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1. Introduction

The (0,1)-matrices have a wide variety of applications in combinatorics as well as
in computer science. A lot of research had been devoted to this area. By considering
the set of n × n (0,1)-matrices as a boolean monoid and relating them to posets,
one can get interesting representations of Sn. Note that Sn × Sn acts on matrices
by permuting rows and columns. Some aspects of the corresponding equivalence
relation are treated in [I] and [Li]. A simultaneous lexicographic ordering of the
rows and the columns using this action is shown in [MM].

The above action of Sn×Sn gives rise to a permutation representation of Sn×Sn

on (0,1)-matrices. If we diagonally embed Sn in Sn ×Sn we get a generalization of
the conjugacy representation of Sn.

Adin and Frumkin [AF] showed that the conjugacy character of the symmetric
group is close, in some sense, to the regular character of Sn. More precisely, the
quotient of the norms of the regular character and the conjugacy character as well
as the cosine of the angle between them tend to 1 when n tends to infinity. This
implies that these representations have essentially the same decompositions.

Roichman [R] further points out a wide family of irreducible representations of
Sn whose multiplicity in the conjugacy representation is asymptotically equal to
their dimension, i.e. their multiplicity in the regular representation.

In this paper we use the action of Sn × Sn on the (0,1)- matrices to define two
families of representations on a family of orbits of this action. The first family forms
an interpolation between the regular representation of Sn × Sn and the ’diagonal
sum’ of the irreducible representations of Sn:

⊕
λ`n Sλ ⊗ Sλ. The other family is

a generalization of the conjugacy representation of Sn. In both cases we calculate
characters and present the decomposition of these representations into irreducibles.
The second family of representations can be seen as an extension of the results of
[AF] and [R].

2. Preliminaries

2.1. Symmetric Groups. Sn is the group of all bijections from the set {1...n}
to itself. Every π ∈ Sn may be written in disjoint cycle form usually omit-
ting the 1-cycles of π. For example, π = 365492187 may also be written as
π = (9, 7, 1, 3, 5)(2, 6). Given π, τ ∈ Sn let πτ := π ◦ τ (composition of func-
tions) so that, for example, (1, 2)(2, 3) = (1, 2, 3). Note that two permutations are
conjugate in Sn if and only if they have the same cycle structure. In this paper we
write π ∼ σ if the permutations π and σ are conjugate in Sn. We denote by Ŝn
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the set of conjugacy classes of Sn and by Cπ ≤ Sn the centralizer subgroup of the
element π ∈ Sn. Let C(π) ⊆ Sn denote the conjugacy class of the element π ∈ Sn.
By supp(π) we mean the set of digits which are not fixed by π. An element π ∈ Sn

with |supp(π)| = t can be considered as an element of St and then Ct
π denotes the

centralizer subgroup of the element π in St while Ct(π) denotes the conjugacy class
of the element π in St. πkπn−k denotes an element of Sk × Sn−k where πk ∈ Sk

and πn−k ∈ Sn−k.
Ck×(n−k)(πkπn−k) denotes the conjugacy class of the element πkπn−k in Sk×Sn−k.

There is an obvious embedding of Sn in GLn(F) where is F is any field. Just
think about a permutation π ∈ Sn as an n × n matrix obtained from the identity
matrix by permutations of the rows. More explicitly: for every permutation π ∈ Sn

we identify π with the matrix:

[π]i,j =
{

1 i = π(j)
0 otherwise

Further we identify a permutation with the corresponding permutation matrix.

2.2. Color permutation groups. For later use, we define here the color permu-
tation groups. For r, n ∈ N, let Gr,n denote the group of all n by n monomial
matrices whose non-zero entries are complex r-th roots of unity. This group can
also be described as the wreath product Cr o Sn which is the semi-direct product
Cn

r o Sn, where Cn
r is taken as the subgroup of all diagonal matrices in Gr,n. For

r = 1, Gr,n is just Sn while for r = 2, Gr,n = Bn, the Weyl group of type B.

2.3. Representations.

2.3.1. Permutation representations. In this work we deal mainly with permutation
representations. Given an action of a group G on a set M , the appropriate rep-
resentation space is the space spanned by the elements of M on which G acts by
linear extension. We list two well known facts about permutation representations.

