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Abstract

For every r, n, p|r there is a complex reflection group, denoted G(r, p, n), con-
sisting of all monomial n × n matrices such that all the nonzero entries are rth

roots of the unity and the r/pth power of the product of the nonzero entries is
1. By considering these groups as subgroups of the colored permutation groups,
Zr o Sn, we use Clifford theory to define on G(r, p, n) combinatorial parameters
and descent representations previously defined on Classical Weyl groups. One of
these parameters is the major index which also has an important role in the de-
composition of descent representations into irreducibles. We present also a Carlitz
identity for these complex reflection groups.

1 Introduction

Let V be a complex vector space of dimension n. A pseudo-reflection on V is a linear
transformation on V of finite order which fixes a hyperplane in V pointwise. A complex
reflection group on V is a finite subgroup W ≤ GL(V ) generated by pseudo-reflections.
Such groups are characterized by the structure of their invariant ring. More precisely, let
C[V ] be the symmetric algebra of V and let us denote by C[V ]W the algebra of invariants
of W . Then Shephard-Todd [26] and Chevalley [13] proved that W is generated by
pseudo-reflections if and only if C[V ]W is a polynomial ring.

Irreducible finite complex reflection groups have been classified by Shephard-Todd
[26]. In particular there is a single infinite family of groups and exactly 34 other “excep-
tional” complex reflection groups. The infinite family G(r, p, n) where r, p, n are positive
integers numbers with p|r, consists of the groups of n× n matrices such that

1) the entries are either 0 or rth roots of unity;
2) there is exactly one nonzero entry in each row and each column;
3) the (r/p)th power of the product of the nonzero entries is 1.
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In particular the classical Weyl groups appear as special cases: G(1, 1, n) = Sn the
symmetric group, G(2, 1, n) = Bn, the Weyl group of type B, and G(2, 2, n) = Dn the
Weyl group of type D.

Throughout research on complex reflection groups and their braid groups and Hecke
algebras, the fact that they behave like Weyl groups has become more and more clear.
In particular, it has recently discoverd that complex reflection groups (and not only
Weyl groups) play a key role in the structure as well as in the representation theory of
finite reductive groups. For more information on these results the reader is advised to
consult the survey article of Broué [9], and the handbook of Geck and Malle [11].

One of the aims of this paper is to show that complex reflection groups continue to
behave like Weyl groups also from the combinatorial point of view. In a way similar to
Coxeter groups, they have presentations in terms of generators and relations, that can
be visualized by Dynkin type diagrams (see e.g., [10]). Moreover, their elements can
be represented as colored permutations. In fact, the complex reflection group G(r, p, n)
can be naturally identified as a normal subgroups of index p of the wreath product
G(r, n) := Zr o Sn, where Zr is the cyclic group of order r. This makes it possible to
handle complex reflection groups by purely combinatorial methods. In Sections 2 and
7 we follow this approach. In particular, we introduce the concept of major index and
descent number for complex reflection groups. Their joint distribution over the group
is computed, giving rise to a nice identity that relates the two new statistics with the
degrees of G(r, p, n).

Then our investigation continues by showing the interplay between these new com-
binatorial objects and the representation theory of the group. More precisely, if we set
x = x1, . . . , xn as a basis for V , then C[V ] can be identified with the ring of polynomials
C[x]. The ring of invariants C[x]W is then generated by 1 and by a set of n algebraically
independent homogeneous polynomials {f1, . . . , fn} which are called basic invariants.
Although these polynomials are not uniquely determined, their degrees d1, . . . , dn are
basic numerical invariants of the group, and are called the degrees of W . Let us denote
by IW the ideal generated by the invariants of strictly positive degree. The module of
coinvariants of W is defined by

C[x]W := C[x]/IW .

Since IW is W -invariant, the group W acts naturally on C[x]W . In fact, it is well known
that C[x]W is isomorphic to the left regular representation of W . It follows that the
dimension of C[x]W as a C-module is equal to the order of the group W . In section 3,
by using the combinatorial tools previously introduced, an explicit monomial basis for
the module of coinvariants, called colored-descent basis, is provided.

