ ˜Vµ can be decomposed in terms of ˜Vν ’s. This is readily seen to be the case, as

˜Vλ ⊗ ˜Vµ = (Vλ−ρ ⊗ Vρ)⊗ (Vµ−ρ ⊗ Vρ) = (Vλ−ρ ⊗ Vρ ⊗ Vµ−ρ)⊗ Vρ . (31)

Breaking up Vλ−ρ ⊗ Vρ ⊗ Vµ−ρ into irreducibles Vγ and tensoring each factor with Vρ yields factors Vγ ⊗ Vρ = ˜Vγ+ρ. Thus for
strictly dominant weights λ and µ, we can write

˜Vλ ⊗ ˜Vµ =
∑

ν∈Λ
+
S

˜Nν

λµ
˜Vν (32)

for some nonnegative integers ˜Nν

λµ
.

Theorem 5 For λ, µ and ν strictly dominant weights, the tensor product multiplicity ˜Nν

λµ
of ˜Vν in ˜Vλ ⊗ ˜Vµ is given by

˜Nν

λµ =
∑

ω∈W

∑

σ∈W

(−1)|ωσ|K2(ω(λ) + σ(µ) − ν) . (33)

A Q-ANALOGUE OF THE KOSTANT PARTITION FUNCTION AND TWISTED REPRESENTATIONS
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Proof. Starting from the equation ˜Vλ ⊗ ˜Vµ =
∑

ν∈Λ
+
S

˜Nν

λµ
˜Vν , we can use equation (18) to write

∑

ω∈W

(−1)|ω|eω(λ)
∏

α∈Φ+

1 + e−α

1− e−α
· χ̃

µ
=
∑

ν∈Λ
+
S

˜Nν

λµ

∑

τ∈W

(−1)|τ |eτ(ν)
∏

α∈Φ+

1 + e−α

1− e−α
.

Cancelling terms and using Theorem 2 to write down the character χ̃
µ yields

∑

ω∈W

(−1)|ω|eω(λ) ·
∑

β

∑

σ∈W

(−1)|σ|K2(σ(µ) − β) eβ =
∑

ν∈Λ
+
S

˜Nν

λµ

∑

τ∈W

(−1)|τ |eτ(ν)

∑

β

∑

ω∈W

∑

σ∈W

(−1)|ω|+|σ|K2(σ(µ) − β) eω(λ)+β =
∑

ν∈Λ
+
S

∑

τ∈W

(−1)|τ | ˜Nν

λµ eτ(ν)

Substituting γ = ω(λ) + β on the left hand side, and γ = τ(ν) on the right hand side gives
∑

γ

∑

ω∈W

∑

σ∈W

(−1)|ωσ|K2(σ(µ) + ω(λ)− γ) eγ =
∑

γ conjugate
to a strictly

dominant weight

∑

τ∈W

(−1)|τ | ˜N
τ
−1(γ)

λµ
eγ ,

and extracting the coefficient of eγ on both sides yields
∑

ω∈W

∑

σ∈W

(−1)|ωσ|K2(σ(µ) + ω(λ)− γ) =
∑

τ∈W

(−1)|τ | ˜N
τ
−1(γ)

λµ
. (34)

Now, since ˜Nτ
−1(γ)

λµ
vanishes unless τ−1(γ) is strictly dominant, all the terms in the sum on the right hand side vanish except for

the one where τ is the identity (i.e. the term where γ = ν), and we get the result. �

If we denote by Nν

λµ
the multiplicities of the irreducible representations Vν in the tensor product Vλ ⊗ Vµ, defined by

Vλ ⊗ Vµ =
∑

ν∈Λ+

Nν

λµ Vν , (35)

then we can write down the tensor product multiplicities ˜Nν

λµ
for the decomposition of ˜Vλ ⊗ ˜Vµ into ˜Vν’s in terms of the Nν

λµ
as

follows:

˜Vλ ⊗ ˜Vµ = Vλ−ρ ⊗ Vρ ⊗ Vµ−ρ ⊗ Vρ

=









∑

β∈Λ+

Nβ

λ−ρ,ρ
Vβ



⊗ Vµ−ρ



⊗ Vρ

=





∑

β∈Λ+

∑

γ∈Λ+

Nβ

λ−ρ,ρ
Nγ

β,µ−ρ
Vγ



⊗ Vρ

=
∑

β∈Λ+

∑

γ∈Λ+

Nβ

λ−ρ,ρ
Nγ

β,µ−ρ
˜Vγ+ρ

=
∑

ν∈Λ
+
S

∑

β∈Λ+

Nβ

λ−ρ,ρ
Nν−ρ

β,µ−ρ
˜Vν ,

so that for strictly dominant ν,
˜Nν

λµ =
∑

β∈Λ+

Nβ

λ−ρ,ρ
Nν−ρ

β,µ−ρ
. (36)