Fact 2.1. The character of the permutation representation calculated at some g ∈ G
equals to the number of fixed points under g.

Fact 2.2. The multiplicity of the trivial representation in a given permutation
representation is equal to the number of orbits under the corresponding action.

An important example we will use extensively in this work is the conjugacy
representation which is the permutation representation obtained by the action of
the group on itself by conjugation.

2.3.2. Representations of Sn. Let n be a nonnegative integer. A partition of n
is an infinite sequence of nonnegative integers with finitely many nonzero terms

λ = (λ1, λ2, . . .), where λ1 ≥ λ2 ≥ . . . and
∞∑

i=1

λi = n.

The sum
∑

λi = n is called the size of λ, denoted |λ|; write also λ ` n. The
number of parts of λ, `(λ), is the maximal j for which λj > 0. The unique partition
of n = 0 is the empty partition ∅ = (0, 0, . . . ), which has length `(∅) := 0. For a
partition λ = (λ1, . . . , λk, . . .) define the conjugate partition λ′ = (λ′1, . . . , λ

′
i, . . .)

by letting λ′i be the number of parts of λ that are ≥ i (∀i ≥ 1).
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A partition λ = (λ1, ..., λk) may be viewed as the subset

{(i, j) | 1 ≤ i ≤ k, 1 ≤ j ≤ λi} ⊆ Z2,

the corresponding Young diagram. Using this interpretation we may speak of the
intersection λ∩ µ, the set difference λ \ µ and the symmetric set difference λ4µ of

any two partitions. Note that |λ4µ| =
∞∑

k=1

|λk − µk|.
It is well known that the irreducible representations of Sn are indexed by par-

titions of n (See for example [Sa]) and the representations of Sn × Sn are indexed
by pairs of partitions (λ, µ) where λ, µ ` n. For every two representations of Sn,
λ and ρ, we denote by m(λ, ρ) the multiplicity of λ in ρ. If we denote by 〈 , 〉 the
standard scalar product of characters of a finite group G i.e.

〈χ1, χ2〉 =
1
|G|

∑

π∈G

χ1(π)χ2(π)

then m(λ, ρ) = 〈χλ, χρ〉.
Similarly, m

(
(λ, µ), ϕ

)
denotes the multiplicity of the representation of Sn × Sn

corresponding to the pair of partitions (λ, µ) , λ ` n , µ ` n in the decomposition
of ϕ, where ϕ is any representation of Sn × Sn.

We cite here for later use the branching rule for the representations of Sn. We
start with a definition needed to state the branching rule.

Definition 2.3. Let λ ` n be a Young diagram. Then a corner of λ is a cell
(i, j) ∈ λ such whose removal leaves leaves the Young diagram of a partition. Any
partition obtained by such a removal is denoted by λ−.

Proposition 2.4. [Sa] If λ ` n then

Sλ ↓Sn

Sn−1
∼=

⊕

λ−
Sλ− .

3. The action of Sn × Sn on invertible matrices

Definition 3.1. Let G be a subgroup of Sn × Sn and let F be any field. We define
an action of G on the group GLn(F) by

(π, σ) •A = πAσ−1 where (π, σ) ∈ G and A ∈ GLn(F) (1)

It is easy to see that this really defines a group action.
In this work we deal only with the cases: G = Sn × Sn and G = (Sk × Sn−k)×

(Sk × Sn−k).

Definition 3.2. Let M be a finite subset of GLn(F), invariant under the action
of Sn × Sn defined above. We denote by αM the permutation representation of G
obtained from the action (1) . In the sequel we identify the action (1) with the
permutation representation αM associated with it.

3.1. A generalization of the conjugacy representation of Sn. In this section
we present a conjugacy representation of Sn on a subset M of GLn(F).

Definition 3.3. Denote by β the permutation representation of Sn obtained by the
following action on M .

π ◦A = (π, π) •A = πAπ−1 (2)
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The connection between αM and βM is given by the following easily seen claim:

Claim 3.4. Consider the diagonal embedding of Sn into Sn × Sn. Then

βM = αM ↓Sn×Sn

Sn
. ¤

Theorem 3.5. For every finite set M ⊆ GLn(F) invariant under the action (1) of
Sn × Sn defined above:
If π and σ are conjugate in Sn then

χαM
((π, σ)) = χαM

((π, π)) = χβM
(π) = #{A ∈ M |πA = Aπ} .

