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ABSTRACT. A variety is Gorenstein if it is Cohen-Macualay and its canonical sheaf is a line
bundle. This property implies a variety behaves like a smooth one for various algebro-
geometric purposes. We introduce a new notion of pattern avoidance involving Bruhat
order and use it to characterize which Schubert varieties are Gorenstein. We also give an
explicit description as a line bundle of the canonical sheaf of a Gorenstein Schubert variety.

1. INTRODUCTION

This extended abstract is a shortened version of the paper [31], with details of the proofs
omitted. The main goal of the paper is to give an explicit combinatorial characterization
of which Schubert varieties in the complete flag variety are Gorenstein.

Let Flags(Cn) denote the variety of complete flags F• : 〈0〉 ⊆ F1 ⊆ . . . ⊆ Fn = Cn. Fix a
basis e1, e2, . . . , en of Cn and let E• be the anti-canonical reference flag E•, that is, the flag
where Ei = 〈en−i+1, en−i+2, . . . , en〉. For every permutation w in the symmetric group Sn,
there is the Schubert variety

Xw =
{
F• | dim(Ei ∩ Fj) ≥ #{k ≥ n − i + 1, w(k) ≤ j}

}
.

These conventions have been arranged so that the codimension of Xw is `(w), that is, the
length of any expression for w as a product of simple reflections si = (i ↔ i + 1).

Gorensteinness is a well-known technical condition which implies that a variety be-
haves like a smooth one for various algebro-geometric purposes. In particular, smooth
varieties are Gorenstein and Gorenstein varieties are by definition Cohen-Macaulay. A
variety is Gorenstein if it is Cohen-Macaulay and its canonical sheaf is a line bundle.
(Throughout this paper we freely identify vector bundles and their sheaves of sections
for convenience.) Recall that on a smooth variety X , the canonical sheaf, denoted ωX is
∧dim(X)ΩX , where ΩX is the cotangent bundle of X . For a possibly singular but normal
variety, it is the pushforward of the canonical sheaf ωXsmooth

of the smooth part Xsmooth of
X under the inclusion map. In fact, every Schubert variety is normal [10, 26] and Cohen-
Macaulay [27], therefore, the above remarks actually suffice to give a complete definition
of Gorensteinness for our purposes.

Gorensteinness can also be determined locally using a free resolution. Examples of
Gorenstein varieties include all (normal) hypersurfaces. The variety of m × n matrices of
rank at most r is Gorenstein iff m = n (or, trivially, r = 0 or r = min(m,n)); this follows
either from the characterization of Gorenstein Schubert varieties on the Grassmannian,
originally due to Svanes [30] and recoverable from our results here, or in characteristic 0
from the construction of a free resolution due originally to Lascoux [19].
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Smoothness and Cohen-Macaulayness of Schubert varieties have been extensively stud-
ied in the literature; see, for example, [3, 27] and the references therein. While all Schubert
varieties are Cohen-Macaulay, actually very few Schubert varieties are smooth. (See the
table near the end of this extended abstract.) Explicitly, Xw is smooth if and only if w is
“1324-pattern avoiding” and “2143-pattern avoiding” [20].

Our main result (Theorem 1) gives an explicit combinatorial characterization of Goren-
steinness similar to the above smoothness criteria. This answers a question raised by
M. Brion and S. Kumar, and that was passed along to us by A. Knutson; see also [28,
p. 88]. Our answer uses a generalized notion of pattern avoidance that we will define
below.

2. THE GRASSMANNIAN CASE

First let us present the answer for Schubert varieties on the Grassmannian, due origi-
nally to T. Svanes in [30]; this case will illustrate one of the conditions given in our main
theorem, and can also be derived as a special case of it. On the Grassmannian, Schubert
varieties Xλ are indexed by partitions λ sitting inside an ` × (n − `) rectangle; we use the
convention that |λ| is the codimension of Xλ in Gr(`, n). The smooth Schubert varieties
are those indexed by partitions λ whose complement in ` × (n − `) is a rectangle, see, for
example, [3] and the references therein. For example, λ = (7, 7, 2, 2, 2) indexes a smooth
Schubert variety in Gr(5, 12).

