
BOREL ORBITS OF X2=0 IN gln

BRIAN ROTHBACH

Abstract. We analyzes the structure of Borel orbits in the subvariety of gln
defined by X2 = 0. The number of Borel orbits is finite, and is in one to

one correspondence with certain partial permutation matrices. Equations are
found up to radical for the Zariski closure of each orbit and these equations

are shown to be generically reduced. The orbits are given a poset structure,
which can also be described in terms of certain words. The Zariski closure of

an orbit can be determined from the poset. The dimension of an orbit (as an
algebraic variety) is given by a rank function for the poset, which is defined in

terms of a statistic of the word of an orbit. An algorithm for calculating the
degree of the Zariski closure of a given orbit is discussed.

Section 1. Orbital Varieties

Fix a positive integer n and a an algebraically closed field K (but we make no
restrictions on the characteristic). Let Bn(K) (or simply Bn) be the set of upper
triangular n × n matrices. Let X be a nilpotent n × n matrix, that is a matrix
satisfying Xm = 0 for some positive integer m. Notice that the eigenvalues of X
are all 0, so that X is determined up to conjugacy by its Jordan canonical form.
In turn, these canonical forms are parameterized by partitions of n boxes (with
column lengths corresponding to sizes of the Jordan blocks).

The set of all nilpotent matrices in gln corresponding to a given partition is a
natural object of study. Let Kn be the n dimensional K vector space with basis
e1, . . . , en. Recall that gln acts on Kn by left multiplication. (Concretely, matrices
act on column vectors). By a result of Gerstenhaber (see [3]), the Zariski closure of
a conjugacy class of nilpotent matrices is defined by power-rank conditions, which
are equations coming from conditions of the form dimk(XmKn) ≤ am for various
nonnegative integers am. (However, this set of equations is generally not reduced).

A natural object to consider is the intersection of a conjugacy class of a nilpo-
tent matrix with the set Bn of upper triangular matrices. These varieties arise in
the study of Steinberg’s triple variety [10] and their irreducible components clas-
sify the irreducible components of Springer fibers arising from the resolution of the
flag variety. Understanding the irreducible components will also help in quantizing
nilpotent conjugacy classes.

As the previous paragraph suggests, the intersection of a conjugacy class with
the upper triangular matrices is not usually irreducible as an algebraic variety. The
simplest example is the set of all 3 × 3 matrices corresponding to the partition 21,
which has two components. An orbital variety is an irreducible component of the
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intersection of a nilpotent conjugacy class of gln and the upper triangular matrices
Bn.

Example

For the partition 21, there are two orbital varieties corresponding to the follow-
ing linear subspaces of Bn.

1.





0 x12 x13

0 0 0
0 0 0



 2.





0 0 x13

0 0 x23

0 0 0





By the work of Spaltenstein [7] and Springer [10], the orbital varieties arising
from a partition λ are in bijective correspondence with the standard Young tableau
of shape λ and content 1n. Given an orbital variety, one can obtain a tableau in
the following manner. Take a generic matrix in the orbital variety. Then for each
1 ≤ i ≤ n, the upper left square i× i submatrix is nilpotent, so one gets a sequence
of partitions λ1, . . . , λn = λ, with λi ⊂ λi+1 for all i. Now one obtains a tableau of
the appropriate shape and content by placing i in the unique box of λi/λi−1.

The inverse map from tableau (of shape λ and content 1n) to orbital varieties
can be described in terms of RSK. Given a tableau T , one obtains an element w
of the Weyl group by applying RSK to the pair (T, T ) (in fact, one gets an involu-

tion). Then the corresponding orbital variety is Oλ∩n+ ∩ (w · n+), where Oλ is the
corresponding nilpotent orbit and n+ is the set of strictly upper triangular matrices.

The construction of the previous paragraph allows one to determine nice geo-
metric information about orbital varieties. For example, for a given λ any orbital
variety corresponding to λ has dimension 1

2 dim Oλ. However, this construction
gives little algebraic information. No algorithm is known for the equations of an
orbital variety, and similarly it is difficult to determine if one orbital variety is con-
tained in the closure of a second orbital variety.

One nice properties of orbital varieties is that they are stable under the conjuga-
tion action of the Borel group of invertible upper triangular matrices. Our general
philosophy is to try to find and understand nice Borel stable subvarieties of the
nilpotent cone. The natural inclination is to understand all Borel orbits; however
there are infinitely many orbits, and moreover there exist continuous families of
orbits. The right idea seems to be to use Borel invariants to define nice sets of
Borel stable varieties of the nilpotent cone. However, the goal of our paper is more
modest; we only examine the action of the Borel group in the set of matrices X
with X2 = 0.