Recently, another basis for C[x]W has been given by Allen [4]. Although both our and
Allen’s basis coincide with the Garsia-Stanton basis in the case of Sn, in general they are
different as can be checked already in the small case of G(2, 2, 2). It would be interesting
to see if Allen’s basis leads to an analogous definition of descent representations.
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All this machinery leads to a natural definition of a new set of G(r, p, n)-modules,
that we call colored-descent representations. They are generalizations of the descent
representations introduced by Adin, Brenti, and Roichman in [3] for the symmetric and
hyperoctahedral group, and which refine the descent representations of Solomon [25].
The decomposition into irreducibles of the colored-descent representations is provided.
Moreover it turns out that the multiplicity of any irreducible representations is counted
by the cardinality of a particular class of standard Young tableaux.

2 Complex Reflection Groups
generators

For our exposition it will be much more convenient to consider wreath products not as
groups of complex matrices, but as groups of colored permutations.

For any n ∈ P := {1, 2, . . .} we let [n] := {1, 2, . . . , n}, and for any a, b ∈ N we let
[a, b] := {a, a + 1, . . . , b}. Let Sn be the symmetric group on [n]. A permutation σ ∈ Sn

will be denoted by σ = σ(1) · · · σ(n).
Let r, n ∈ P. Define:

G(r, n) := {((c1, . . . , cn), σ) | ci ∈ [0, r − 1], σ ∈ Sn}. (1) def-grn

Any ci can be considered as the color of the corresponding entry σ(i). This explains the
fact that this group is also called the group of r-colored permutations. Sometimes we
will represent its elements in window notation as

g = g(1) · · · g(n) = σ(1)c1 · · ·σ(n)cn .

When it is not clear from the context, we will denote ci by ci(g). Moreover, if ci = 0, it
will be omitted in the window notation of g. We denote by

Col(g) := (c1, . . . , cn) and col(g) :=
n∑

i=1

ci,

the color vector and the color weight of any γ := ((c1, . . . , cn), σ) ∈ G(r, n).
For example, for g = 4132412 ∈ G(5, 4) we have Col(g) = (1, 0, 4, 2) and col(g) = 7.

Now let p ∈ P such that p|r. The complex reflection group G(r, p, n) is the subgroup
of G(r, n) defined by

G(r, p, n) := {g ∈ G(r, n) : col(g) ≡ 0 mod p}. (2) def-grpn

In particular we have the following chain of inclusions

G(r, r, n) £ G(r, p, n) £ G(r, 1, n) = G(r, n),

where £ stands for normal subgroup.
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3 Colored Descent Basis
col-des-basis

In order to lighten the notation, we let G := G(r, n), H := G(r, p, n), and d := r/p. The
wreath product G acts on the ring of polynomials C[x] as follows

σ(1)c1 · · · σ(n)cn · P (x1, . . . , xn) = P (ζcσ(1)xσ(1), . . . , ζ
cσ(n)xσ(n)),

where ζ denotes a primitive rth root of unity. A set of fundamental invariants under
this actions is given by the elementary symmetric functions ej(x

r
1, . . . , x

r
n), 1 ≤ j ≤ n.

Now, consider the restriction of the previous action on C[x] to H. A set of fundamental
invariants is given by

fj(x1, . . . , xn) :=

{
ej(x

r
1, . . . , x

r
n) for j = 1, . . . , n− 1

xd
1 · · ·xd

n for j = n.

It follows that the degrees of H are r, 2r, . . . , (n− 1)r, nd.
Let IH := (f1, . . . , fn), the module of coinvariants C[x]H := C[x]/IH has dimension

equal to |H|, that is n!rn

p
. In what follows we will associate to any element h ∈ H an

ad-hoc monomial in C[x]. Those monomials will form a linear basis for the module of
coinvariants. In order to do this, we need to introduce various statistics on complex
reflection groups.

