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Abstract

Let (W, S) and (W', S") be Coxeter systems, {Wx}rea and {W3, }rrens
the sets of the irreducible components of W relative to S and of W’ relative
to S’ respectively, and let f : W — W' be an isomorphism of abstract
groups. Their Coxeter graphs may not be isomorphic. We show that
T xen, wy <0 Wa) = HA,GA,"W;/KOO W3,, and that there is a unique
bijection ¢ : {A € A | [Wx] = oo} — {N € A" | |[W},/| = oo} such that
F(W) = W7,y mod Z(W') for every A € A with [Wy| = oo, where Z(W')
is the center of W’. We also determine which two finite Coxeter groups
are isomorphic. Our result reduces the problem of deciding whether two
Coxeter groups are isomorphic to the case of infinite irreducible Coxeter
groups. As a corollary we determine which irreducible Coxeter group is
directly indecomposable as an abstract group. In particular, any infinite
irreducible Coxeter group is directly indecomposable.

Soient (W, S) et (W', S’) deux systemes de Coxeter, {Wx}rca et {W5, barens
les ensembles des composantes irréductibles de W relative & S et de W’
relative & S’ respectivement, et soit f : W — W' un isomorphisme de
groupes abstraits. Leur graphes de Coxeter peuvent étre non isomor-
phes. Nous montrons que f([Tyca jw, <o WA) = HA,EI\/"W;/KOO Wi,
et qu’il y a une bijection unique ¢ : {A € A | [Wy| = oo} — {) € A |
[W/| = oo} telle que f(Wx) = W) mod Z(W’) pour chaque X € A avec
|[W| = oo, ot Z(W’') est le centre du W'. De plus, nous déterminons quel
deux groupes de Coxeter finis sont isomorphes. Noétre résultat ramene
le probléeme de juger si deux groupes de Coxeter sont isomorphes au
cas des groupes de Coxeter infinis irréductibles. Par conséquence, nous
déterminous quel groupe de Coxeter irréductible est directement indécomposable
comme un groupe abstrait. En particulier, un groupe de Coxeter infini
irréductible est directement indécomposable.

Introduction

A pair (W, S) with a group W and its generating set S is called a Cozeter system
if W has a presentation of the following form:

W = (S| (st)™D =1 (for s,t € S such that m(s,t) < c0) )

where m : xS — {1,2,3,...}U{oo} is a symmetric map such that m(s,t) =1
if and only if s = t. (Note that we need not assume the finiteness of the set
S.) We refer this S as a Cozxeter generating set of W, and a group W is called



a Cozxeter group if it has a Coxeter generating set. One of the most famous
examples of Coxeter groups is a (n-th) symmetric group S,,, where the set of n—1
adjacent transpositions forms a Coxeter generating set. Moreover, many of the
other important groups, such as elementary abelian 2-groups, dihedral groups,
signed-permutation groups, Weyl groups and finite (real) reflection groups, all
belong the class of Coxeter groups.

The map m above is usually given in the form of a Cozeter graph. This is
an unoriented simple graph on the vertex set S, and two vertices s, are joined
by an edge labelled m(s,t) if and only if 3 < m(s,t) < co (by convention, the
labels ‘3’ are usually omitted). For example, the Coxeter graph corresponding
to Sp, (with Coxeter generating set as above) is a simple path with n—1 vertices,
where all edges are unlabelled. It is nontrivial and crucial that the value m(s,t)
for s,t € S coincides with the order of the element st in W (in particular,
every generator s € S has order 2). This fact implies that the Coxeter graph
is indeed determined uniquely by a Coxeter system (W, S); in other words, we
have the 1-1 correspondence between Coxeter systems and Coxeter graphs (up
to isomorphism).

Now some group-theoretic questions arise naturally. The first one is:

Problem 1. Given a Coxeter group W, is the corresponding Coxeter graph,
with respect to a Coxeter generating set S, determined uniquely by the group W
and independent on the choice of S?

In other words, in which case do two Coxeter graphs define isomorphic Cox-
eter groups? Or more primitively, when are two Coxeter groups isomorphic?
This problem is called the isomorphism problem of Coxeter groups.

