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Abstract. We show that the number of monotone triangles with prescribed bottom
row (k1, . . . , kn) ∈ Zn, k1 < k2 < . . . < kn, is given by a simple product formula
which remarkably involves (shift) operators. Monotone triangles with bottom row
(1, 2, . . . , n) are in bijection with n × n alternating sign matrices.

1. Introduction

An alternating sign matrix is a square matrix of 0s, 1s and −1s for which the sum of
entries in each row and in each column is 1 and the non-zero entries of each row and
of each column alternate in sign. For instance,













0 0 0 1 0
0 1 0 −1 1
1 −1 1 0 0
0 1 −1 1 0
0 0 1 0 0













is an alternating sign matrix. In the early 1980s, Robbins and Rumsey [8] introduced
alternating sign matrices in the course of generalizing a determinant evaluation algo-
rithm. Out of curiosity they posed the question for the number of alternating sign
matrices of fixed size and, together with Mills, they came up with the appealing con-
jecture [7] that the number of n × n alternating sign matrices is

n−1
∏

j=0

(3j + 1)!

(n + j)!
. (1.1)

This turned out to be one of the hardest problems in enumerative combinatorics within
the last decades. In 1996, Zeilberger [10] finally succeeded in proving their conjecture.
Then, some months later, Kuperberg [5] realized that alternating sign matrices are
equivalent to a model in statistical physics for two-dimensional square ice. Using a
determinental expression for the partition function of this model discovered earlier by
physicists, he was able to provide a shorter proof of the formula. For a nice exposition
on this topic see [1].

Alternating sign matrices can be translated into certain triangular arrays of positive
integers, called monotone triangles. Monotone triangles are probably the right guise of
alternating sign matrices for a recursive treatment [1, Section 2.3]. In order to obtain
the monotone triangle corresponding to a given alternating sign matrix, replace every
entry in the matrix by the sum of entries in the same column above, the entry itself
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included. In our running example we obtain












0 0 0 1 0
0 1 0 0 1
1 0 1 0 1
1 1 0 1 1
1 1 1 1 1













.

Row by row we record the columns that contain a 1 and obtain the following triangular
array.

4
2 5

1 3 5
1 2 4 5

1 2 3 4 5

This is the monotone triangle corresponding to the alternating sign matrix above.
Observe that it is weakly increasing in northeast direction and in southeast direction.
Moreover, it is strictly increasing along rows. In general, a monotone triangle with n

rows is a triangular array (ai,j)1≤j≤i≤n such that ai,j ≤ ai−1,j ≤ ai,j+1 and ai,j < ai,j+1

for all i, j. It is not too hard to see that monotone triangles with n rows and bottom
row (1, 2, . . . , n), i.e. an,j = j, are in bijection with n×n alternating sign matrices. Our
main theorem provides a formula for the number of monotone triangles with prescribed
last row (k1, . . . , kn) ∈ Zn.

Theorem 1. The number of monotone triangles with n rows and bottom row k1, k2, . . . , kn

is given by
(

∏

1≤p<q≤n

(

id+Ekp
∆kq

)

)

∏

1≤i<j≤n

kj − ki

j − i
,

where Ex denotes the shift operator, defined by Ex p(x) = p(x + 1), and ∆x := Ex − id
denotes the difference operator.

In order to understand this formula, there are a few things to remark. The product
of operators is understood as the composition. Moreover note that the shift operators
commute, and consequently, it does not matter in which order the operators in the
product

∏

1≤p<q≤n

(

id+Ekp
∆kq

)

are applied. In order to use this formula to compute the

number of monotone triangles with bottom row (k1, . . . , kn), one first has to apply the
operator

∏

1≤p<q≤n

(

id +Exp
∆xq

)

to the polynomial
∏

1≤i<j≤n

xj−xi

j−i
and then set xi = ki.

Thus, it is not so clear how to derive (1.1) from this formula.