If π is not conjugate to σ in Sn then

χαM
((π, σ)) = 0 .

Proof. See Theorem 4.5 in [CS]. ¤

4. The action of Sn × Sn on (0,1)-matrices

In this section we specialize the action (1) of Sn × Sn defined in Section 3 to
(0,1)-matrices. Consider the group G = GLn(Z2). For every A ∈ G denote by o(A)
the number of nonzero entries in A. One can associate with A a pair of partitions
of o(A) with n parts (η(A), θ(A)) where η(A) describes the distribution of nonzero
entries in the rows of A and θ(A) describes the same distribution for columns. For
example, if:

A =




1 0 0 0
1 1 1 0
0 0 1 0
1 1 1 1




then η(A) = (4, 3, 1, 1) ` 9 and θ(A) = (3, 3, 2, 1) ` 9.

If we fix a pair of partitions (η, θ) then the set of matrices corresponding to (η, θ)
is closed under the action (1), but this action is not necessarily transitive on such
a set, i.e. it can be decomposed into a union of several orbits.

We present now a family of subsets of GLn(Z2) which will be proven shortly to
be orbits of our action:

Definition 4.1.

H0
n = {A ∈ G | η(A) = θ(A) = (1, 1, 1, . . . , 1) = 1n}

H1
n = {A ∈ G | η(A) = (n, 1, 1, . . . , 1), θ(A) = (2, 2, . . . , 2, 1) = 2n−1 1}

H2
n = {A ∈ G | η(A) = (n, n− 1, 1, . . . , 1), θ(A) = (3, 3, . . . , 3, 2, 1) = 3n−2 2 1}

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Hk
n = {A ∈ G | η(A) = (n, n− 1, . . . , n− (k − 1), 1, . . . , 1),

θ(A) = (k+1, k+1, . . . , k+1, k, k−1, . . . , 2, 1) = (k+1)n−k k (k−1) . . . 2 1}
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

Hn
n = {A ∈ | η(A) = θ(A) = (n, n− 1, n− 2, . . . , n− (k − 1), . . . , 3, 2, 1)}
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Note that in the above example A ∈ H2
4 .

A few remarks on the sets Hk
n are in order: First, note that |Hk

n| = n!(n)k. Sec-
ondly, note that H0

n is Sn, embedded as permutation matrices. Also note that the
set H0

n∪H1
n is closed under matrix multiplication and matrix inversion and is actu-

ally isomorphic to the group Sn+1. Another simple observation is that Hn
n = Hn−1

n .

In order to prove that the sets Hk
n are transitive under the action we need the

following definition:

Definition 4.2. Denote by Un,k the following binary n× n matrix : the upper left
k×k block is upper triangular with the upper triangle filled by ones, the upper right
k× (n− k) block is filled by ones, the lower left (n− k)× k block is the zero matrix
and the lower right (n− k)× (n− k) block is the identity matrix In−k.

Proposition 4.3. Each set Hk
n is transitive under the action α of Sn × Sn. More

explicitly, Hk
n = {πUn,kσ |π, σ ∈ Sn}

For the case k = n the permutation representation αHk
n

can be easily described:

Proposition 4.4. The representation αHn
n

is isomorphic to the regular represen-
tation of Sn × Sn.

4.1. A natural mapping from Hk
n onto Sn. In this section we present an epi-

morphism between the representation of Sn × Sn on Hk
n to the representation of

Sn×Sn on Sn. We will use this mapping later when we decompose the permutation
representation α into irreducibles representations.

Definition 4.5. Define the mapping Tn,k : Hk
n −→ Sn by Tn,k(πUn,kσ) = πσ.

Proposition 4.6. The mapping Tn,k preserves the action α of Sn×Sn on Hk
n, i.e.

Tn,k(πAσ) = πTn,k(A)σ for any A ∈ Hk
n.

It is also clear from the definition that Tn,k is onto and it is easy to see that
|T−1

n,k(π)| = k!
(
n
k

)
= (n)k.

5. The representation βM for M = Hk
n.

In [F] it was proven that the conjugacy representation of Sn contains every
irreducible representation of Sn as a constituent. The representation β defined in
Section 3.1 is a type of a conjugacy representation of Sn on Hk

n.