Section 2. Borel orbits in X2 = 0

Remark

Much of the work found in this paper was done independently by Melnikov ([5],
[6]), but with the extra limitations that the matrices to be considered are upper
triangular. Our work does not have this restriction. Also, Melnikov states her
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description of the Borel orbit poset in terms of involutions; our use of words to
describe the Borel orbit poset make certain results easier to describe.

Let Mn = gln be the set of all n × n matrices. Then Mn forms a variety with
coordinate ring K[xij] (where xij corresponds to the entry in the ith column and
jth row of the generic matrix). Let Vn be the subvariety of Mn consisting of all
n × n matrices with X2 = 0. Notice that Vn can be described set theoretically by
the ideal In generated by polynomials pij = Σk=n

k=1xikxkj for each ordered pair (i, j).
(These equations do not generate Vn scheme theoretically, see section 12).

Let Bn be the n × n Borel group of invertible upper triangular matrices. Bn

acts on Vn by b(X) = bXb−1 for all b ∈ B, X ∈ Vn. We wish to study the Borel
orbits of Vn. One way such orbits arise is from certain partial permutation matrices.

Definition

A partial permutation matrix is a matrix such that all entries are 0 or 1and such
that each row and each column has at most one nonzero entry.

Notice that the concept of a partial permutation matrix is a generalization of a
permutation matrix. Recall that a permutation matrix is determined uniquely by
a word of length n in the letters 1, . . . , n. By generalizing this definition, a partial
permutation can be described by a word of length n, but now using the alphabet
0, 1, . . . , n. This construction will also allow us to define a useful statistic later on.

Definition

Given a partial permutation matrix P , define the word of P to be WP = w1, . . . , wn,
where wj = i if Pej = ei and wj = 0 if Pej = 0.

Comment. Notice that the word of a partial permutation may have multiple
zeroes, but each nonzero term occurs at most once.

Obviously not all partial permutation matrices give rise to orbits in Vn. We now
classify all such matrices in terms of their words.

Definition

A word W is a valid X2 word if for some partial permutation matrix P with
P 2 = 0, W = WP . Alternatively, a word W is a valid X2 word if and only if the
following two conditions hold:

1. No nonzero number of W appears more than once.

2. If wj = i > 0, then wi = 0.

The second condition suggest the following important definition that will be used
later.
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Definition

Let W = w1, . . . , wn be a valid X2 word. Suppose wi = 0. We call wi a bound
zero (or just bound) if for some j, wj = i. A letter wi is said to be free if it is not
a bound letter (in particular all nonzero letters are free).

Example.

The word 0103 is a valid X2 word assigned to the partial permutation matrix









0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0









Note that it is easy to count the number of valid X2 words. They are in obvious
bijection with the set of directed partial matchings on n labeled points. (Given a
valid X2 word W , construct the graph with edges pointing from i to j if and only

if wi = j). Moreover, the exponential generating function for these words is ex2+x.

In general not all Borel orbits contain a partial permutation matrix. But in the
case of X2 = 0, we have the following theorem.

Theorem 1 Let X ∈ Vn. The orbit B ·X contains a unique partial permutation
matrix PX , and this partial permutation matrix is given by a valid X2 word. In
particular, there are finitely many orbits, indexed by the valid X2 words.

The idea behind the proof of this theorem is to construct Borel invariants. Given
a matrix X, one can then use these invariants to determine a partial permutation
matrix PX . To finish the proof, one uses the fact that X2 = 0 to inductively show
that X and PX are conjugate.

Section 3. Flags and Borel invariants

In order to construct the Borel invariants, we will have to recall the definition of
a complete flag.

Definition. A complete flag of the vector space Kn is a sequence V0 ⊂ V1 ⊂

· · · ⊂ Vn = Kn of vector subspaces of Kn such that Vi has dimension i.

Example. An example of a complete flag is the standard complete flag, where
Vi = Ki, the i dimensional vector space with basis e1, . . . , ei. (The vector spaces
Ki will also be called the standard i flag.) Notice that a matrix b is an invertible
upper triangular matrix if and only if bKi = Ki for all 1 ≤ i ≤ n, that is if and
only if it preserves the standard complete flag.