What is the significance of the formula? In the last decades, the enumeration of
plane partitions, alternating sign matrices and related objects subject to a variety
of different constraints has attracted a lot of interest. This attraction stems from
the fact that now and then these enumerations lead to appealing product formula or
hypergeometric series, which are, in spite of their simplicity, pretty hard to prove. At
the moment the search for these simple product formulas seems to be a bit exhausted.
Therefore, a new challenge is the search for possibilities to give enumeration formulas
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for the vast majority of enumeration problems for which there exists no closed formula
in a traditional sense. The formula in Theorem 1 contributes to this issue.

Also note that the second product in the formula in Theorem 1, i.e.
∏

1≤i<j≤n

kj−ki

j−i
,

is the number of semistandard tableaux of shape (kn − n, kn−1 − n, . . . , k1 − 1) and,
equivalently, the number of columnstrict plane partitions of this shape, see [9, p. 375,
in (7.105) q → 1]. In fact, these objects are in bijection with monotone triangles
with prescribed bottom row (k1, k2, . . . , kn) that are strictly increasing in southeast
direction, see [2, Section 5]. Thus, our formula once more gives an indication of the
relation between plane partitions and alternating sign matrices manifested by a number
of enumeration formulas which show up in both fields, a phenomenon which is not yet
well (i.e. bijectively) understood.

In this extended abstract we sketch the proof of Theorem 1. (See [4] for the full
version of this paper.) The method can roughly be described as follows. In the first step,
we introduce a recursion, which relates monotone triangles with n rows to monotone
triangles with n − 1 rows. This recursion immediately implies that the enumeration
formula is a polynomial in k1, k2, . . . , kn. In the next step we compute the degree
of the polynomial. Finally, we deduce enough properties of the polynomial in order
to compute it. The polynomial’s degree determines how much information is in fact
needed. This method is related to the method for proving polynomial enumeration
formulas we have introduced in [2] and extended in [3]. In the final section we mention
some problems around Theorem 1 we plan to consider next.

2. The recursion

In the following let α(n; k1, . . . , kn), n ≥ 1, denote the number of monotone triangles
with (k1, . . . , kn) as bottom row. If we delete the last row of such a monotone triangle
we obtain a monotone triangle with n − 1 rows and bottom row, say, (l1, l2, . . . , ln−1).
By the definition of a monotone triangle k1 ≤ l1 ≤ k2 ≤ l2 ≤ . . . ≤ kn−1 ≤ ln−1 ≤ kn

and li 6= li+1. Thus

α(n; k1, . . . , kn) =
∑

(l1,...,ln−1)∈Zn−1,

k1≤l1≤k2≤...≤kn−1≤ln−1≤kn,li 6=li+1

α(n − 1; l1, . . . , ln−1). (2.1)

We introduce the following abbreviation

∑

(l1,...,ln−1)∈Zn−1,

k1≤l1≤k2≤...≤kn−1≤ln−1≤kn,li 6=li+1

=:

(k1,...,kn)
∑

(l1,...,ln−1)

for n ≥ 2. This summation operator is well-defined for all (k1, . . . , kn) ∈ Zn with
k1 < k2 < . . . < kn. We extend the definition to arbitrary (k1, . . . , kn) ∈ Zn by
induction with respect to n. If n = 2 then

(k1,k2)
∑

(l1)

A(l1) :=

k2
∑

l1=k1

A(l1),
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where here and in the following we use the extended definition of the summation over
an interval, namely,

b
∑

i=a

f(i) =











f(a) + f(a + 1) + · · ·+ f(b) if a ≤ b

0 if b = a − 1

−f(b + 1) − f(b + 2) − · · · − f(a − 1) if b + 1 ≤ a − 1

. (2.2)

This assures that for any polynomial p(X) over an arbitrary integral domain I con-

taining Q there exists a unique polynomial q(X) over I such that
y
∑

x=0

p(x) = q(y) for

all integers y. We usually write
y
∑

x=0

p(x) for q(y). (We also use the analog extended

definition for the product symbol.) If n > 2 then

(k1,...,kn)
∑

(l1,...,ln−1)

A(l1, . . . , ln−1) :=

(k1,...,kn−1)
∑

(l1 ,...,ln−2)

kn
∑

ln−1=kn−1+1

A(l1, . . . , ln−2, ln−1) +

(k1,...,kn−1−1)
∑

(l1,...,ln−2)

A(l1, . . . , ln−2, kn−1).