The second problem relates to the notion of irreducible decompositions of
Coxeter groups. Given a Coxeter system (W,S) with Coxeter graph I', a sub-
group of W of the form W; = (I), where I is the vertex set of a connected
component of T', is called an irreducible component of W (with respect to S).
It is well known that W is the (restricted) direct product of all the irreducible
components (in the viewpoint, W is called irreducible (with respect to S) if W
has no proper irreducible component). Now the second problem is:

Problem 2. Given a decomposition W = [[, Wi of a Cozxeter group W into
irreducible components, is this a finest decomposition of W as an abstract group?
In other words, is each irreducible component of W directly indecomposable as
an abstract group?

It has been well known that these two problems have counterexamples and
are never easy or trivial. Here we give two classical examples.

Example 3. We consider the group W(B,,) of signed-permutations on n let-
ters (or the hyperoctahedral group), the finite irreducible Coxeter group of type
B,,. It contains the even signed-permutation group W (D,,) (the finite irreducible
Cozeter group of type D, ) and the center Z(W(B,)) (which has order 2 and
s0 is ~ Sy = W(A1)) as normal subgroups. Now it is easily checked that if
n > 3 is odd, then W(B,,) is a direct product of these two subgroups. This
means that W (B,,) is directly decomposable, and W (B,,) and W(D,,) x W (A1)
are isomorphic Cozeter groups defined by non-isomorphic Cozeter graphs. This
is a counterexample of Problems 1 and 2.



Example 4. We consider the dihedral group D.,, of order 2m, the finite irre-
ducible Cozeter group W (Iz(m)) of type Ia(m). Recall that Dy, is the symmetry
group of a reqular m-gon A. If m = 2k is even, then we can obtain an inscribed
reqular k-gon A’ in A by joining every other vertexr of A. In this case, the
symmetry group Dy of A’ is embedded (as a normal subgroup) into D,y,, while
Dy, has the center of order 2 generated by the half-rotation (rotation of degree
7). Now if k is odd, then Dy, is a direct product of these two subgroups, so that
W(Iz(m)) ~ W (l2(k)) x W(Ay). This is the second counterezample.

Moreover, in a paper [8], Bernhard Miihlherr gives an interesting example of
two isomorphic non-finite irreducible Coxeter groups on four generators, which
are defined by non-isomorphic Coxeter graphs (this is probably the first coun-
terexample of Problem 1 for non-finite irreducible case).

The aim of this short report is to announce some recent results of the author
(and also some other related results) on these topics, which is presented in the
poster-session of the FPSAC’05. T would like to express my deep gratitude to
the organizers of this conference for giving me the opportunity of the presen-
tation, to the referees for their precise reading and precious comments for my
report, and to Prof. Itaru Terada (my supervisor) and Prof. Kazuhiko Koike for
their several advice and encouragement (especially for suggestion of application
for this conference).

Main results

Recall the well-known classification of finite irreducible Coxeter groups (see
[7], Chap. 2, etc.). Given a decomposition W = [], Wy of a Coxeter group
W into irreducible components Wy (with respect to a Coxeter generating set
S), we define the finite part Wa, of W as the product of all finite irreducible
components W) (note that W4, may not be a finite group, in the case that W
has infinitely many irreducible components). For Problem 1, the author proved
the followings:

Theorem 5 ([10], Theorem 3.4). Given two Cozeter systems (W, S), (W', S’),
we have W ~ W' (as abstract groups) if and only if the following two conditions
are satisfied:

1. Wﬁn ~ Wi_im,

2. there is a bijection between the set of non-finite irreducible components
of W and the set of those of W', such that the corresponding irreducible
components are isomorphic (as abstract groups) to each other.

Theorem 6 ([10], Theorem 3.4). Given two Coxeter systems (W, S), (W', S"),
let an, bn, ..., hq, iy denote the cardinality of the set of all irreducible compo-
nents of W (with respect to S) of type Ay, Bn,...,Hs, Is(m), respectively.
Define al,, b, ..., i, similarly from (W', S"). Then we have Wy, ~ W if and

only if all of the following equalities hold:

al + Z b2n+1 + er + hB + Z Z.41n+2 = a’/l + Z b/2n+1 + 6/7 + h/3 + Z Z.Zhn+2)

n>1 m>1 n>1 m>1

bs + a3 = bg + aé, b2n+1 + d2n+1 = bl2n+1 =+ dl2n+1 fO’I“ n> 2,



ag +i6 = ab +ig, Gamt1 + iamt2 = oy g+ igmye for m > 2,
an = a,, forn >4, by, = by, forn>1, do, = db, forn > 2,
en =€), forn=26,7,8, fs= fi, hs=h%, hy=h),
1om41 = iIQmH form > 2, i4pma0 = iimH_Q form > 1.