Now we can define a collection of Borel invariants that will allow us to classify
all the orbits of Vn.
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Definition. For any 0 ≤ i, j ≤ n, let ri,j(X) = dim(Ki + XKj ) − i. Equiva-
lently, ri,j(X) is the rank of the lower left n − i × j submatrix of X.

Notice that the first definition of the ri,j(X)’s shows that they are invariant under
the action of the Borel group, that is for all b ∈ B, we have ri,j(X) = ri,j(bXb−1).
One can see this by noting that the action of b just corresponds to a change of basis
that fixes the standard flag.

For a partial permutation matrix P , ri,j(P ) equals the number of ones in the
lower left n − i × j submatrix of P . Alternatively, ri,j(P ) can be calculated from
WP as the number of elements of w1, . . . , wj that are greater than i.

Example.

For the word 0103, one gets the following matrix of ri,j’s.












j = 1 j = 2 j = 3 j = 4
i = 0 0 1 1 2
i = 1 0 0 0 1
i = 2 0 0 0 1
i = 3 0 0 0 0













We have seen that the word WP determines the ri,j’s. However, the converse is
also true.

Lemma

Given P a partial permutation matrix with word w1, . . . , wn, we have wj = i > 0
if and only if ri,j(P ) = ri,j−1(P ) = ri−1,j(P ) = ri−1,j−1(P ) + 1. For a given j,
wj = 0 if and only if there is no i such that the condition in the previous sentence
holds.

In particular, the Borel invariants ri,j(P ) distinguish between any two partial
permutation matrices.

Suppose that we have X2 = 0. If X was conjugate to a partial permutation
matrix P , then we could determine the word of P (and thus P itself) by noting
that ri,j(P ) = ri,j(X) for all i and j. By mimicking this procedure, we can assign
a potential partial permutation PX to X.

The final step of the proof is to show that X and PX are actually conjugate.
Note that we must use the fact that X2 = 0 here; for example the matrices








0 1 1 0
0 0 0 0
0 0 0 1
0 0 0 0

















0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0









have the same ri,j’s, but are not conjugate. In this case the first matrix has
X3 = 0 but not X2 = 0.

Now we use the word WPX
of PX and the fact that X2 = 0 to find an upper

triangular change of coordinates where Kn decomposes into a direct sum of an
X stable two dimensional vector space and an X stable n − 2 dimensional vector
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space. (The two dimensional vector space will be spanned by ei, ewi
, where wi is

the first nonzero letter of WPX
, while the n − 2 is spanned by the other vectors).

By induction, we see that X is conjugate to PX .

Section 4. Algebraic considerations and the combinatorial Borel poset

Because of the previous theorem, we can identify a Borel orbit of Vn with either
the unique partial permutation of that orbit or with the valid X2 word of that par-
tial permutation matrix. Notice that each Borel orbit is a locally closed algebraic
set, since the condition ri,j(X) = rij is defined the vanishing and non vanishing of
certain minors. One would like to determine the Zariski closure of any Borel orbit,
and also certain geometric information such as the dimension of any orbit.

First we attempt to determine the Zariski closure of any orbit. Here we have an
obvious candidate. Suppose that an orbit associated to P is defined by the equa-
tions ri,j(X) = ri,j(P ) and X2 = 0. Notice that the condition ri,j(X) ≤ ri,j(P ) is
an algebraic condition, defined by the vanishing of all rij of the lower left n− i × j
submatrix. Now we can conjecture that the Zariski closure of the orbit should be
the variety Cl(P ) defined by ri,j(X) ≤ ri,j(P ) and X2 = 0. Clearly, this variety
contains the Zariski closure of P .

Now, the Zariski closure of a Borel orbit of Vn is a union of Borel orbits of Vn.
So we need to determine which partial permutation matrices Q are contained the
Zariski closure of P . Our approach will be to consider the set of all Q such that
ri,j(Q) ≤ ri,j(P ) for all i and j, and then to show that all such Q are contained in
the Zariski closure of P . This conjecture for the Zariski closure of an orbit inspires
us to define the following poset.

Definition. The combinatorial Borel orbit poset is a poset on the set of
B-orbits in Vn, with the relation that Q ≤ P if and only if Q ⊂ Cl(P ). Equiva-
lently, Q ≤ P if and only if ri,j(Q) ≤ ri,j(P ) for all i and j.