Remark 6 In type A, there is a combinatorial interpretation for the coefficients N ν

λµ
in terms of shifted Young tableaux: they are

given by a shifted analogue of the Littlewood-Richardson rule (see [10]
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Links with symmetric functions in type A

As for the weight multiplicities and Clebsch-Gordan coefficients, there is a link between the character products χ̃
λ

= χ
λ−ρ
· χ

ρ

and symmetric functions in type A, again in terms of Schur functions.

The character of the irreducible polynomial representation Vλ of GLkC, where we now think of λ as a partition with k parts (al-
lowing the empty part) is the Schur function sλ(x1, . . . , xk). We will call a partition strict if all its parts are distinct (corresponding
to a strictly dominant weight). Thus we have that, for GLkC,

χ̃
λ

= χ
λ−ρ
· χ

ρ
= sλ−ρ(x1, . . . , xk) sρ(x1, . . . , xk) , (37)

for any strict partition λ. It is readily checked that the weight ρ corresponds to the partition (k − 1, k − 2, . . . , 1, 0).

Remark 7 We can also write the characters of ˜Vλ in terms of Hall-Littlewood polynomials (see [11, III, 1. and 2.]). The results
of the following sections can be deduced from this link with Hall-Littlewood polynomials, but we will rather use the Schur function
expression (37) for the characters. This makes the proofs a bit more technical but avoids the heavier machinery of Hall-Littlewood
polynomials.

A branching rule for the Ṽλ in type A

We have seen that the representations ˜Vλ behave somewhat like irreducible representations, in that tensor products of them can
be broken down into direct sums of ˜Vν ’s again, and that the multiplicities in those decompositions as well as in the weight space
decomposition are given by formulas very similar to those of Kostant and Steinberg in the irreducible case. The Weyl branching
rule (see [4] for example) describes how to restrict a representation Vλ from GLkC to GLk−1C. This rule can be applied iteratively
and provides a way to index one-dimensional subspaces of Vλ by diagrams (Gelfand-Tsetlin diagrams [12]) that is compatible
with the weight space decomposition. It is natural to ask whether the representations ˜Vλ of GLkC are also well-behaved under
restriction, or in another words, if there is an analogue of the Weyl branching rule for the ˜Vλ in type A.

For two partitions µ = (µ1, . . . , µm) and γ = (γ1, . . . , γm−1), we say that γ interlaces µ, and write γ C µ, if

µ1 ≥ γ1 ≥ µ2 ≥ γ2 ≥ µ3 ≥ · · · ≥ µm−1 ≥ γm−1 ≥ µm .

For two such partitions µ and γ such that γ C µ, we define

∇(µ, γ) =
∣

∣

{

i ∈ {1, 2, . . . , m− 1} : µi > γi > µi+1

}∣

∣ . (38)

In other words,∇(µ, γ) is the number of γi that are wedged strictly between µi and µi+1.

Theorem 8 The decomposition of the restriction of the representation ˜Vλ of GLkC to GLk−1C into irreducible representations of
GLk−1C is given by

ResGLkC

GLk−1C
˜Vλ =

⊕

ν∈Λ
+
S

: ν C λ

2∇(λ,ν)
˜Vν . (39)

Proof. We give here a sketch of the proof. We argue using characters and the fact that those can be written in terms of Schur
functions. We saw above (equation (37)) that the character of the representation ˜Vλ of GLkC is the product of Schur functions
sλ−ρ(x1, . . . , xk) sρ(x1, . . . , xk). We obtain the character of the restriction of ˜Vλ to GLk−1C by setting the last variable xk equal
to 1. Using well-known identities on Schur functions (see [13, Section 7.15] for example), we have that

sλ(x1, . . . , xk−1, 1) =
∑

µ C λ

sµ(x1, . . . , xk−1) . (40)

and
sρ(x1, . . . , xk) =

∏

1≤i<j≤k

(xi + xj) . (41)

Thus,

sλ−ρ(x1, . . . , xk−1, 1)sρ(x1, . . . , xk−1, 1) =
∑

µ C λ−ρ

sµ(x1, . . . , xk−1)
∏

1≤i<j≤k−1

(xi + xj)

k−1
∏

i=1

(xi + 1) . (42)