We renew the definition of α(n; k1, . . . , kn) after this extension by setting α(1; k1) = 1
and

α(n; k1, . . . , kn) =

(k1,...,kn)
∑

(l1 ,...,ln−1)

α(n − 1; l1, . . . , ln−1).

This gives us an extension of our original function α(n; k1, . . . , kn) to arbitrary (k1, . . . , kn) ∈
Zn. The recursion implies that α(n; k1, . . . , kn) is a polynomial in k1, . . . , kn. We have
used this recursion (and a computer) to compute α(n; k1, . . . , kn) for n = 1, 2, 3, 4 and
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obtain the following

1, 1 − k1 + k2,
1

2
(−3k1 + k2

1 + 2k1k2 − k2
1k2 − 2k2

2 + k1k
2
2 + 3k3 − 4k1k3 + k2

1k3+

2k2k3−k2
2k3+k2

3−k1k
2
3+k2k

2
3),

1

12
(20k2+11k1k2−16k2

1k2+3k3
1k2+4k1k

2
2+3k2

1k
2
2−k3

1k
2
2+

4k3
2−5k1k

3
2+k2

1k
3
2−20k3+16k1k3−4k2

1k3−27k2k3+9k2
1k2k3−2k3

1k2k3−3k2
1k

2
2k3+k3

1k
2
2k3−

3k3
2k3+4k1k

3
2k3−k2

1k
3
2k3+16k1k

2
3−12k2

1k
2
3+2k3

1k
2
3−9k1k2k

2
3+6k2

1k2k
2
3−k3

1k2k
2
3+9k2

2k
2
3−

3k1k
2
2k

2
3−3k3

2k
2
3+k1k

3
2k

2
3−4k3

3+8k1k
3
3−2k2

1k
3
3−3k2k

3
3−2k1k2k

3
3+k2

1k2k
3
3+3k2

2k
3
3−k1k

2
2k

3
3−

27k1k4 +20k2
1k4 − 3k3

1k4 +16k2k4 +24k1k2k4 − 24k2
1k2k4 +4k3

1k2k4 − 16k2
2k4 +9k1k

2
2k4+

3k2
1k

2
2k4−k3

1k
2
2k4 +8k3

2k4−6k1k
3
2k4 +k2

1k
3
2k4 +11k3k4−24k1k3k4 +15k2

1k3k4−2k3
1k3k4−

9k2
2k3k4 + 2k3

2k3k4 − 4k2
3k4 + 9k1k

2
3k4 − 6k2

1k
2
3k4 + k3

1k
2
3k4 + 3k2

2k
2
3k4 − k3

2k
2
3k4 − 5k3

3k4+

6k1k
3
3k4−k2

1k
3
3k4−4k2k

3
3k4+k2

2k
3
3k4−20k1k

2
4+9k2

1k
2
4−k3

1k
2
4+4k2k

2
4+15k1k2k

2
4−9k2

1k2k
2
4+

k3
1k2k

2
4 − 12k2

2k
2
4 + 6k1k

2
2k

2
4 + 2k3

2k
2
4 − k1k

3
2k

2
4 + 16k3k

2
4 − 24k1k3k

2
4 + 9k2

1k3k
2
4 − k3

1k3k
2
4+

9k2k3k
2
4−6k2

2k3k
2
4 +k3

2k3k
2
4 +3k2

3k
2
4−3k1k

2
3k

2
4 +3k2k

2
3k

2
4−k3

3k
2
4+k1k

3
3k

2
4−k2k

3
3k

2
4−3k1k

3
4+

k2
1k

3
4 +2k1k2k

3
4−k2

1k2k
3
4−2k2

2k
3
4 +k1k

2
2k

3
4 +3k3k

3
4−4k1k3k

3
4 +k2

1k3k
3
4 +2k2k3k

3
4−k2

2k3k
3
4+

k2
3k

3
4 − k1k

2
3k

3
4 + k2k

2
3k

3
4).