The condition that Q ≤ P can also be interpreted as a combinatorial condition
on the words WQ = v1, . . . , vn and WP = w1, . . . , wn. Namely Q ≤ P if and only if
for each 1 ≤ l ≤ n, the elements v1, . . . , vl of the initial l subword of WQ cover the
elements w1, . . . , wl of the initial l subword of WP , in the sense that there exists a
permutation σl ∈ Sl, such that wi ≤ vσl(i) for all 1 ≤ i ≤ l.

Example

We give the Hasse diagram for the combinatorial poset of valid X2 words of
length n = 4.
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Section 5. Standard Moves and finding the Zariski closure

As part of the proof that Cl(P ) is the Zariski closure of P , we show that the
combinatorial Borel poset is the transitive closure of a finite set of standard moves.
Recall that wi = 0 is bound if wj = i for some j, and wi is free otherwise.

Definition. A standard move in the combinatorial Borel poset replaces a valid
X2 word W by a smaller valid X2 word V in one of the four following ways.

1. Let wi be any nonzero letter of W . Then a standard move of type 1 has
V = w1, . . . , wi−1, w

∗
i , wi+1, . . . , wn where w∗

i is any value strictly less than wi such
that V is a valid X2 word. In other words, V is obtained from W by decreasing
the value of one particular nonzero letter. Note that for any nonzero letter wi of
W , there exists a word V obtained by from W by decreasing the letter wi, since we
can always replace wi by 0 to get a valid X2 word.

2. Let wi > wj be any free letters with i < j. (Recall that a letter wk is free
unless for some wl = k. In particular, any nonzero letter is free). Then a standard
move of type 2 has V = w1, . . . , wi−1, wj, wi+1, . . . , wj−1, wi, wj+1, . . . , wn. In other
words, V is obtained from W by switching the free letters wi and wj. Notice that
wj may equal 0 if the zero is free, but wi is never zero.
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3. Let wi = k be any free letter and let wj = 0 be any bound zero with i < j.
Recall that since wj = 0 is bound, then for some l, wl = j. Then a standard move of
type 3 has V = w1, . . . , wi−1, 0, wi+1, . . . , wj−1, wi, wj+1, . . . , wl−1, i, wl+1, . . . , wn.
In other words, V is obtained from W by switching the nonzero letter wi and the
bound zero wj = 0 and replacing wl = j with i. (In general, we do not assume
either i < l or j < l for a standard move of type 3).

4. Let wi = j be any nonzero letter such that j > i (note wj = 0). Then a
standard move of type 4 has V = w1, . . . , wj−1, 0, wj+1, . . . , wi−1, j, wi+1, . . . , wn.
In other words, V is obtained from W by replacing wi with 0 and replacing wj with i.

We give several examples of standard moves, along with a sequence of permuta-
tions that show that the larger word covers the smaller word.

Examples

1a. 00 < 01. This a standard move of type 1, with i = 2 and w∗
i = 0. A covering

sequence is given by σ1 = id1, σ2 = id2.

1b. 001 < 002. This is a standard move of type 1, with i = 3 and w∗
i = 1. A

covering sequence is given by σ1 = id1, σ2 = id2, σ3 = id3.

2a. 0012 < 0021. This is a standard move of type 2, with i = 3 and j = 4. A
covering sequence is given by σ1 = id1, σ2 = id2, σ3 = id3, σ4 = (34).

2b. 001 < 010. This is a standard move of type 2, with i = 2 and j = 3. Notice
wj is a free zero. A covering sequence is given by σ1 = id1, σ2 = id2, σ3 = (1)(23).

3. 0012 < 0103. This is a standard move of type 3, with i = 2, j = 3 and l = 4.
A covering sequence is given by σ1 = id1, σ2 = id2, σ3 = (23), σ4 = (23).

4. 01 < 20. This is a standard move of type 4, with i = 1 and j = 2. A covering
sequence is given by σ1 = id1, σ2 = (12).

One can generalize the covering sequences given above to show that any stan-
dard move gives rise to a relation in the combinatorial Borel poset. The following
theorem shows that these moves generate the poset.

Theorem

The combinatorial Borel orbit poset relation ≤ is the transitive closure of the stan-
dard moves.

The proof of this theorem involves some difficult combinatorics, and the con-
struction of a nice algorithm to construct a covering. As a consequence of this
theorem, in order to show that Cl(P ) is the Zariski closure of P , it suffices to show
that for any Q obtained from P by a standard move, Q is in the Zariski closure of
P . One can now use geometric methods to finish the proof; namely one constructs
an affine line such that the general point lies in P but a special point lies in Q.
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Corollary

The Zariski closure of P is Cl(P ).

