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Abstract. We classify finite posets with a particular sorting property, generalizing a result for
rectangular arrays. Each poset is covered by two sets of disjoint saturated chains such that, for
any original labeling, after sorting the labels along both sets of chains, the labels of the chains in
the first set remain sorted. This gives a linear extension of the poset. We also characterize posets
with more restrictive sorting properties.

Résumé. Nous classifions les ensembles partiellement ordonnés ayant une certain propriété de
triage, généralisant ainsi un résultat connu pour les tables rectangulaires. Chaque ensemble par-
tiellement ordonné est couvert par deux ensembles de châınes saturées disjointes de telle sorte que,
pour tout étiquetage, trier le long des châınes du premier ensemble, puis celles du second, produit
un étiquetage où les étiquettes sont toujours bien ordonnées par rapport au premier ensemble de
châınes. Nous obtenons de cette façon une extension linéaire de l’ensemble partiellement ordonné.
Nous caractérisons aussi les ensembles partiellement ordonnés possédant des propriétés de triage
plus contraignantes.

1. Introduction

The so-called Non-Messing-Up Theorem is a well known sorting result for rectangular arrays.
In [5], Donald E. Knuth attributes the result to Hermann Boerner, who mentions it in a footnote in
Chapter V, §5 of [1]. Later, David Gale and Richard M. Karp include the phenomenon in [2] and
in [3], where they prove more general results about order preservation in sorting procedures. The
first use of the term “non-messing-up” seems to be due to Gale and Karp, as suggested in [4]. One
statement of the result is as follows.

Theorem 1. Let A = (aij) be an m-by-n array of real numbers. Put each row of A into non-
decreasing order. That is, for each 1 ≤ i ≤ m, place the values {ai1, . . . , ain} in non-decreasing
order (henceforth denoted row-sort). This yields the array A′ = (a′

ij). Column-sort A′. Each row
in the resulting array is in non-decreasing order.

Applying the theorem to the transpose of the array A, the sorting can also be done first in the
columns, then in the rows, and the columns remain sorted.

Example.

4 9 7 8
12 5 1 10
2 6 11 3

row-sort
−−−−−→

4 7 8 9
1 5 10 12
2 3 6 11

column-sort
−−−−−−−→

1 3 6 9
2 5 8 11
4 7 10 12

Answering a question posed by Richard P. Stanley, the author’s thesis advisor, this paper defines
a notion of non-messing-up for posets and Theorem 7 generalizes Theorem 1 by characterizing all
posets with this property.
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Throughout this paper, we will use standard terminology from the theory of partially ordered
sets. A good reference for these terms and other information about posets is Chapter 3 of [6].

The rectangular array in Theorem 1 can be viewed as the poset m × n (where j denotes a
j-element chain). The rows and columns are two different sets of disjoint saturated chains, each
covering this poset. Sorting a chain orders the chain’s labels so that the minimum element in the
chain has the minimum label. Thus, sorting the labels in this manner gives a linear extension of
m × n.

Definition. An edge in a poset P is a covering relation x l y. Two elements in P are adjacent
if there is an edge between them.

Definition. A chain cover of a poset P is a set of disjoint saturated chains covering the
elements of P .

Definition. A finite poset P has the non-messing-up property if there exists an unordered pair
of chain covers {C1, C2} such that

(1) For any labeling of the elements of P , Ci-sorting and then C3−i-sorting leaves the labels
sorted along the chains of Ci, for i = 1 and 2; and

(2) Every edge in P is contained in an element of C1 or C2.

The set N2 consists of all posets with the non-messing-up property, where the subscript indicates
that an unordered pair of chain covers is required. For a non-messing-up poset P with chain covers
as defined, write P ∈ N2 via {C1, C2}.

Let us clarify the difference between this result and Gale and Karp’s work in [2] and [3]. Gale
and Karp consider a poset P and a partition F of the elements of P . The elements in each block of
F are linearly ordered, not necessarily in relation to comparability in P . Given P and F , the authors
determine whether each natural labeling of P , sorted within each block of F , yields a labeling that
is still natural. In this paper, we do not require that the original labeling be natural. In fact, it is
the labelings that are not natural and that do not become natural after the first sort that determine
membership in N2. Additionally, the partition blocks in N2 are saturated chains, and every covering
relation must be in at least one of these chains. The goal of this paper is to determine, for a given
poset, when there exist chain covers with the non-messing-up property, not if a given pair of chain
covers has the property.

It is important to emphasize that {C1, C2} is an unordered pair and that there is a symmetry
between the chain covers. We will refer to elements of C1 and their edges as red, and elements
of C2 and their edges as blue. If an edge belongs to both chain covers, it is doubly colored. The
symmetry between the chain covers may be expressed by a statement about red and blue chains and
an indication that a color reversed version of the statement is also true.

A central object in the classification of N2 is the following.

Definition. Let N ≥ 3 be an integer, and consider the poset P = N ×N = {(i, j) : 1 ≤ i, j ≤
N}. For integers k1 and k2, 3 ≤ k1 ≤ k2 ≤ N , let P ′ be

P \
(
{(i, j) : j ≥ i + k1 or i ≥ j + k2} ∪ {(i, j) : j ≥ N + k1 − k2 + 1}

)
.