From this data it is obviously hard to guess a general formula for α(n; k1, . . . , kn).
However, it seems plausible that the degree of α(n; k1, . . . , kn) in ki is n − 1. In the
following two sections we prove that this is indeed true. Note that at first glance the
linear growth of the degree is quite surprising: suppose A(l1, . . . , ln−1) is a polynomial
of degree no greater than R in each of li−1 and li. Then

degki





(k1,...,kn)
∑

(l1,...,ln−1)

A(l1, . . . , ln−1)



 =

degki





ki
∑

li−1=ki−1

ki+1
∑

li=ki

A(l1, . . . , ln−1) − A(l1, . . . , li−2, ki, ki, li+1, . . . , ln−1)



 ≤ 2R + 2

and there exist polynomials A(l1, . . . , ln−1) such that the upper bound 2R+2 is attained.
Consequently, α(n; k1, . . . , kn) must be of a very specific shape.

3. Sketch of the proof of Theorem 1

In this section we sketch the proof of the main theorem by presenting the relevant
lemmas without proofs.

Recall that the shift operator, denoted by Ex, is defined as Exp(x) = p(x + 1).
Clearly Ex is invertible in the algebra of operators of C[X] and we denote its inverse
by E−1

x . Observe that the shift operators with respect to different variables commute,
i.e. ExEy = EyEx. The difference operator ∆x is defined as ∆x = Ex−id. However, the
difference operator ∆x is not invertible since it decreases the degree of a polynomial.
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If we apply the shift operator or the delta operator to the i-th variable of a function,
we sometimes write Ei or ∆i, respectively, i.e. ∆ki

f(k1, . . . , kn) = ∆if(k1, . . . , kn).
Moreover, ∆2f(k3, k3, k3), for instance, is shorthand for

(∆l2f(l1, l2, l3))|l1=k3,l2=k3,l3=k3
.

The swapping operator Sx,y is applicable to functions in (at least) two variables and
defined as Sx,yf(x, y) = f(y, x). If we apply it to the i-th and j-th variable of a function
we sometimes write Si,j.

In the following we consider rational functions in shift operators. In order to guar-
antee that the inverse of the denominator always exists, we need the following lemma.

Lemma 1. Let p(x1, . . . , xn) be a polynomial in x1, x
−1
1 , x2, x

−1
2 , . . . , xn, x−1

n over C,

and fix an integer i, 1 ≤ i ≤ n. Consider the operator

id +∆ki
p(Ek1, Ek2 , . . . , Ekn

) =: Op

on C[k1, . . . , kn]. Then Op is invertible and the inverse is

Op−1 =
∞
∑

l=0

(−1)l∆l
ki

p(Ek1 , Ek2, . . . , Ekn
)l,

where ∆0
ki

p(Ek1, Ek2 , . . . , Ekn
)0 = id. Moreover

degki
G(k1, . . . , kn) = degki

Op G(k1, . . . , kn) = degki
Op−1 G(k1, . . . , kn).

We define two operators applicable to polynomials G(k1, . . . , kn) ∈ C[k1, . . . , kn]. We
set

Vki,kj
= id +E−1

ki
∆ki

∆kj
= E−1

ki
(id +Ekj

∆ki
)

and

Tki,ki+1
= (id +Eki+1

E−1
ki

Ski,ki+1
)

Vki,ki+1

Vki,ki+1
+ Vki+1,ki

.

By Lemma 1, the inverse (Vki,ki+1
+ Vki+1,ki

)−1 is well-defined. The following lemma
explains the significance of Tki,ki+1

for the recursion (2.1).

Lemma 2. Let A(l1, l2) be a polynomial in l1 and l2 which is of degree at most R

in each of l1 and l2. Moreover assume that Tl1,l2A(l1, l2) is of degree at most R as a

polynomial in l1 and l2, i.e. a linear combination of monomials lm1 ln2 with m + n ≤ R.