A Q-ANALOGUE OF THE KOSTANT PARTITION FUNCTION AND TWISTED REPRESENTATIONS
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We recognize the product
∏

1≤i<j≤k−1(xi +xj) as the Schur function sρ(x1, . . . , xk−1) (where ρ now corresponds to the partition

(k−2, k−3, . . . , 1, 0) with k−1 parts), and the product
∏k−1

i=1 (xi +1) as the sum (e0 +e1 + · · ·+ek−1) of elementary symmetric
functions in the variables x1, . . . , xk−1. A dual version of the Pieri rule [13, Section 7.15] describes how to break down the product
of a Schur function with an elementary symmetric function into Schur functions:

sµ em =
∑

ν

sν , (43)

where the sum is over all ν obtained from µ by adding a vertical strip of size m, i.e. over the ν such that µ ⊆ ν and the skew-shape
ν/µ consists of m boxes, no two of which are in the same row. As we are working in k − 1 variables, the sν with more than k − 1

parts vanish, so we can add the further constraint that the vertical strip be confined to the first k−1 rows (we will say such a vertical
strip has height at most k − 1). This gives

sλ−ρ(x1, . . . , xk−1, 1)sρ(x1, . . . , xk−1, 1) =
∑

µ C λ−ρ

∑

ν

sν(x1, . . . , xk−1) sρ(x1, . . . , xk−1)

χ̃
λ
(x1, . . . , xk−1, 1) =

∑

µ C λ−ρ

∑

ν

χ̃
ν+ρ

(x1, . . . , xk−1) (44)

where the sum is over all the ν that can be obtained from µ by adding a vertical strip of size and height at most k − 1. We can
rewrite this as

χ̃
λ
(x1, . . . , xk−1, 1) =

∑

µ C λ−ρ

∑

ν

χ̃
ν
(x1, . . . , xk−1) (45)

where the sum is over all strict partitions ν such that ν − ρ can be obtained from µ by adding a vertical strip of size and height at
most k − 1. Since the sνsρ are linearly independent, we can lift this to the level of representations to get

ResGLkC

GLk−1C
˜Vλ =

⊕

µ C λ−ρ

⊕

ν

˜Vν , (46)

with the sum over the same set of ν as before.

In order to compute the multiplicity of a given ˜Vν in ResGLkC

GLk−1C
˜Vλ, we define, for strict partitions λ and ν, n(λ, ν) to be the

number of ways that ν − ρ can be obtained by adding a vertical strip of size and height at most k − 1 to some partition µ such that
µ C λ− ρ, so that

˜Vλ =
⊕

ν∈Λ
+
S

n(λ, ν) ˜Vν . (47)

It can be checked that

n(λ, ν) =

{

2∇(λ,ν) if ν C λ and ν ∈ Λ+
S

,
0 otherwise.

(48)

�

Gelfand-Tsetlin theory for the Ṽλ

After restricting to GLk−1C, we can further restrict to GLk−2C. From now on, we will assume that all partitions are strict. We can
write

ResGLkC

GLk−2C
˜Vλ = Res

GLk−1C

GLk−2C

(

ResGLkC

GLk−1C
˜Vλ

)

= Res
GLk−1C

GLk−2C

(

⊕

ν C λ

2∇(λ,ν)
˜Vν

)

=
⊕

ν C λ

2∇(λ,ν) Res
GLk−1C

GLk−2C
˜Vν (49)

=
⊕

ν C λ

2∇(λ,ν)

(

⊕

µ C ν

2∇(ν,µ)
˜Vµ

)

(50)

=
⊕

µ C ν C λ

2∇(λ,ν)+∇(ν,µ)
˜Vµ . (51)
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Denoting by λ(m) = λ
(m)
1 ≥ · · · ≥ λ

(m)
m ≥ 0 the strict partitions indexing the representations ˜V of GLmC, we can iterate the

branching rule until we get to GL1C :

ResGLkC

GL1C
˜Vλ =

⊕

λ(1) C ···C λ(k) = λ

2∇(λ(k)
,λ

(k−1))+∇(λ(k−1)
,λ

(k−2))+···+∇(λ(2)
,λ

(1)) Vλ(1) . (52)

We will call a sequence of strict partitions of the form λ(1)
C · · · C λ(k) = λ a twisted Gelfand-Tsetlin diagram for λ, which

can be viewed schematically as

λ
(k)

1 λ
(k)

2 · · · λ
(k)

k−1 λ
(k)

k

λ
(k−1)
1 λ

(k−1)
2 · · · λ

(k−1)

k−1

. . .
... · ·

·

λ
(2)
1 λ

(2)
2

λ
(1)
1

(53)

with λ
(k)

j
= λj and each λ

(i)

j
is a nonnegative integer satisfying

λ
(i)

j
> λ

(i)

j+1 (54)

and
λ

(i+1)

j
≥ λ

(i)

j
≥ λ

(i+1)

j+1 (55)

for all 1 ≤ j ≤ i, 1 ≤ i ≤ k − 1.