Proposition 5.1. Denote the conjugacy representation of Sn by ψ. Then every
irreducible representation of Sn is a constituent in βHk

n
. In other words

m
(
λ, βHk

n

)
> 0 for any λ ` n.

where m
(
λ, βHk

n

)
denotes the multiplicity of the irreducible representation corre-

sponding to λ in βHk
n
.

We turn now to the calculation of the character of βHk
n
. By the definition, we

have:

χβ
Hk

n
(π) (= χα

Hk
n
(π, π)) = #{A ∈ Hk

n |πA = Aπ}
but we can achieve much more than that:
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Proposition 5.2.

χβ
Hk

n
(π) = |Cπ|(n− |supp(π)|)k = (n− |supp(π)|)kχConj(π)

where χConj is the conjugacy character of Sn.

We turn now to the calculation of the multiplicity of every irreducible represen-
tation of Sn in βHk

n
.

Proposition 5.3. Let λ ` n.

m
(
λ, βHk

n

)
=

∑

C∈Ŝn

χλ(C)(n− |supp(C)|)k

where Ŝn denotes the set of conjugacy classes of Sn. ¤

6. Asymptotic behavior of the representation βHk
n
.

In this section we generalize the results of Roichman [R], Adin, and Frumkin [AF]
concerning the asymptotic behavior of the conjugacy representation of Sn. These
two results imply that the conjugacy representation and the regular representation
of Sn have essentially the same decomposition. In our case, as we prove in this
section, the representation βHk

n
is essentially (n)k times the regular representation

of Sn. We start by citing the result from [R].
Theorem R1 Let m(λ) be the multiplicity of the irreducible representation Sλ

in the conjugacy representation of Sn, and let fλ be the multiplicity of Sλ in the
regular representation of Sn. Then for any 0 < ε < 1 there exist 0 < δ(ε) and N(ε)
such that, for any partition λ of n > N(ε) with max{λ1

n ,
λ′1
n } ≤ δ(ε),

1− ε <
m(λ)
fλ

< 1 + ε.

The following generalization of this theorem is straightforward:

Proposition 6.1. For any 0 < ε < 1 there exist 0 < δ(ε) and N(ε) such that, for
any partition λ of n > N(ε) with max{λ1

n ,
λ′1
n } ≤ δ(ε),and for any k ≤ n

1− ε <
m(λ, βHk

n
)

(n)kfλ
< 1 + ε.

The following asymptotic result from [AF] can also be generalized for the char-
acters χβ

Hk
n
.

Theorem AF Let χ
(n)
R and χ

(n)
Conj be the regular and the conjugacy characters of

Sn respectively. Then

lim
n→∞

‖χ(n)
R ‖

‖χ(n)
Conj‖

= 1 ,

lim
n→∞

〈χ(n)
R , χ

(n)
Conj〉

‖χ(n)
R ‖ · ‖χ(n)

Conj‖
= 1

where ‖ ∗ ‖ denotes the norm with respect to the standard scalar product of char-
acters.

Our generalization looks as follows:
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Proposition 6.2. In the notations of Theorem AF

lim
n→∞

‖(n)kχ
(n)
R ‖

‖χβ
Hk

n
‖ = 1 ,

lim
n→∞

〈(n)kχ
(n)
R , χβ

Hk
n
〉

‖(n)kχ
(n)
R ‖ · ‖χβ

Hk
n
‖

= lim
n→∞

〈χ(n)
R , χβ

Hk
n
〉

‖χ(n)
R ‖ · ‖χβ

Hk
n
‖

= 1 ,

where k is bounded or tends to infinity remaining less than n.

7. The representations αM for M = Hk
n

In this section we deal with the representations αHk
n

defined in Section 3. We
use the branching rule and the Frobenious reciprocity to decompose these repre-
sentations into irreducible representations of Sn × Sn. As we have already seen
in example ??, αH0

n

∼= ⊕
λ`n Sλ ⊗ Sλ while αHn

n
is the regular representation of

Sn×Sn
∼= ⊕

λ,ρ`n fλfρSλ ⊗ Sρ and thus αHk
n

can be seen as a type of an interpo-
lation between these two representations.