Then
(k1,k2,k3)
∑

(l1,l2)

A(l1, l2) =

k2
∑

l1=k1

k3
∑

l2=k2

A(l1, l2) − A(k2, k2)

is of degree at most R + 2 in k2. Moreover, if Tl1,l2A(l1, l2) = 0 then
(k1,k2,k3)
∑

(l1,l2)

A(l1, l2) is

of degree at most R + 1 in k2.

In order to use Lemma 2 to compute the degree of
(k1,k2,k3)
∑

(l1,l2)

A(l1, l2) in k2 one has

to compute the degree of Tl1,l2A(l1, l2) in l1 and l2. However, the operator Tl1,l2 is
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complicated and thus it is convenient to consider a simplified version of Tl1,l2 for this
purpose, which we obtain by multiplying an operator that preserves the degree.

T ′
ki,ki+1

= Eki
(Vki,ki+1

+ Vki+1,ki
)Tki,ki+1

=

(id +Ski,ki+1
)Eki

Vki,ki+1
= (id +Ski,ki+1

)(id +Eki+1
∆ki

)

Observe that degki,ki+1
Tki,ki+1

G(k1, . . . , kn) = degki,ki+1
T ′

ki,ki+1
G(k1, . . . , kn), since

Vki,ki+1
+ Vki+1,ki

= 2 id+(E−1
ki

+ E−1
ki+1

)∆ki
∆ki+1

and ∆ki
∆ki+1

decreases the degree of a polynomial in ki and ki+1. In particular,
Tki,ki+1

G(k1, . . . , kn) = 0 if and only if T ′
ki,ki+1

G(k1, . . . , kn) = 0.

Suppose A(l1, . . . , ln) is a function on Zn. Next we aim to express

T ′
ki,ki+1





(k1,...,kn+1)
∑

(l1,...,ln)

A(l1, . . . , ln)



 (k1, k2, . . . , kn+1)

in terms of T ′
li−1,li

A(l1, . . . , ln) and T ′
li,li+1

A(l1, . . . , ln). In particular, this shows that if

T ′
li,li+1

A(l1, . . . , ln) = 0 for all i = 1, 2, . . . , n − 1 then

T ′
ki,ki+1





(k1,...,kn+1)
∑

(l1,...,ln)

A(l1, . . . , ln)



 (k1, . . . , kn+1) = 0

for all i = 1, 2, . . . , n.

Lemma 3. Let f(k1, k2, k3) be a function from Z3 to C and define

g(k1, k2, k3, k4) :=

(k1,k2,k3,k4)
∑

(l1,l2,l3)

f(l1, l2, l3).

Then

T ′
2,3 g(k1, k2, k3, k4) =

−
1

2

(

k3
∑

l1=k2+1

k3
∑

l2=k2+1

k4
∑

l3=k2

T ′
1,2 f(l1, l2, l3) +

k2+1
∑

l1=k1

k3−1
∑

l2=k2

k3−1
∑

l3=k2

T ′
2,3 f(l1, l2, l3)

)

+
1

2

(

k3−1
∑

l1=k2

k3−1
∑

l2=k2

∆2(id+E1)T
′
1,2 f(l1, l2, k2) −

k3−1
∑

l2=k2

k3−1
∑

l3=k2

∆2(id+E3)T
′
2,3 f(k2 + 1, l2, l3)

)

+
1

2

(

T ′
1,2 f(k2, k2, k2 + 1) − T ′

1,2 f(k2, k2, k3 + 1) + T ′
2,3 f(k2, k2, k2) − T ′

2,3 f(k3, k2, k2)
)

− T ′
1,2 f(k2, k3, k2 + 1) − T ′

2,3 f(k2, k2, k3).