Let ˜VD be the subspace of ˜Vλ corresponding to a twisted Gelfand-Tsetlin diagramD. This subspace has dimension 2∇(D), where

∇(D) = ∇(λ(k), λ(k−1)) +∇(λ(k−1), λ(k−2)) + · · ·+∇(λ(2), λ(1)) . (56)

We can also think of∇(D) as the number of triangles

λ
(i)

j
λ

(i)

j+1

λ
(i+1)

j

with strict inequalities λ
(i+1)

j
> λ

(i)

j
> λ

(i+1)

j+1 in the diagramD.

We show here that ˜VD lies completely within the same weight space of the weight space decomposition of ˜Vλ.

We will think of the groups GLkC as included into one another by identifying GLmC with








GLmC 0

0 idk−m









Consider the element I ∈ glmC and a representation ˜Vµ of GLmC. We have the representation GLkC → gl(Vµ ⊗ Vρ). For
v ∈ Vµ−ρ and w ∈ Vρ, we have

I · (v ⊗ w) = (I · v)⊗ w + v ⊗ (I · w)

=









m
∑

j=1

(µ− ρ)j



 v



⊗ w + v ⊗









m
∑

j=1

ρj



w





=





m
∑

j=1

((µ− ρ)j + ρj)



 v ⊗ w

=





m
∑

j=1

µj



 v ⊗ w ,
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since Vµ−ρ has highest weight µ− ρ and Vρ has highest weight ρ. So I ∈ glmC gets represented as (
∑m

j=1 µj) I in ˜Vµ.

In general, for

ResGLkC

GLmC
˜Vλ =

⊕

λ(m) C ···C λ(k)=λ

2∇(λ(k)
,λ

(k−1))+∇(λ(k−1)
,λ

(k−2))+···+∇(λ(m+1)
,λ

(m))
˜Vλ(m) ,

we will find that I ∈ glmC gets represented as (
∑m

i=1 λ
(m)

i
) I in ˜Vλ(m) .

Therefore, in the basis I1, . . . , Ik, the subspace ˜VD corresponding to a twisted Gelfand-Tsetlin diagramD has weight

(

1
∑

i=1

λ
(1)

i
,

2
∑

i=1

λ
(2)

i
, . . . ,

k
∑

i=1

λ
(k)

i

)

or
(

1
∑

i=1

λ
(1)

i
,

2
∑

i=1

λ
(2)

i
−

1
∑

i=1

λ
(1)

i
, . . . ,

k
∑

i=1

λ
(k)

i
−

k−1
∑

i=1

λ
(k−1)

i

)

in the usual basis J1, . . . , Jk.

In other words, ˜VD ⊆
(

˜Vλ

)

β
if

βm =

m
∑

i=1

λ
(m)

i
−

m−1
∑

i=1

λ
(m−1)

i
, (57)

or, equivalently,

β1 + · · ·+ βm =

m
∑

i=1

λ
(m)

i
. (58)

Hence twisted Gelfand-Tsetlin diagrams for λ correspond to the same weight if all their row sums are the same. So we have proved
the following analogue of the Gelfand-Tsetlin theorem [12].

Theorem 9 Let λ = (λ1, . . . , λk) be a strictly dominant weight. The dimension of the representation ˜Vλ of GLkC is given by

dim ˜Vλ =
∑

D

2∇(D) (59)

where the sum is over all twisted Gelfand-Tsetlin diagrams with top row λ.

Furthermore, the multiplicity m̃λ(β) of the weight β in ˜Vλ is given by

m̃λ(β) = dim
(

˜Vλ

)

β
=
∑

D

2∇(D) (60)

where the sum is over all twisted Gelfand-Tsetlin diagrams with top row λ and row sums satisfying equation (57) (or (58)).

Remark 10 We can also prove that ˜VD lies completely within a weight space of ˜Vλ using characters and Schur function identities.
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