These theorems imply that now the isomorphism problem of Coxeter groups
are reduced completely to the case of non-finite irreducible Coxeter groups.
Moreover, as a byproduct, Theorem 5 shows that the set Wg, (not only its
group structure) is uniquely determined by W and independent on the choice
of S.

For Problem 2, the author also proved the following:

Theorem 7 ([10], Theorem 3.3). All nontrivial direct product decompositions
of irreducible Coxeter groups are one of the followings:

1. W(By,) =~ W(D,) x W(A1) for n >3 odd (where we put D3 = As),
2. W(I2(2k)) = W(I2(k)) x W(A1) for k>3 odd (where I3(3) = Az ),

3. W(E7) = W(E7)T xW (A1), where W denotes the subgroup of a Cozeter
group W of elements of even length,

4. W(Hg,) = W(Hg)Jr X W(Al)

In particular, all non-finite irreducible Coxeter groups are directly indecompos-
able as abstract groups, and the center of a directly decomposable irreducible
Coxeter group is always a nontrivial direct factor .

Remark 8. In view of this theorem, the equalities in Theorem 6 mean that,
when we decompose (owing to Theorem 7) each of Wan and W§  into directly
indecomposable factors, there is a 1-1 correspondence between the factors of Wgy
and those of W§,, such that the corresponding factors are isomorphic.

Note that the factors W (E7)™ and W (H3)" in Theorem 7 are not Coxeter
groups (namely the simple groups Sg(2) and As, respectively). Thus Examples
3 and 4 are the only nontrivial direct product decompositions of irreducible
Coxeter groups into other Coxeter groups.

We give further results related to Problem 1. The proofs of Theorems 5 and
6 given in [10] in fact describe the structure of arbitrary isomorphisms between
two isomorphic Coxeter groups. Thus, by taking the Coxeter groups as the same
group W, we can obtain a description of the automorphism group Aut W of W.
The following results are deduced in this way.

We prepare some notations. For a group G and a group homomorphism
f € Hom(G, Z(G)) from G to its center Z(G), we define an endomorphism
f’ € EndG of G by

P (w) = wf(w)™! forw e G.

Lemma 9 ([10], Lemma 2.2). The map f — f° is injective. Moreover, f’ is
invertible (i.e. f> € Aut G) if and only if the restriction fb|Z(G) of f* to Z(Q)
is an automorphism of Z(G).



Given a Coxeter group W (with a Coxeter generating set S), we have a
decomposition W = Ws, x [] rxea Wa, where W) runs over all non-finite irre-
ducible components of W (with respect to S). Put Wint = [],c, Wx. Then we
give a (unique) partition A = | |,z A¢ of the index set A such that Wy ~ W,
(as abstract groups) if and only if A and p belong the same part Ae. Now let
H; be the set of all f” such that f € Hom(Wiyne, Z(W)). Let Hy = Aut Why,
Hj the (complete) direct product of all Aut Wy (A € A) and Hy4 the (complete)
direct product of all symmetric groups Sym(A¢) of the sets A¢ (£ € ). Note
that all of Hy, H3 and Hy are naturally embedded into Aut W. Now we have:

Theorem 10 ([10], Theorem 3.10). The group Aut W decomposes as
Aut W = H1 X (H2 X Hg) Dall H4.
Moreover, the action of Hy fizes Ho pointwise and leaves Hs invariant.

Note that the group homomorphisms from a Coxeter group W to a group
of order 2 (and so the homomorphisms from W to the center Z(W) which is
an elementary abelian 2-group) are characterized as follows, by using an odd-
Coxeter graph. Here an odd-Cozxeter graph is the graph obtained from a Coxeter
graph by removing all but the edges with label odd. Then the following fact is
easy to check (by definition of Coxeter groups).