Section 6. A dimension statistic

The Hasse diagram from the n = 4 case suggests that the combinatorial Borel
poset is ranked. In fact, that is the case. First, we construct the rank statistic.
Recall that in a valid X2 word, a letter wi = 0 is a bound zero if for some j, wj = i.
A letter is free if it is not bound.

Definition. Let W = w1, . . . , wn be a valid X2 word. A free inversion of W is
a pair (i, j) with 1 ≤ i < j ≤ n such that wi and wj are both free letters and with
wi > wj. We define FI(W ) to be the number of free inversions of W and we define
π(W ) = FI(W ) + Σn

i=1wi.

Theorem

The combinatorial Borel poset is a ranked poset, with rank function π(W ). Also,
π(W ) is the Krull dimension of the Zariski closure the orbit associated to W .

We have two methods of proof for the second statement. One method just in-
volves analyzing the conditions for P to cover Q, and showing π(P ) = π(Q) + 1 in
this case. The alternative method is to compute the Borel stabilizer of the partial
permutation matrix.

Section 7. Hyperplanes and algebraic considerations

We know that the Zariski closure of an orbit corresponding to a partial per-
mutation matrix P is defined set-theoretically by the conditions X2 = 0 and
ri,j(X) ≤ ri,j(P ) for all i, j. One wants to prove that this set of equations is
reduced, or to compute the radical if it is not reduced. In fact, for nonupper trian-
gular orbits, the radical contains additional traces arising from the Levi factor of
the appropriate parabolic subgroup.

Similarly, one would like to know the degree of an orbit closure as an algebraic
variety. Also, these orbits seem to be Cohen-Macaulay in general.

Our general strategy to attack these questions is to look for Borel invariant hy-
perplane sections and try to set up an induction. Suppose i = wj is the largest
element of the valid X2 word W . Then xi,j = 0 is such a Borel invariant hyperplane
section, corresponding to the condition the r(i − 1, j) = 0.

Using this method, one can show inductively by the method of principal radical
systems that the ideals we have constructed are reduced for certain upper triangular
orbits. (For nonupper triangular orbits, one must consider orbits of partial permu-
tation matrices under the action of certain linear subgroups of the Borel group.)
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As a corollary, one can show that any unions of matrix Schubert varieties coming
from a rank table is reduced.

Once one can show that the hyperplane sections are reduced, it is relatively easy
to show that the upper triangular orbits are Cohen-Macaulay.

Finally, the hyperplane sections also give us an inductive formula for computing
degree.

Theorem

Let W be a valid X2 word. Let i = wj be the largest nonzero letter of W .
a. If W = 0, 0, . . . , 0, deg(Cl(OW )) = 1.
b. Otherwise,

deg(Cl(OW )) =
∑

V≤W,π(V )+1=π(W ),vi<wi

mV deg(Cl(OV )),

where mV = 1 if V is obtained from W by a standard move of type 1, 2, or 3,
and mV = 2 if V is obtained from W by a standard move of type 4.
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[4] A. Knutson and E. Miller. Gröebner geometry of schubert polynomials. math.AG/0110058,

2001.
[5] A. Melnikov. B-orbits in solutions to the equation x2 = 0 in triangular matrices. J. of Algebra,

223:101–108, 2000.
[6] A. Melnikov. Description of b-orbit closure of order 2 in upper triangular matrices.

math.RT/0312290, 2003.
[7] N. Spaltenstein. The fixed point set of a unipotent transformation on the flag manifold. In

Proc. Konin. Nederl. Akad., pages 452–456, 1976.
[8] N. Spaltenstein. Classes unipotents de sous-groupes de Borel, volume 964 of LN in Math.

Springer-Verlag, 1982.
[9] R. Stanley. Enumerative Combinatorics, volume 2. Cambridge University Press, Cambridge,

1999.
[10] R. Steinberg. On the desingularization of the unipotent variety. Invent. Math., 36:59–113,

1976.
[11] R. Steinberg. An occurance of robinson-schensted correspondence. J. of Algebra, 113:523–528,

1988.
[12] P. Thijsse. Upper triangular similarity of upper triangular matrices. Linear Algebra Appl.,

260:119–149, 1997.