First, concerning the character of αHk
n
, by combining Proposition 5.2 and The-

orem 3.5 together we get:

χα
Hk

n
(π, σ) =

{ |Cπ|(n− |supp(π)|)k , π and σ are conjugate in Sn

0 , otherwise

We turn now to the lation of the multiplicity of an irreducible representation of
Sn × Sn in αHk

n
.

Proposition 7.1. For any n and any 0 ≤ k ≤ n

m
(
(λ, µ), αHk

n

)
=

1
n!

∑

π∈Sn

χλ(π)χµ(π)(n− |supp(π)|)k ¤

The boundary cases k = 0 and k = n are discussed in Example ?? and Proposition
4.4 respectively.

7.1. A combinatorial view of αHk
n
. In this section we present another approach

to the representation αHk
n
. This approach will give us a combinatorial view on the

multiplicity formulas we calculated in the last section.

Definition 7.2. Define the following subset of Hk
n:

W k
n = {πkπn−kUn,kσkσn−k |πk, σk ∈ Sk and πn−k, σn−k ∈ Sn−k} .

The set W k
n is the orbit of the matrix Un,k under the action α restricted to the

subgroup (Sk × Sn−k)× (Sk × Sn−k).

Definition 7.3. Denote by ωn,k the permutation representation of the group (Sk×
Sn−k)× (Sk × Sn−k) on W k

n corresponding to the action α.

Claim 7.4.

ωn,k
∼= Rk ⊗


 ⊕

ρ`n−k

Sρ ⊗ Sρ




where Rk is the regular representation of Sk × Sk.
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This implies the following:

Claim 7.5.

χωn,k
(πkπn−k, σkσn−k) =





0 when πk 6= e or σk 6= e
0 when πn−k is not conjugate to σn−k in Sn−k

(k!)2|Cn−k
πn−k

| when πk = σk = e and πn−k ∼ σn−k in Sn−k

¤

We can use ωn,k to get information of αn,k.

Proposition 7.6.
αHk

n
= ωn,k ↑Sn×Sn

(Sk×Sn−k)×(Sk×Sn−k)

We use now the Frobenius reciprocity to obtain the multiplicity of any irreducible
representation of Sn × Sn in αHk

n
.

Proposition 7.7. Let 0 ≤ k ≤ n and let λ, µ be partitions of n. Then

m
(
(λ, µ) , αHk

n

)
= 〈χλ ↓Sn

Sn−k
, χµ ↓Sn

Sn−k
〉

or in other words:

αHk
n

=
⊕

λ,µ`n

〈χλ ↓Sn

Sn−k
, χµ ↓Sn

Sn−k
〉Sλ ⊗ Sµ .

The number 〈χλ ↓Sn

Sn−k
, χµ ↓Sn

Sn−k
〉 has a very nice combinatorial interpretation.

It follows from the branching rule that this is just the number of ways to delete k
boundary cells from the diagrams corresponding to the partitions λ and µ to get
the same Young diagram of n−k cells. By the branching rule (see Proposition 2.4)
we have thus:

Claim 7.8.
〈χλ ↓Sn

Sn−k
, χµ ↓Sn

Sn−k
〉 = 0 when |λ4 µ| > 2k

and it does not vanish otherwise.

Corollary 7.9.
m

(
(λ, µ) , αHk

n

)
= 0 when |λ4 µ| > 2k

and
m

(
(λ, µ) , αHk

n

) 6= 0 when |λ4 µ| ≤ 2k. ¤

8. The actions α and β on colored permutations

In this section we introduce actions of Sn and Sn×Sn on another family of sets,
namely the colored permutation groups. We start with the actions on Bn = C2 oSn.

8.1. The action α of Sn × Sn on signed permutations. Consider the action α
of Sn × Sn on Bn. We start by describing the orbits of this action.

Definition 8.1. For every 0 ≤ k ≤ n define

Xk
n = {A ∈ Bn |A has exactly k minuses}.
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For example 


0 0 0 1
−1 0 0 0
0 1 0 0
0 0 −1 0


 ∈ X2

4 .

It is easy to see that the sets Xk
n form a partition of Bn. Also, note that

|Xk
n| = n!

(
n
k

)
.

Claim 8.2. Each set Xk
n is an orbit under the action α of Sn × Sn on Bn, i.e.

Xk
n = {πŨn,kσ |π, σ ∈ Sn},

where

Ũn,k =
( −Ik 0k×(n−k)

0(n−k)×k In−k

)

and It is the identity t× t matrix.