λ =
s

s

µ =

s

s

s

Alternatively, smooth Schubert varieties are those with exactly one inner corner. View
the lower border of partition as a lattice path from the lower left-hand corner to the upper
right-hand corner of ` × (n − `); then an inner corner is a lattice point that has a lattice
point of the path both directly below and directly to the right of it. The inner corners for
the partitions λ and µ above are marked by “dots”.

Therefore, the partition µ = (6, 5, 5, 3, 2) above does not index a smooth Schubert va-
riety. However, it does index a Gorenstein Schubert variety; in general, a Grassmannian
Schubert variety Xµ is Gorenstein if and only if all of the inner corners of µ sit on the same
antidiagonal.

3. MAIN DEFINITIONS

In order to state our main results for a Schubert variety Xw of the flag variety Flags(Cn),
we will need some preliminary definitions. First we need to associate a partition to each
descent of w, and define the associated inner corner distance. Secondly we need to define
a new notion of pattern avoidance which we call Bruhat-restricted pattern avoidance.

Let d be a descent of w, that is, an index where w(d) > w(d+1). Now write w in one-line
notation as w(1)w(2) · · ·w(n), and construct a subword vd(w) of w by concatenating the
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right-to-left minima of the segment strictly to the left of d+1 with the left-to-right maxima
of the segment strictly to the right of d. In particular, vd(w) will necessarily include w(d)
and w(d + 1). Let ṽd(w) denote the flattening of vd(w), that is, the unique permutation
whose relative position of its entries matches that of vd(w).

Example 1. Let w = 314972658 ∈ S9. This permutation has descents at positions 1, 4, 5
and 7. We see that v1(w) = 3149, v4(w) = 14978, v5(w) = 147268, and v7(w) = 12658, so
therefore ṽ1(w) = 2134, ṽ4(w) = 12534, ṽ5(w) = 135246, and ṽ7(w) = 12435.

By construction, ṽd(w) ∈ Sm is a Grassmannian permutation, that is, it has a unique
descent at, say, position e. For any Grassmannian permutation w ∈ Sm with its unique
descent at e, let λ(w) ⊆ e × (m − e) denote the associated partition. This is obtained by
drawing a lattice path starting from the lower left-hand corner of e×(m−e)and drawing a
unit horizontal line segment at step i = 1, 2, . . . ,m if i appears strictly after position e, and
a unit vertical line segment otherwise. For example, the Grassmannian permutation w =
3589 11 | 12467 10 12 corresponds to the partition λ(w) = µ = (6, 5, 5, 3, 2) depicted above.
Now, given an inner corner of a partition λ(w), let its inner corner distance be the sum of
the distances from the inner corner to the top and left edges of the rectangle e × (m − e).
Furthermore, suppose that λ(w) has all its inner corners on the same antidiagonal; this
is equivalent to requiring that the inner corner distance be the same for all inner corners.
In this case we call this common inner corner distance I(w); if there are no inner corners,
we set I(w) = 0 by convention. For example, in µ above, all the inner corner distances
equal 6.

Now we define Bruhat-restricted pattern avoidance. First we recall the classical notion
of pattern avoidance and the Bruhat order on Sn. For v ∈ S` and w ∈ Sn, with ` ≤ n,
an embedding of v into w is a sequence of indices i1 < i2 < · · · < i` such that, for all
1 ≤ a < b ≤ `, w(ia) > w(ib) if and only if v(a) > v(b). Then w pattern avoids v if there are
no embeddings of v into w.

The Bruhat order on Sn, which we will denote by �, is defined as follows. First we
say that w(i ↔ j) covers w if i < j, w(i) < w(j), and, for each k with i < k < j, either
w(k) < w(i) or w(k) > w(j); then the Bruhat order is the transitive closure of this covering
relation. The Bruhat order is graded by the length of a permutation, and one can check
that v can cover w only if `(v) = `(w) + 1.