Moreover, for a function h(l1, l2) on Z2,

T ′
1,2





(k1,k2,k3)
∑

(l1,l2)

h(l1, l2)



 (k1, k2, k3) = −
1

2

k2−1
∑

l1=k1

k2−1
∑

l2=k1

T ′
1,2 h(l1, l2).
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This proves the statement preceding the lemma for n = 2, 3. It can easily be extended
to general n by deriving a merging rule for the recursion (2.1). For this purpose we need
another operator. Let f(x, z) be a function on Z2. Then the operator Iy

x,z transforms
f(x, z) into a function on Z by

Iy
x,zf(x, z) := f(y − 1, y) + f(y, y + 1) − f(y − 1, y + 1) = Vx,zf(x, z)|

x=y=z
.

With this definition we have
(k1,...,kn)
∑

(l1,...,ln−1)

A(l1, . . . , ln−1) = Iki

k′
i,k

′′
i

(k1,...,ki−1,k′
i)

∑

(l1,...,li−1)

(k′′
i ,ki+1,...,kn)
∑

(li,...,ln−1)

A(l1, . . . , ln).

If we combine Lemma 3 with this merging rule we obtain formulas for general n. These
formulas imply the following corollary.

Corollary 1. Suppose A(l1, . . . , ln) is a function on Zn with T ′
li,li+1

A(l1, . . . , ln) = 0
for all i, 1 ≤ i < n. Then

T ′
ki,ki+1





(k1,...,kn+1)
∑

(l1,...,ln)

A(l1, . . . , ln)



 (k1, . . . , kn+1) = 0

for all i, 1 ≤ i ≤ n.

We come back to α(n; k1, . . . , kn). By induction with respect to n we conclude that
T ′

ki,ki+1
α(n; k1, . . . , kn) = 0 for all i, 1 ≤ i < n, if n ≥ 2. (Note that α(2; k1, k2) =

k2 − k1 + 1.) Thus Tki,ki+1
α(n; k1, . . . , kn) = 0 for all i. Therefore, by Lemma 2 and

by induction with respect to n, the polynomial α(n; k1, . . . , kn) is of degree no greater
than n − 1 in every ki.

In the following we demonstrate that the property that T ′
ki,ki+1

α(n; k1, . . . , kn) =
0 for all i is not only fundamental for the computation of the polynomial’s degree
but already determines α(n; k1, . . . , kn) up to a multiplicative constant. Observe that
T ′

ki,ki+1
A(k1, . . . , kn) = 0 is equivalent with the fact that (id +Eki+1

∆ki
)A(k1, . . . , kn)

is antisymmetric in ki and ki+1. In the following lemma we characterize polynomials
A(k1, . . . , kn) with the property that (id +Eki+1

∆ki
)A(k1, . . . , kn) is antisymmetric in

ki and ki+1 for all i.

Lemma 4. Let A(k1, . . . , kn) be a polynomial in (k1, . . . , kn). Then

(id+Eki+1
∆ki

)A(k1, . . . , kn)

is antisymmetric in ki and ki+1 for all i, 1 ≤ i ≤ n − 1, if and only if
(

∏

1≤p<q≤n

(id +Ekq
∆kp

)

)

A(k1, . . . , kn)

is antisymmetric in k1, . . . , kn.

Using this lemma we see that
(

∏

1≤p<q≤n

(id +Ekq
∆kp

)

)

α(n; k1, . . . , kn) (3.1)
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is an antisymmetric polynomial in k1, . . . , kn. The product of shift operators does not
increase the polynomial’s degree and thus the degree of (3.1) in every ki is no greater
than n− 1. Every antisymmetric function in k1, . . . , kn is a multiple of

∏

1≤i<j≤n

(kj − ki)

and since this product is of degree n− 1 in every ki, the expression in (3.1) is equal to
C ·

∏

1≤i<j≤n

(kj − ki), where C is a rational constant. Therefore,

α(n; k1, . . . , kn) =

(

∏

1≤p<q≤n

1

id +Ekq
∆kp

)

C
∏

1≤i<j≤n

(kj − ki).