We decompose now the representations αXk
n

into irreducible representations just
as we did in the previous section.

Definition 8.3. Define the following subset of Xk
n:

W̃ k
n =

{
πkπn−kŨn,kσkσn−k |πk, σk ∈ Sk and πn−k, σn−k ∈ Sn−k

}
.

The set W̃ k
n is the orbit of the matrix Ũn,k under the action α by the group

(Sk × Sn−k)× (Sk × Sn−k).

Definition 8.4. Denote ω̃n,k the permutation representation of the group (Sk ×
Sn−k) × (Sk × Sn−k) which is obtained from the action α of this group on the set
W̃ k

n .

Claim 8.5.

ω̃n,k
∼=


⊕

ρ`k

Sρ ⊗ Sρ


⊗


 ⊕

ρ`n−k

Sρ ⊗ Sρ




χω̃n,k
(πkπn−k, σkσn−k) =

{ |Ck
πk
||Cn−k

πn−k
| when πkπn−k ∼ σkσn−k in Sk × Sn−k

0 otherwise

¤

Proposition 8.6.
αXk

n
= ω̃n,k ↑Sn×Sn

(Sk×Sn−k)×(Sk×Sn−k)

Recall from [Sa] the definition of cλ
ρν – the Littlewood-Richardson coefficients

defined by the following formula:

(Sρ ⊗ Sν) ↑Sn

Sk×Sn−k
=

⊕

λ`n

cλ
ρνSλ,

where ρ ` k and ν ` n − k. Using the Frobenius reciprocity formula we have for
every λ ` n:
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Claim 8.7.

Sλ ↓Sn

Sk×Sn−k
=

⊕

ρ`k,ν`n−k

cλ
ρν (Sρ ⊗ Sν) .

χλ ↓Sn

Sk×Sn−k
=

∑

ρ`k,ν`n−k

cλ
ρνχ(ρ,ν).

¤
We use now the Frobenius reciprocity to obtain the multiplicity of any irreducible

representation of Sn × Sn in αXk
n
.

Proposition 8.8. Let 0 ≤ k ≤ n and λ, µ ` n.

m
(
(λ, µ), αXk

n

)
=

= 〈χλ ↓Sn

Sk×Sn−k
, χµ ↓Sn

Sk×Sn−k
〉 =

=
∑

ρ`k,ν`n−k

cλ
ρνcµ

ρν

By the definition of Xk
n we have αBn =

⊕n
k=0 αXk

n
and thus:

Corollary 8.9.

m ((λ, µ) , αBn) =
n∑

k=0

∑

ρ`k,ν`n−k

cλ
ρνcµ

ρν .

¤
There is a natural mapping between the sets Hk

n and Xk
n defined by:

Hk
n 3 πUn,kσ

T̃n,k7−→ πŨn,kσ ∈ Xk
n

One can verify that T̃n,k is well defined. Moreover, T̃n,k commutes with the action
α of Sn × Sn on Xk

n, i.e.:

T̃n,k(πAσ) = πT̃n,k(A)σ for any A ∈ Xn
k .

It is easy to see that T̃n,k is also surjective and thus it induces epimorphisms of
modules from the Sn × Sn-module αHk

n
to the Sn × Sn- module αXk

n
and from the

Sn-module βHk
n

to the Sn- module βXk
n
. Note also that for k = 0 this mapping is

the identity mapping since H0
n = X0

n = Sn and for k = 1 this mapping is bijective.
We conclude:

Claim 8.10.

m
(
(λ, µ) , αHk

n

) ≥ m
(
(λ, µ) , αXk

n

)

¤
This implies that if ∑

ρ`k,ν`n−k

cλ
ρνcµ

ρν 6= 0

then |λ4µ| ≤ 2k. This can also be seen by the combinatorial interpretation of the
Littlewood-Richardson coefficients.
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8.2. The action β on colored permutations. Recall that every matrix B ∈ Bn

can be written uniquely in the form B = Zπ for some π ∈ Sn and some Z ∈
Cn

2 . There exists a natural epimorphism from Bn onto Sn defined by omitting the
minuses:

p : Bn −→ Sn p(Zπ) = π.