Now let Tv = {(m1 ↔ n1), . . . , (mk ↔ nk)} be a set of Bruhat transpositions for v,
where a Bruhat transposition (mj ↔ nj) is one such that v · (mj ↔ nj) covers v in the
Bruhat order. A Tv-restricted embedding of v into w is an embedding of v into w such
that w · (imj

↔ inj
) covers w (in the Bruhat order) for all (mj ↔ nj) ∈ Tv . Then w pattern

avoids v with Bruhat restrictions Tv if there are no Tv-restricted embeddings of v into w.
For example, the Bruhat transpositions for 31524 are (1 ↔ 3), (1 ↔ 5), (2 ↔ 3), (2 ↔ 4),
and (4 ↔ 5). This can be indicated by brackets drawn under the permutation as in Figure
1; the emptiness of the shaded rectangles in the graph of the permutation shows that
(1 ↔ 5) and (2 ↔ 3) are indeed Bruhat transpositions. Using these “bracket diagrams”,
being a Tv-restricted embedding means that the brackets associated to the transpositions
in Tv are present in the “bracket diagram” for w. For example, there is no {(2 ↔ 4)}-
restricted embedding of 2143 into 31524 since such an embedding would require a bracket
between the 1 and the 4.
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FIGURE 1. Bruhat transpositions for w = 31524

4. MAIN THEOREMS

Now we are ready to state our combinatorial characterization of Gorensteinness for
Schubert varieties in Flags(Cn):

Theorem 1. Let w ∈ Sn. The Schubert variety Xw is Gorenstein if and only if for each descent d of
w, λ(ṽd(w)) has all of its inner corners on the same antidiagonal and w pattern avoids both 31524
and 24153 with Bruhat restrictions {(1 ↔ 5), (2 ↔ 3)} and {(1 ↔ 5), (3 ↔ 4)} respectively.

It is possible to replace the conditions on the descents with an infinite list of patterns to
be avoided with certain Bruhat restrictions; this list contains 2 patterns in Sk for each odd
k ≥ 5.

By combining Theorem 1 with the descriptions of the singularities along the “maximal
singular locus” of a Schubert variety Xw given in [9, 22], we obtain the following purely
geometric corollary.
Corollary 1. A Schubert variety Xw is Gorenstein if and only if it is Gorenstein along its maximal
singular locus.

The proof follows from classical results characterizing which of the singularities de-
scribed in [9, 22] are Gorenstein.

In comparing the smoothness characterization of [20] with Theorem 1, the considera-
tions from our description of the Grassmannian case allow one to check that the 1324-
pattern avoidance condition of the former implies the “inner corner condition” of the
latter. It is also easy to see that the 2143-pattern avoidance condition of the former im-
plies each of the Bruhat-restricted pattern avoidance conditions of the latter. We mention
that Fulton [12] has characterized 2143-pattern avoidance in terms of the essential set of
a permutation. A similar characterization can be given for the Bruhat-restricted pattern
avoidance conditions of Theorem 1.

Example 2. The permutation w = 51328467 ∈ S8 has descents at positions 1, 3 and 5 and
we have

ṽ1(w) = 3124, ṽ3(w) = 1324, and ṽ5(w) = 126345.
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Hence one checks that w satisfies the inner corner condition with
I(ṽ1(w)) = 2, I(ṽ3(w)) = 1, and I(ṽ5(w)) = 1.

The Schubert variety Xw is Gorenstein, since there are no forbidden 31524 and 24153 pat-
terns with Bruhat restrictions {(1 ↔ 5), (2 ↔ 3)} or {(1 ↔ 5), (3 ↔ 4)} respectively. Note
that the underlined subword of w is a 31524-pattern, but since w(1 ↔ 8) does not cover w,
it does not prevent Xw from being Gorenstein.