Lemma 11. Let W be a Cozeter group with odd-Cozeter graph T°% (with
respect to a Cozeter generating set S). Then for any map f from W to a group
of order 2, f is a group homomorphism if and only if f(s) = f(t) whenever
s,t € 8 are in the same connected component of I'°4d,

Next, we consider the automorphism group of the finite part Wsy,, which is
the factor Hy in Theorem 10. Owing to Theorem 7, we obtain a direct product
decomposition Wg, = Gg X Hie ;1 Gi of Way such that Gy is an elementary
abelian 2-group (namely the product of all factors ~ W(A;)) and each G; (i € I)
is either a finite irreducible Coxeter group of type other than A;, B, (n odd),
I>(2k) (k > 3 odd), E7 and Hs, or a simple group W (E7)" or W (Hs)" (and so
each G; is directly indecomposable as an abstract group). We give a partition
I =||,cy Lo of the index set I similarly. Let Hj be the set of all 1’ e Aut Wpn
such that f € Hom(Way, Z(Wsy)). Let H) be the (complete) direct product
of all AwtG; (i € I) and HY the (complete) direct product of all Sym(I,)
(v € T). Moreover, let H be the set of all f* such that f € Hom(Wgy, Z(Wan)),
f(Go) =1 and f(G;) C Z(G;) for any i € I. Then we have:

Theorem 12 ([10], Theorem 3.10). We have
Aut Wan = (H!HY) » HY and H! 0 H) = H},.
Moreover, Hf is normal in Aut Way, and the action of HY leaves H} invariant.

Note that the structure of Aut Wy, is still complicated because of the exis-
tence of the intersection H} of the factors H] and Hj. However, we can compute
the order of Aut W for finite Coxeter groups W see later sections.

Moreover, we consider a decomposition W = [Ty, W of a Coxeter group
W into (possibly finite) irreducible components Wy,. We give a similar partition
A" = Ugrezr Ay, of the index set A’. Then the (complete) direct product H of all



Aut Wy (N € A') and all Sym(A) (§' € £) is also embedded naturally into
AutW. (This H can be regarded as the set of automorphisms of W which are
easily seen by the decomposition of W.) Then the author proved the following:

Theorem 13 ([10], Theorem 3.10). The subgroup H of AutW has finite
index in Awt W if and only if either Z(W) =1 or the odd-Coxeter graph of W
consists of only finitely many connected components.

Note that Theorems 5, 6, 7 and 13 are also proved independently by Luis
Paris in [12], only for finitely generated Coxeter groups (in fact, in his proofs
the finiteness of the rank of the Coxeter group is essential).

Outline of the proof

Theorems 5 and 6 are proved by using Theorem 7. To prove Theorem 7, we first
show the following property of the centralizers of certain subgroups in Coxeter
groups.

Proposition 14 ([10], Theorem 3.1). Let H be a normal subgroup of a
Coxeter group W which is generated by involutions. Then the structure of the
centralizer Zyw (H) of H in W is described completely. In particular, if Z(W) C
Zw(H) € W, then there is a proper subgroup of W containing both H and
Zw(H).

For the proof, it follows from some group theory and properties of Cox-
eter groups that Zy (H) is the intersection of core subgroups Corey (Nyw (W7r))
(where Corew (G) is defined as the unique largest normal subgroup of W con-
tained in G) of the normalizers Ny (W;) of certain parabolic subgroups W7i.
Then the proof of Proposition 14 is reduced to the computation of the groups
Corew (Nw (Wr)). This is done by a certain graph-theoretical argument about
the Coxeter graph owing to some properties of the normalizers Ny, (W) exam-
ined by Brigitte Brink and Robert B. Howlett in a paper [3].

Once Proposition 14 is proved, a part of Theorem 7, namely the direct inde-
composability of non-finite irreducible Coxeter groups, is deduced immediately.
In fact, if a non-finite irreducible Coxeter group W admits a decomposition
W = G1 x G2 into subgroups, then (7 is generated by involutions (since it is
a quotient of W) and W = G1Zw (G;). Since now Z(W) = 1, we have (by
Proposition 14) either Zw (G1) = 1 or Zw(G1) = W (and so G; = 1). This
implies the desired direct indecomposability of W. The remaining part of the
theorem follows from a case-by-case argument based on the classification of fi-
nite irreducible Coxeter groups.

By a similar argument based on Proposition 14, if G; and G2 are groups gen-
erated by involutions and f : G; X G — W is a surjective homomorphism from
G1 X G5 to a Coxeter group W, then either f(G1) C Z(W) or f(G2) C Z(W).
Owing to this observation, Theorems 5, 6, 10 and 12 are deduced by simi-
lar arguments to the proof of the Remak-Krull-Schmidt Theorem about direct
product decompositions of groups (see [15], Section 4.6-4.7). Theorem 13 is
deduced from Theorems 10 and 12 together with Lemma 11.