If we restrict p to Xk
n we obtain a surjective mapping from Xk

n onto Sn which
commutes with the action α of Sn × Sn on Xk

n (and clearly also commutes with
the action β of Sn on Xk

n by conjugation). It gives us a surjective homomorphism
from the representation βXk

n
onto the conjugacy representation representation of

Sn denoted by ψ. Therefore, using the result of [F], we have

m
(
λ, βXk

n

) ≥ m (λ, ψ) > 0 for any λ ` n,

m (λ, βBn) =
n∑

k=0

m
(
λ, βXk

n

)
> 0 for any λ ` n.

Although the calculation of χβ
Xk

n
is rather involved, the asymptotic results of [R]

and [AF] can be generalized for the representations βXk
n

and βBn
. We start by

presenting the generalization of Theorem R1:

Proposition 8.11. For any 0 < ε < 1 there exist 0 < δ(ε) and N(ε) such that, for
any partition λ of n > N(ε) with max{λ1

n ,
λ′1
n } ≤ δ(ε),

1− ε <
m(λ, βXk

n
)(

n
k

)
fλ

< 1 + ε ,

1− ε <
m(λ, βBn)

2nfλ
< 1 + ε .

The generalization of Theorem [AF] is as follows and can be proved by using the
inequality χβ

Xk
n
(π) ≤ (

n
k

)|Cπ|:
Proposition 8.12. In the notations of Theorem [AF]

lim
n→∞

‖(n
k

)
χ

(n)
R ‖

‖χβ
Xk

n
‖ = lim

n→∞
‖2nχ

(n)
R ‖

‖χβBn
‖ = 1 ,

lim
n→∞

〈χ(n)
R , χβ

Xk
n
〉

‖χ(n)
R ‖ · ‖χβ

Xk
n
‖

= lim
n→∞

〈χ(n)
R , χβBn

〉
‖χ(n)

R ‖ · ‖χβBn
‖

= 1 ,

where k is bounded or tends to infinity remaining less than n.

These asymptotic results can be also obtained for the action β (conjugation
by permutations) on the group Cr o Sn. Similarly to Xk

n ⊂ Bn define the sets
Y k

n ⊂ Cr o Sn:

Definition 8.13.

Y k
n = {A ∈ Cr o Sn |A has exactly k entries 6= 0 , 1}.

Note that the sets Y k
n form a partition of Cr o Sn and Y k

n = n!
(
n
k

)
(r − 1)k. The

sets Y k
n are closed under the action α of Sn × Sn but they are not transitive under

this action.
Consider Cn

r as the group of diagonal matrices with the entries of the form ω`

(where ω = exp 2πi
r – the primitive r-th root of unity and 0 ≤ ` < r) on the
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diagonal. Then each matrix A ∈ Cr o Sn can be uniquely written as A = Zσ
for some σ ∈ Sn and some Z ∈ Cn

r . Just as in the case of Bn, we consider the
epimorphism p : Bn −→ Sn defined by: p(Zσ) = σ.

p induces an epimorphism of modules between βY k
n

and the conjugacy represen-
tation of Sn.

We conclude, using the result of [F]:

m
(
λ, βY k

n

) ≥ m (λ, ψ) > 0 for any λ ` n,

m (λ, βCroSn) =
n∑

k=0

m
(
λ, βY k

n

)
> 0 for any λ ` n.

The Theorems R1 and AF are obtained in a way similar to the one we used for
Bn:

Proposition 8.14. In the conditions and notations of Theorem R1

1− ε <
m(λ, βY k

n
)(

n
k

)
(r − 1)kfλ

< 1 + ε,

1− ε <
m(λ, βCroSn)

rnfλ
< 1 + ε.

In the notations of Theorem AF

lim
n→∞

‖(n
k

)
(r − 1)kχ

(n)
R ‖

‖χβ
Y k

n
‖ = lim

n→∞
‖rnχ

(n)
R ‖

‖χβCroSn
‖ = 1 ,

lim
n→∞

〈χ(n)
R , χβ

Y k
n
〉

‖χ(n)
R ‖ · ‖χβ

Y k
n
‖

= lim
n→∞

〈χ(n)
R , χβCroSn

〉
‖χ(n)

R ‖ · ‖χβCroSn
‖

= 1 ,

where k is bounded or tends to infinity remaining less than n.
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