For any r, p, n ∈ P, with p|r and d := r/p we define the following subset of G(r, n),

Γ(r, p, n) = {γ = ((c1, . . . , cn), σ) ∈ G(r, n) | cn < d}. (3) def-Gamma

Note that Γ := Γ(r, p, n) it is not a subgroup of G. Clearly, |Γ| = n!rn−1d and so it
is in bijection with H. Although it is not fundamental for our purposes, we specify a
bijection, in such a way that some of the definitions we will introduce, coincide with the
usual ones, once we specialize H to any classical Weyl group. Indeed, one can easily
check that the mapping

((c1, . . . , cn), σ) 7→ ((c1, . . . , bcn

p
c), σ) (4) bijection

is a bijection between H and Γ. As usual for any a ∈ Q, bac denotes the greatest integer
≤ a. In order to make our definitions more natural and clear, from now on, we will
work with Γ instead of H. Clearly, via the above bijection every function on Γ can be
considered as a function on H and viceversa.

We fix the following order ≺ on colored integer numbers

1r−1 ≺ 2r−1 ≺ . . . ≺ nr−1 ≺ . . . ≺ 11 ≺ 21 ≺ . . . ≺ n1 ≺ 1 ≺ 2 ≺ . . . ≺ n. (5) order

The descent set of an colored integer sequence γ ∈ Γ is defined by Des(γ) := {i ∈ [n−1] :
γi Â γi+1}. Moreover for any γ = ((c1, . . . , cn), σ) ∈ Γ we let

di(γ) := |{j ∈ Des(γ) : j º i}| and mi(γ) := r · di(γ) + ci(γ). (6) def-icomp

4



For every γ ∈ Γ we define the G(r, p, n)-major index of γ by

m(γ) :=
n∑

i=1

mi(γ). (7) def-maj

For example, let γ = 62544311653 ∈ Γ(8, 2, 6). We have (d1(γ), . . . , dn(γ)) = (2, 1, 1, 0, 0, 0),
(m1(γ), . . . ,mn(γ)) = (16, 13, 12, 9, 6, 3) and m(γ) = 59.

We are ready to associate to every element of Γ a monomial in C[x]. Let γ =
((c1, . . . , cn), σ) ∈ Γ. We define

xγ :=
n∏

i=1

x
mi(γ)
σ(i) . (8) defmonomial

It is clear that mn(γ) < d, hence xγ is nonzero in C[x]H .
For example, if γ = 62544311653 ∈ Γ(8, 2, 6) then xγ = x6

1x
13
2 x9

3x
12
4 x3

5x
16
6 .

We restrict our attention to the quotient S := C[x]/(fn). Hence we consider nonzero

monomials M =
n∏

i=1

xai
i such that ai < d for at least one i ∈ [n]. We associate to M the

element γ(M) = ((c1, . . . , cn), σ) ∈ Γ such that for all i ∈ [n]
i) aσ(i) ≥ aσ(i+1);
ii) aσ(i) = aσ(i+1) =⇒ σ(i) < σ(i + 1),
iii) ci ≡ aσ(i) (mod r).

We denote by λ(M) := (aσ(1), . . . , aσ(n)) the exponent partition of M , and we call γ(M) ∈
Γ the colored index permutation.

Now, let M =
n∏

i=1

xai
i be a nonzero monomial in S, and let γ := γ(M) be its colored

index permutation. Consider now the monomial xγ associated to γ.
We associate to M another partition, µ(M), defined by

µ′(M) :=

(
aσ(i) −mi(γ)

r

)n−1

i=1

, (9) def-mu

where, as usual, µ′ denotes the conjugate partition of µ.

Example 3.1. Let r = 8, p = 2, and n = 6 and consider the monomial M =
x6

1x
21
2 x17

3 x20
4 x3

5x
32
6 ∈ C[x1, . . . , x6]/(f6). The exponent partition λ(M) = (32, 21, 20, 17, 6, 3)

is obtained by reordering the power of xi’s following the colored index permutation
γ(M) = 62544311653 ∈ Γ(8, 2, 6). We have already computed the monomial xγ(M) =
x6

1x
13
2 x9

3x
12
4 x3

5x
16
6 . It follows that µ(M) = (4, 1).

We now define a partial order on the monomials of the same total degree in S. Let
M and M ′ be nonzero monomials in S with the same total degree and such that the
exponents of xi in M and M ′ have the same parity (mod r) for every i ∈ [n]. Then we
write M ′ < M if one of the following holds:
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1) λ(M ′) ¢ λ(M), or

2) λ(M ′) = λ(M) and inv(γ(M ′)) > inv(γ(M)).