Aut W of finite Coxeter groups W

As we predicted in a preceding section, we compute the order of the automor-
phism group Aut W (or its ‘growth’ |Aut W|/|W]) of an arbitrary finite Coxeter
group W by using Theorem 12. First, since H is normal in Aut W, the product
H{HJ consists of elements of the form wyws (w1 € Hi, wy € H}) and so we
have
|Aut W[ [Hj|- |Hy| - |Hj
W] | Hy| - W]

Let ay,...,im be as in Theorem 6 (now all but finitely many of those are 0),
and let W = Gy x Hiel G; be the decomposition of W introduced before the
statement of Theorem 12. Note that Gy is the direct product of the factors
~ W (A1), where the number N of factors is (by Theorem 7)

N =a; + Z bont1 +e7r 4+ hg + Z Tam+2-

n>1 m>1

Similarly, the numbers of factors G; (i € I) isomorphic to W (Asz), W(As),
W(D2n+1) (Tl > 2), W(IQ(2m + 1)) (m > 2), W(E7)+, W(H3)+ are as + iﬁ,
as + bs, b2n+1 + d2n+1, 2m+1 + t4m+2, €7, hs, respectively.

For the factor Hj of Aut W, we use the following easy group-theoretic lemma:

Lemma 15. Let G be a directly indecomposable non-abelian group such that
|Z(G)| <2. Then we have f(Z(G)) =1 for any homomorphism f from G to a
group of order 2.

Owing to this lemma, we have f(Z(G;)) = 1 for any f € Hom(W, Z(W))
(since Z(W) is an elementary abelian 2-group and each G; is either simple or a
directly indecomposable non-abelian Coxeter group). Thus we have

P (w) =w for w e Z(Gy), f(w) =wf(w) for w € Gy.

By regarding elementary abelian 2-groups as vector spaces over a finite field Fs,
this implies (owing to Lemma 9) that the order of Hj is equal to the number of
invertible matrices with coefficients in o of the form

In+X O
Y Iy

where N is as above,

M={iel|Z(G)#1}=> boum+ Y dont+es+fathat Y iam

n>1 n>2 m>2

(see Theorem 7) and X, Y are matrices of appropriate size with coefficients in
5. Thus we have

N
|Hj| = |GLy ()| - 2¥M = 2(2) T (27 — 1) - 2.
j=1

For the factor Hj, note that for any finite group G, we have

|[Aut G| |Aut G| _ |Out G|
G| G| -[Z(G)] [Z2(G)]




where Inn G, Out G = Aut G/Inn G denote the groups of inner, outer automor-
phisms of G, respectively. Then by Table I in [1] of outer automorphism groups
of finite irreducible Coxeter groups, |Aut G;|/|G;| (for i € I) is

2 if G; =~ W(As), W (Bz2,) (n>2),W(Ds,) (n>3),W(Hy) or W(H3)™"
4 if G; ~ W (Fy)

6 if G; ~ W(Dy)

)i Gy o W (Ia(m))

1 otherwise

(where ¢ is the Euler function). Note that p(4m+2) = ¢(2m+1) since 2m—+1 is
odd, and ¢(6)/2 = 1. Thus by the above observation on the numbers of factors
G; of each type, we have

| H | 1 |Aut G|
= Gl E Gl
- 2LN 209z bant Bz dan Hhotha g fa . s
. H ((M)hm“"'“mﬂ (M)“m)
m>2 2 5
= 27;’+a5+2n22(b2n+d2n)+2f4+h3+h4izm25im s H o

m>5

For the order of Hj, it follows immediately from definition that

|H§| = (aQ + Z6) (ag + b3 H Qp: H an' H d2n' H b2n+1 + d2n+1)

n>4 n>1 n>2 n>2

-66!67!€g!f4!h3!h4! H (i2m+1 +i4m+2)! H i4m!'

m>2 m>2

Moreover, by definition, |Hj| is equal to the product of the size of all
Hom(G;, Z(G;)), i € I. Since |Z(G;)| < 2, it follows from Lemma 11 that
the size of Hom(G;, Z(G;)) is