We now describe the canonical sheaf of a Gorenstein Schubert variety as a line bundle.
Let T ∼= (C∗)n−1 be the subgroup of invertible diagonal matrices of determinant 1 in
SLn(C); the Borel-Weil construction associates to each integral weight α ∈ Hom(T, C∗)
a line bundle Lα. Let Lα

∣∣
Xw

denote the restriction of this line bundle to Xw. We will
write weights additively in terms of the Z-basis of fundamental weights Λr, defined by

Λr








t1 0

. . .
0 tn







 = t1 · · · tr.

Theorem 2. If Xw is Gorenstein, then ωXw
∼= Lα

∣∣
Xw

where α =
∑n−1

r=1 α̃rΛn−r and

(1) α̃r =

{
−2 + I(ṽr(w)) if r is a descent

−2 otherwise.

5. APPLICATIONS AND PROBLEMS

Theorem 1 extends with no difficulty to Schubert varieties on partial flag varieties.
Theorem 2 also extends, though some further calculations are needed. Our results can
also be extended to the matrix Schubert varieties originally defined in [12], and thereby
used to recover previously known results on Gorensteiness of ladder determinantal vari-
eties [8, 15].

More geometrically, Theorem 2 calculates the sheaf cohomology of some line bundles
on Gorenstein Schubert varieties, and gives small hints towards a final theorem on this
open problem. Theorem 2 also allows us to characterize which smooth Schubert varieties
are Fano, and gives new examples of higher-dimensional Fano varieties.

Further study of the relations between the geometry of Gorensteinness of Schubert va-
rieties and related combinatorics should have potential. The most natural question is:

Problem 1. Give analogues of Theorems 1 and 2 for generalized flag varieties corresponding to
Lie groups other than SLn(C).

We expect that the methods given in this paper will extend to solve Problem 1. For the
case of the odd orthogonal groups SO2n+1(C), the solution for SLn(C) leads to an answer
which, however, is not entirely in terms of a good generalization of Bruhat-restricted
pattern avoidance. The other classical types are not completely understood as of this
writing.

In analogy with the determination of the singular loci of singular Schubert varieties [4,
9, 14, 18, 20, 21, 22], it should also be interesting to determine the “non-Gorenstein locus”
of a non-Gorenstein Schubert variety; as in the case of singular loci this will for geometric
reasons be a union of Schubert subvarieties Xv of our Schubert variety Xw . Therefore, we
ask:
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Problem 2. Give a combinatorial characterization for the minimal v in the Bruhat order for which
Xw is non-Gorenstein at Xv .

Presumably, the eventual answer (for SLn(C)) will have some interesting relationship
with the combinatorial characterization of the maximal singular locus. Indeed, in view
of Corollary 1, one can hope that the maximal non-Gorenstein locus of Xw is simply the
union of those Schubert cells in the maximal singular locus at which Xw is not Gorenstein.

A geometric explanation was recently given in [2] for the appearance of pattern avoid-
ance in characterizations of smooth Schubert varieties. However, this explanation does
not have an obvious modification to take into account Bruhat-restrictions. This leads to
the following:

Problem 3. Give a geometric explanation of Bruhat-restricted pattern avoidance which explains
its appearance in Theorem 1.

Finally, for those interested in combinatorial enumeration:

Problem 4. Give a combinatorial formula (for example, a generating series) computing the num-
ber of Gorenstein Schubert varieties in Flags(Cn).

Using the methods of this paper, we computed the number of Gorenstein Schubert vari-
eties in Flags(Cn) for some small values of n (see below). We compare this to the number
of smooth Schubert varieties computed using the result of [20] (by the recursive formulas
found in [5, 29]).

n n! = # Cohen-Macaulay Xw # Gorenstein Xw # Smooth Xw

1 1 1 1
2 2 2 2
3 6 6 6
4 24 24 22
5 120 116 88
6 720 636 366
7 5040 3807 1552
8 40320 24314 6652
9 362880 163311 28696
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