It is not too hard to show that the coefficient of k0
1k

1
2 . . . kn−1

n in α(n; k1, . . . , kn) is
C =

∏

1≤i<j≤n

1
j−i

. Consequently,

α(n; k1, . . . , kn) =

(

∏

1≤p<q≤n

1

id +Ekq
∆kp

)

∏

1≤i<j≤n

kj − ki

j − i
. (3.2)

We need a final lemma in order to derive Theorem 1 from that.

Lemma 5. Let P (X1, . . . , Xn) be a polynomial in (X1, . . . , Xn) over C which is sym-

metric in (X1, . . . , Xn). Then

P (Ek1, . . . , Ekn
)
∏

1≤i<j≤n

kj − ki

j − i
= P (1, . . . , 1) ·

∏

1≤i<j≤n

kj − ki

j − i
.

Observe that
∏

1≤p,q≤n

(1 + Xq(Xp − 1)) is symmetric in (X1, . . . , Xn). Thus, by

Lemma 5,
∏

1≤p,q≤n

(

id+Ekq
∆kp

)

∏

1≤i<j≤n

kj − ki

j − i
=

∏

1≤i<j≤n

kj − ki

j − i
.

Therefore, by (3.2),

α(n; k1, . . . , kn) =

(

∏

1≤p<q≤n

1

id +Ekq
∆kp

)

∏

1≤i<j≤n

kj − ki

j − i

=

(

∏

1≤p<q≤n

1

id +Ekq
∆kp

)(

∏

1≤p,q≤n

(

id +Ekq
∆kp

)

)

∏

1≤i<j≤n

kj − ki

j − i

=

(

∏

1≤p<q≤n

(

id +Ekp
∆kq

)

)

∏

1≤i<j≤n

kj − ki

j − i

and this completes the proof of Theorem 1.

4. Some further projects

In this section we list some further projects around the formula given in Theorem 1
we plan to pursue.
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(1) A natural question to ask is whether it is possible to derive the formula for the
number of n × n alternating sign matrices (1.1) from Theorem 1, i.e. to show
that

[(

∏

1≤p<q≤n

(

id +Ekq
∆kp

)

)

∏

1≤i<j≤n

kj − ki

j − i

]∣

∣

∣

∣

∣

(k1,k2,...,kn)=(1,2,...,n)

=

n−1
∏

j=0

(3j + 1)!

(n + j)!

More general, one could try to reprove the refined alternating sign matrix the-
orem [11], which states that the number of n × n alternating sign matrices in
which the unique 1 in the top row is in the k-th column is given by

(k)n−1(1 + n − k)n−1

(n − 1)!

n−1
∏

j=1

(3j − 2)!

(n + j − 1)!
. (4.1)

An analysis of the correspondence between alternating sign matrices and mono-
tone triangles shows that α(n − 1; 1, 2, . . . , k − 1, k + 1, . . . , n) is the number
of n × n alternating sign matrices in which the unique 1 in the bottom row
is in the k-th column and this is by symmetry equal to (4.1). This could be
a consequence of an even more general theorem: computer experiments sug-
gest that there are other (k1, k2, . . . , kn) ∈ Zn “near” (1, 2, . . . , n) for which
α(n; k1, . . . , kn) has small prime factors. Small prime factors are an indication
for a simple product formula. A similar phenomenon can be observed for some
(k1, k2, . . . , kn) ∈ Zn “near” (1, 3, . . . , 2n − 1). It is not too hard to see that
α(n; 1, 3, . . . , 2n − 1) is the number of (2n + 1)× (2n + 1) alternating sign ma-
trices, which are symmetric with respect to reflection along the vertical axis.
Kuperberg [6] showed that the number of these objects is given by

n!

(2n)!2n

n
∏

j=1

(6j − 2)!

(2n + 2j − 1)!
.