Here, inv(γ) := |{(i, j) | i < j and γ(i) Â γ(j)}|, and ¢ denotes the dominance order
defined on the set partitions of a fixed nonnegative integer n by: µ £ λ if for all i ≥ 1

µ1 + µ2 + · · ·+ µi ≤ λ1 + λ2 + · · ·+ λi.

Theorem 3.2. The set
{xγ + IH : γ ∈ Γ}

is a basis for C[x]H .

Example 3.3. The elements of Γ(6, 3, 2), d = 2, are

12 112 122 132 142 152
121 1121 1221 1321 1421 1521

21 211 221 232 241 251
211 2111 2211 2321 2411 2511.

The corresponding monomials are

1 x1 x2
1 x3

1 x4
1 x5

1

x6
1x2 x1x2 x2

1x2 x3
1x2 x4

1x2 x5
1x2

x6
2 x2 x2

2 x3
2 x4

2 x5
2

x6
2x1 x7

2x1 x2
2x1 x3

2x1 x4
2x1 x5

2x1.

It is easy to check that they form a basis for C[x1, x2]/(x
6
1 + x6

2, x
2
1x

2
2).

4 The Representation Theory of G(r, p, n)

In this section we present the representation theory of the group H := G(r, p, n). We
follow the exposition of [31], (see also [20]). Since the irreducible representations of
H are related to the irreducible representations of G via Clifford Theory, we start this
section by presenting the representation theory of G.

Let g = σ(1)c1 · · · σ(n)cn ∈ G. First divide σ ∈ Sn into cycles, and then provide the
entries with their original color ci by obtaining colored cycles. The color of a cycle is
simply the sum of all the colors of its entries. For every i ∈ [0, r − 1], let αi be the
partition formed by the lengths of the cycles of g having color i. We may thus associate

g with the r-partition ~α = (α0, . . . , αr−1). Note that
r−1∑
i=0

|αi| = n. We refer to ~α as the

type of g. One can prove that two elements of G are conjugate if and only if the have
the same type.
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It is well known that irreducible representations of G are also indexed by r-tuple of

partitions ~λ := (λ0, . . . , λr−1) with
r−1∑
i=0

|λi| = n. We denote this set by Pr,n.

As mentioned above, the passage to the representation theory of G(r, p, n), is by
Clifford theory. The group G/H can be identified with the cyclic group C of order p of
the characters δ of G satisfying H ⊂ Ker(δ). More precisely, define the linear character
δ0 of G by δ0((c1, . . . , cn), σ) := ζc1+...+cn , so that C =< δd

0 >' Zp. The group C acts
on the set of irreducible representations of G by

V (~λ) 7→ δ ⊗ V (~λ)

where V (~λ) is the irreducible representation of G indexed by ~λ, and δ ∈ C. This action

can be explicitly described as follows. Let ~λ = (λ0, . . . , λr−1) ∈ Pr,n, we define a 1-shift

of ~λ by
(~λ)	1 := (λr−1, λ0, . . . , λr−2). (10) shift-op

By applying i-times the shift operator we get (~λ)	i. Then once can show (see [20, Section
4]) that

δi ⊗ V (~λ) ' V ((~λ)	i), (11) action

for every δ ∈ C.
Now let us denote by [~λ] a C-orbit of the representation V (~λ). From (11) we obtain

that [~λ] = {V (~µ) : ~µ ∼ ~λ}, where the equivalence relation is defined by

~λ ∼ ~µ if and only ~µ = (~λ)	i·d for some i ∈ [0, p− 1]. (12) orbit

Let us denote b(~λ) := |[~λ]|, and set u(~λ) := p

b(~λ)
. Consider the stabilizer of ~λ, C~λ, that

is:
C~λ := {δ ∈ C | V (~λ) = δ ⊗ V (~λ)}.

Clearly, C~λ is a subgroup of C generated by δ
b(~λ)·d
0 and so |C~λ| = u(~λ).