2 if Gy ~ W(Da,) (n>2),
4 if G; ~ W(Bay) (n>1),
1 otherwise.
Thus we have
|Hj| = 9231 bant 5o dontes+2fathat230, 5o dam

Now we compress the data a,, by, ..., i, into a symbol k, and write W = Wy,
N = Ny and M = My. Then in the following generating function

At Wil o X4, 0 X1p0m)™
Z |W|k H%H%

n>2 n m>5



(where the sum runs over all k such that all but finitely many contents are
0), the coefficient of X¥ = [Ls1Xa,“ - Iluss X1o@m)™ is (by the above
arguments)

2(1\;k)+NkMk_a1+a5_b2_Zn22 bp—er—es—3_,, 50 (tam—3+2i4m—2+iam—1+3iam)

. 3ds ﬁ@j —1) [T etm) - (@;iﬁ) (GBaEbB)

=1 m>5
. H (b2n+1 + d2n+1> H <i2m+1 + i4m+2)
n>2 b2n+1 m>2 12m+1

As a simple example, we consider the case that every irreducible component
of W is of type A; in other words, W is a Young subgroup of a symmetric group.
The corresponding generating function Fy is obtained from F by substituting

XBn =... :X]2(7n) =0. Put Xj :XAj (] > 1) Then we have
al
Fy(X, X)) = 30 20 [Tl - e -
a1,a2;... j=1
X1 1
= “\9 )1 2x- Xa, X3, X4, X¢, X7, ...
G(2)1_2X5;mA( 2, X3, X4, X6, X7,...)

where G(z) =), |GL,(F2)|z™ denotes the generating function of the order of
GL,,(F3), my is the monomial symmetric function and the sum runs over all
partitions A.

Further remarks

As we have seen above, we now have a complete solution to Problem 2 (Theorem
7). On the other hand, Problem 1, as well as computation of the automorphism
group, is basically reduced to the case of non-finite irreducible Coxeter groups
(see Theorems 5, 6, 10 and 12). Nevertheless, it is still true that this problem
is difficult to solve generally.

The study of the isomorphism problem of general Coxeter groups has been
developing rapidly only in this decade, especially in the last five years. Here we
summarize some recent results on this topic.

First we prepare some terminology. For a Coxeter system (W, S), let Rg(W)
be the set of reflections in W with respect to S; namely,

Rs(W) = {w € W | w is conjugate to some s € S}.

W is said to be rigid if all Coxeter generators S’ of W yield isomorphic Coxeter
graphs. W is said to be strongly rigid if all Coxeter generators S’ of W are
conjugate in W with each other (note that this name is valid, since strong
rigidity is actually stronger than rigidity). W (precisely, (W,S)) is said to be
(strongly) reflection rigid if the conclusion in definition of (strong) rigidity holds
for all Coxeter generators S’ contained in Rg(W). Moreover, W is said to be
reflection independent if the set Rg(W) of reflections is independent on the
choice of the Coxeter generating set S.
The followings are examples of the known results on these properties:



Theorem 16. Let (W, S) be a Cozxeter system.
1. ([2], Theorem 3.10) If W s finite, then (W, S) is reflection rigid.

2. ([2], Theorem 8.9) If (W, S) is ‘even’ (that is, m(s,t) is not odd for any
distinct s,t € S), then (W, S) is reflection rigid.

3. ([13]) If |S] < oo and (W, S) is ‘right-angled’ (that is, m(s,t) € {2,00}
for any distinct s,t € S), then W is rigid.

4. ([4]) If |S| < oo and W is capable of acting effectively, properly and co-
compactly on some contractible manifold, then W is strongly rigid. In
particular, affine Cozeter groups are strongly rigid.

5. ([9]) If |S| < oo and W is non-finite, irreducible and 2-spherical’ (that
is, m(s,t) < oo for any s,t € S), then W is strongly rigid.

On the other hand, for the counterexamples for these properties, we sum-
marize the properties of finite irreducible Coxeter groups in Table 1.