(2) Let β(n; k1, . . . , kn) denote the number of monotone triangles with prescribed
bottom row (k1, . . . , kn) that are strictly increasing in southeast direction. With
this notation, Theorem 1 states that

α(n; k1, . . . , kn) =

(

∏

1≤p<q≤n

(id +Ekp
∆kq

)

)

β(n; k1, . . . , kn). (4.2)

It would be interesting to find a bijective proof of this formula in the following
sense: if we expand the product of operators on the left hand side we obtain a
sum of expressions of the form

Ea1
k1

Ea2
k2

. . . Ean

kn
∆b1

k1
∆b2

k2
. . .∆bn

kn
β(n; k1, . . . , kn)

with ai, bi ∈ {0, 1, 2, . . .}. We can interpret these expressions as sums and
differences of cardinalities of certain subsets of the set of monotone triangles
with n rows. For instance,

∆kq
β(n; k1, . . . , kn)
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is the number of monotone triangles that are strictly increasing in southeast
direction and with bottom row (k1, . . . , kq + 1, . . . , kn) such that the (q − 1)-
st part of the (n − 1)-st row is equal to kq minus the number of monotone
triangles that are strictly increasing in southeast direction and with bottom
row (k1, . . . , kn) such that the q-th part of the (n − 1)-st row is equal to kq.
In order to prove (4.2), one has to show that these cardinalities add up to the
number of monotone triangles.

(3) This is more a remark than another project: to prove Theorem 1 I have more
or less carried out an analysis of the recursion (2.1). I originally started this
analysis when considering a somehow reversed situation: let an (r, n) monotone
trapezoid be a monotone triangle with the top n−r rows cut off and bottom row
(1, 2, . . . , n). Let γ(r, n; k1, . . . , kn−r+1) denote the number of (r, n) monotone
trapzoids with prescribed top row (k1, . . . , kn−r+1). In particular, γ(n, n; k) is
the number of monotone triangles with n rows, bottom row (1, 2, . . . , n) and
k as entry in the top row. In the bijection between alternating sign matrices
and monotone triangles, the entry in the top row of the monotone triangle
corresponds to the column of the unique 1 in the first row of the alternating
sign matrix. Thus, γ(n, n; k) must be equal to (4.1). On the other hand, we
can also use (2.1) to compute γ(r, n; k1, . . . , kn−r+1): γ(1, n; k1, . . . , kn) = 1 and

γ(r, n; k1, . . . , kn−r+1) =

(1,k1,...,kn−r+1,n)
∑

(l1,...,ln−r+2)

γ(r − 1, n; l1, . . . , ln−r+2).

With this extended definition, γ(n, n; k) is a polynomial in k. In the following
we list it for n = 1, 2, . . . , 6.

γ(1, 1; k) = 1

γ(2, 2; k) = −1 + 3 k − k2

γ(3, 3; k) =
1

12
(48 − 92 k + 103 k2 − 40 k3 + 5 k4)

γ(4, 4; k) =
1

72
(−2160 + 5910 k − 5407 k2 + 2940 k3

−919 k4 + 150 k5 − 10 k6)

γ(5, 5; k) =
1

1440
(584640 − 1644072 k + 1970008 k2

−1211172 k3 + 456863 k4 − 111708 k5

+17462 k6 − 1608 k7 + 67 k8)

γ(6, 6; k) =
1

7560
(−73316880 + 225502200 k

−284097336 k2 + 204504097 k3

−91897169 k4 + 27466950 k5

−5651016 k6 + 805518 k7

−77646 k8 + 4655 k9 − 133 k10)
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Unfortunately, these polynomials are not equal to (4.1). (For instance, they do
not factor over Z.) They only coincide on the combinatorial range {1, 2, . . . , n}
of k. However, it might still be possible to compute γ(n, n; k) for general n.

Strikingly the degree of γ(n, n; k) in k is 2n − 2 as the degree of (4.1).
This linear growth is again unexpected because the application of (2.1) can
more than double a polynomial’s degree, see Section 2. However, one can use
Lemma 2 and an extension of Lemma 3 to show that, more generally, the degree
of γ(r, n; k1, . . . , kn−r+1) is 2r − 2 in every ki.

(4) Finally we have started to investigate a q-version of the formula in Theorem 1,
i.e. a weighted enumeration of monotone triangles with prescribed bottom row
(k1, . . . , kn) which reduces to our formula as q tends to 1.
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