It can be proven that the restriction of the irreducible representation V (~λ) of G to

H decomposes into u(~λ) = |C~λ| non-isomorphic irreducible H modules. On the other

hand, any other G-module in the same orbit [~λ] will give us the same result. Actually,
one can prove even more:

repsofgrpn Theorem 4.1. (See [31])
There is a one to one correspondence between the irreducible representations of H

and the ordered pairs ([~λ], δ) where [~λ] is the orbit of the irreducible representation V (~λ)

of G and δ ∈ C~λ. Moreover if χ
~λ denotes the character of V (~λ) then

i) χ
~λ = χ~µ for all ~µ ∈ [~λ], and

ii) χ
~λ =

∑
δ∈C~λ

χ([~λ],δ).
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Here is a simple but important example. The irreducible representations of Bn

(G(2, 1, n) in our notation) are indexed by bi-partitions of n. The Coxeter group Dn

(G(2, 2, n) in our notation), is a subgroup of Bn of index 2. Thus the stabilizer of the

action of Bn/Dn
∼= Z2 on a pair of Young diagrams ~λ = (λ1, λ2) is either Z2 if λ1 = λ2,

or {id} if λ1 6= λ2. In the first case, the irreducible representation of Bn corresponding

to ~λ, when restricted to Dn, splits into two non-isomorphic irreducible representations
of Dn. In the second case ~λ = (λ1, λ2) and ~λT = (λ2, λ1) correspond to two isomorphic
irreducible representations of Dn.

We conclude this section by giving a new definition of major index on r-tuples
of standard Young tableaux. Let ~λ = (λ0, . . . , λr−1) ∈ Pr,n a r-partition of n. A

Ferrers diagram of shape ~λ is obtained by the union of the Ferrers diagrams of shapes
λ0, . . . , λr−1, where the (i+1)th diagram lies south west of the ith. A standard Young r-

tableau T := (T 0, . . . , T r−1) of shape ~λ is obtained by inserting the integers 1, 2, . . . , n as
entries in the corresponding Ferrers diagram increasing along rows and down columns of
each diagram separately. We denote by SYT(~λ) the set of all r-standard Young tableaux

of shape ~λ.
A descent in a r-standard Young tableau T is an entry i such that i + 1 is strictly

below i. We denote the set of descents in T by Des(T ). The major index of a tableau
T is maj(T ) :=

∑
i∈Des(T )

i. We define also Col(T ) := (ε1, . . . , εn) where εi = k if i ∈ T k,

and col(T ) := ε1 + . . . + εn.
We define the flag-major index of an r-tableau by

fmaj(T ) := r ·maj(T ) + col(T ). (13) def-fmaj-tab

tableau4

Figure 1: A 4-tableau and its 2-shift

For example, the tableau T in Figure 4 belongs to SYT((3, 2), (1, 1, 1), (3, 1), (2)). We
have that Des(T ) = {2, 4, 6, 7}, maj(T ) = 19, col(T ) = 3+8+6 = 17, and so fmaj(T ) =
93.
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The following definition is fundamental in our work. Let ~λ = (λ0, . . . , λr−1) ∈ Pr,n.

We define a C-standard Young tableau T = (T 0, . . . , T r−1) of type [~λ] to be a standard

Young r-tableau of one of the shapes in [~λ] such that n ∈ T 0 ∪ · · · ∪ T d−1.

Let T an r-tableau of shape ~λ. Then from (??), it follows that all the possible

tableaux in [~λ], have shapes obtained from that of ~λ by applying i · d-shifts for i =
0, . . . , p− 1.

We denote by CSYT[~λ] the set of all C-standard r-tableaux of type ~λ. We define
the G(r, p, n)-major index of a C-standard tableau as the restriction of fmaj to CSYT,
denoted

m(T ) := r ·maj(T ) + col(T ). (14) def-m-tab

5 Colored-descent representations of G(r, p, n)

The module of coinvariants C[x]H has a natural grading induced from that of C[x]. If
we denote by Rk its kth homogeneous component, we have

C[x]H =
⊕

k≥0

Rk.

In this section we introduce a set of G(r, p, n)-modules RD,C which decompose Rk. These
representations, called colored-descent representations, generalize the descent represen-
tations introduced for Sn and Bn by Adin, Brenti and Roichman in [3]. See also [8] for
the case of Dn.