Table 1: List of properties of finite irreducible Coxeter groups

strongly
strongly reflection reflection

type rigid rigid rigid independent
A, (n #5) O O] O o)
As X O O X
By O O O O
B, (n >3 odd) X X O X
B, (n > 4 even) X O O X
D, (n>5 odd) O O O O
D, (n > 4 even) X O O X
Eg, E7 O O O O
Eg X O O X
Fy X O O X
Hjy X O X O
Hy X O X X
I(m) (m # 2 (mod 4)) X O X O
I(6) X X O X
I,(4k + 2) (k>2) X X X X

In this list, the reflection rigidity is omitted since it always holds.
The description of Aut W for finite irreducible W given in [1] is used.

We introduce an important operation, diagram twisting, on Coxeter graphs
and a related conjecture for the isomorphism problem. Let (W, S) be a Coxeter
system with Coxeter graph I'. A diagram twisting on I', with respect to two
subsets I,J C S satisfying certain conditions, is an operation which changes,
for each edge e of I between I and J, the terminal vertex s € J of e to the
new terminal vertex wo(J)swo(J) (where wo(J) denotes the longest element of
Wy its existence is due to the definition of diagram twistings). For the precise
definition, see the paper [2] in which diagram twistings are first introduced. It

10



is shown in [2] that, if we obtain another Coxeter graph I from T’ by a dia-
gram twisting, then there is canonically another Coxeter generating set S’ of
W which corresponds to I". In this case, we have Rg(W) = Rg/(W) but I and
I’ may be non-isomorphic. This means that, by using diagram twistings, we
can obtain many examples of non-rigid Coxeter groups (note that Miihlherr’s
example given in [8] which we mentioned above is one of such examples).

For the converse direction, the following conjecture is presented in [2]:

Conjecture 17 ([2], Conjecture 8.1). Let W be a Cozeter group and S, S’
two finite Cozeter generating sets of W. Let I, T be the Coxeter graphs of W
with respect to S, S’, respectively. If Rg(W) = Rg/(W), then I' is obtained
from T' by a finite number of consecutive diagram twistings. In other words,
finitely-generated Coxeter groups are reflection rigid up to diagram twistings.

Moreover, it is hoped by many researchers (including the author) that there
are (not too many) classes of special isomorphisms, described explicitly, between
Coxeter groups (such as diagram twistings) such that, an arbitrary isomorphism
between two Coxeter groups is made up from those special ones. If this is fortu-
nately true, then we can reduce the study of relations between some combina-
torial properties of two isomorphic Coxeter groups to the study of those special
isomorphisms.

Finally, we state some more recent results of the author. Note that, most
of the results on the isomorphism problem of Coxeter groups which have been
known now are only limited to the case of finitely generated Coxeter groups.
One of the reason is that now a main strategy for this problem is to analize
the maximal finite subgroups of given Coxeter groups, but in the non-finitely
generated cases, it happens very often that the Coxeter group has no maximal
finite subgroups. In contrast with those cases, the results of the author are
applicable to non-finitely generated cases as well as finitely generated cases.

We prepare some notations. For a generator z € S of a Coxeter system
(W, S), let W12 be the subgroup of W generated by all reflections t € Rg(W),
t # x, which commutes with 2. By a general result of Vinay V. Deodhar [5]
or of Matthew Dyer [6], W% forms a Coxeter group with a canonical Coxeter
generating set. Let W14, denote the finite part of this Coxeter group W=,

Theorem 18 ([11]). Let (W,S), (W', S") be two Coxeter system (where S or
S" may be infinite), f: W = W' an isomorphism and x € S.

1. The structure of Wz, is completely determined.

2. (See [14]) There are an inner automorphism g of W' and a finite subset
I' 8" of (—1)-type (i.e. every irreducible component of W/, has nontrivial
center) such that g o f(x) is the longest element wo(I") of W7},.

3. Suppose that there is a finite subset I' C S’ of (—1)-type such that f(x) =
wo(I'). Then f~Y(W},) C (x) x Wtg,.

4. Suppose that W%g, is either trivial or generated by a single reflection
t € Rg(W) congugate to x. Then f(x) € Rs/(W').

As an application of this theorem, the author obtained recently the follow-
ing results on reflection independence of some (possibly non-finitely generated)
Coxeter groups.
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Theorem 19 ([11]). Let (W, S) be a Coxeter system (where S may be infinite).
1. If W is non-finite, irreducible and 2-spherical, then W is reflection inde-

2

pendent.

. If W is non-finite and ‘odd-connected’ (that is, the odd-Coxeter graph T'°4d

is connected), then W is reflection independent.
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