If |λ| = k then one has:

J£
λ := spanC{xγ + IH | γ ∈ Γ, λ(xγ) £ λ} and

J¢
λ := spanC{xγ + IH | γ ∈ Γ, λ(xγ) ¢ λ}

are two submodules of Rk. Their quotient is still an H-module, denoted by

Rλ :=
J£

λ

J¢
λ

.

For any D ⊆ [n − 1] we define the partition λD := (λ1, . . . , λn−1), where λi :=
|D ∩ [i, n− 1]|. For D ⊆ [n− 1] and C ∈ [0, r − 1]n, we define the vector

λD,C := r · λD + C,

where sum stands for sum of vectors.
From now on we denote RD,C := RλD,C , and by x̄γ the image of the colored-descent

basis element xγ ∈ J£
λD,C in the quotient RD,C.
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barra Proposition 5.1. For any D ⊆ [n− 1] and C ∈ [0, r − 1]n, the set

{x̄γ : γ ∈ Γ, Des(γ) = D and Col(γ) = C}

is a basis of RD,C.

The H-modules RD,C are called colored-descent representation in analogy with [3,
Section 3.5]. They decompose the kth component of C[x]H as follows.

decom Theorem 5.2. For every 0 ≤ k ≤ r
(

n
2

)
+ n(d− 1),

Rk
∼=

⊕
D,C

RD,C

as H-modules, where the sum is over all D ⊆ [n− 1], C ∈ [0, r − 1]n such that

r ·
∑
i∈D

i +
∑
j∈C

j = k.

6 Decomposition of RD,C
In this section we prove a simple combinatorial description of the multiplicities of the
irreducible representations of H in RD,C.

Theorem 6.1. For every D ⊆ [n − 1] and C ⊆ [0, r − 1]n, ~λ ∈ Pr,n and δ ∈ C~λ,
the multiplicity of the irreducible representation of G(r, p, n) corresponding to the pair

([~λ], δ) in RD,C is

|{T ∈ CSYT[~λ] | Des(T ) = D, Col(T ) = C}|.

As a corollary of this and of Theorem 5.2 we obtain the following result that is a
generalization of a well known theorem on the decomposition of the coinvariant algebra
of the symmetric group, (see e.g., [18] and [29]).

stembrH Theorem 6.2. For 0 ≤ k ≤ r
(

n
2

)
+n(d− 1), the representation Rk is isomorphic to the

direct sum ⊕mk,(λ,δ)V
([~λ],δ), where V ([~λ],δ) is the irreducible representation of H labeled

by ([~λ], δ), and

mk,([~λ],δ) :=| {T ∈ CSYT[~λ] : m(T ) = k} | .
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7 Combinatorial Identities
identities

In the case of classical Weyl groups and wreath products, any major statistic is associated
with a descent statistic and their joint distribution is given by a nice closed formula,
called Carlitz identity. In this last section we show that this is the case also for the
complex reflection groups G(r, p, n).

The following theorem presents the joint distribution of fdes and fmaj over G(r, n).

Ca-G Theorem 7.1 (Carlitz identity for G). Let n ∈ N. Then

∑

k≥0

[k + 1]nq t
k =

∑
g∈G(r,n) tfdes(g)qfmaj(g)

(1− t)(1− trqr)(1− trq2r) · · · (1− trqnr)
.

Using the above theorem and a specific decomposition of G(r, n) into subsets which
are in a bijection with G(r, p, n), we get the following:

Ca-H Theorem 7.2 (Carlitz identity for H). Let n ∈ N. Then

∑

k≥0

[k + 1]nq tk =

∑
h∈G(r,n,p) td(h)qm(h)

(1− t)(1− trqr)(1− trq2r) · · · (1− trq(n−1)r)(1− tdqnd)
.

We refer to Theorem 7.1 and 7.2 as the Carlitz identities for G and H, respectively.
It is worth to note that the powers of the q’s in the denominators of the two formulas,
r, 2r, . . . , nr, and r, 2r, . . . , (n− 1)r, nd are actually the degrees of G(r, n) and G(r, p, n).
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