Let the poset P̂ be obtained from P ′ by identifying (i, k1+i−1) ∼ (k2+i−1, i) for i = 1, . . . , N−k2+1.

The poset P̂ is N × N on the cylinder. This definition is independent of the values k1 and k2.

The classification in Theorem 7 states that N2 is the set of disjoint unions of connected posets
that each can be “reduced” to a convex subposet of N ×N or of N ×N on the cylinder for some N ,
subject to a technical constraint. Informally speaking, P reduces to Q if P is formed by replacing
particular elements of Q with chains of various lengths. Sample Hasse diagrams for elements of N2

are shown in Figures 5(a), 6(a), 7(a), and 8(a).
In Section 2 of this paper, we address definitions and preliminary results. The definitions describe

the objects and operations needed for the classification, and the results will be the fundamental tools
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(a) (b)

(6, 3)

(5, 2)

(4, 1)

(3, 5)

(2, 4)

(1, 3)

Figure 1. (a) P = 6 × 6. (b) P ′ for k1 = 3 and k2 = 4. To form P̂ , identify
(1, 3) ∼ (4, 1), (2, 4) ∼ (5, 2) and (3, 5) ∼ (6, 3).

for defining N2. The main theorem is proved in Section 3 by induction on the size of a connected
poset. The final section of the paper discusses further directions for the study of non-messing-up
posets, including several open questions.

2. Preliminary results

The definition of a non-messing-up poset requires that every edge be colored. Therefore, as in
the case of the product of two chains, Ci-sorting any labeling and then C3−i-sorting yields a linear
extension of the poset. The chains of Ci are disjoint, so each element of a non-messing-up poset is
covered by at most two elements, and covers at most two elements.

It is sufficient to consider connected posets, as a poset is in N2 if and only if each of its connected
components is in N2. Key to determining membership in N2 is the following fact.

Theorem 2. Every convex subposet of an element of N2 is also in N2.

The coloring of a convex subposet Q of P ∈ N2 is inherited from the coloring of P in the sense
that the chain covers in Q are as in Q when considered as a subposet of P .

Lemma 3. If a convex subposet of a non-messing-up poset is a chain, then there is a red chain
or a blue chain containing this entire subposet.

Definition. A diamond in a poset is a convex subposet that is the union of distinct (saturated)
chains which only intersect at a common minimal element and a common maximal element.

Lemma 4. Let Q be a diamond consisting of chains a and b in a non-messing-up poset. Let
x be the minimal element in a and b, denoted min(a) and min(b), and let y = max(a) = max(b),
with similar notation. Up to color reversal, one of the following is true (where c\z is taken to mean
c \ {z}).

(1) There exists a red chain containing a\y, a blue chain containing b\y, a red chain containing
b \ x and a blue chain containing a \ x; or

(2) There exists a red chain containing a and a blue chain containing b.

Call the former of these a Type I diamond and the latter a Type II diamond.

Definition. A diamond with bottom chain of length k and top chain of length l is a convex
subposet that is a diamond with minimum x and maximum y, a chain of k elements covered by x,
and a chain of l elements covering y, with no other elements or relations among the elements already
mentioned.

The technical condition mentioned in the introduction is due to the following requirement.

Lemma 5. Let Q ⊆ P ∈ N2 be a diamond consisting of chains a and b. Suppose there is a
coloring of P for which Q has Type I, with bottom and top chains C and D. Then there are chains
in that coloring such that, up to color reversal, (C ∪ a) \ y is red, (C ∪ b) \ y is blue, (a∪ D) \ x is
blue, and (b ∪ D) \ x is red. Also, max{|C|, |D|} < min{|a| − 2, |b| − 2}.
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Figure 2. (a) Type I diamond coloring. (b) Type II diamond coloring, where the
intervals a \ {x, y} and b \ {x, y} may be partially or totally doubly colored.

Figure 3. A diamond with bottom chain of length 2 and top chain of length 1

If max{|C|, |D|} = min{|a| − 3, |b| − 3}, then the described chains have the non-messing-up
property, so the bounds in Lemma 5 are sharp.

Recall the definition of N × N on the cylinder. As suggested by the main result, this object is
crucial in the study of non-messing-up posets.

Theorem 6. The poset N × N on the cylinder is in N2 for all N . The chain covers for this
poset are of the same form as the chain covers in Theorem 1.

Before discussing the main theorem, it remains to rigorously define the notion of reduction.

Definition. The process of splitting the element x ∈ Q′ gives a poset Q where

(1) x ∈ Q′ is replaced by {x1 l · · · l xs(x)} for some positive integer s(x);
(2) All elements and relations in Q′ \ x are unchanged in Q;
(3) If y m x in Q′, then y m xs(x) in Q; and
(4) If y l x in Q′, then y l x1 in Q.

If Q is formed by splitting elements of Q̃, then Q reduces to Q̃, denoted Q Q̃.

Definition. Let P  P̃ ∈ N2. The coloring of P̃ induces the coloring of P if the edge ũ l ṽ

in P̃ and its image, the edge u l v in P , are colored in the same way. Edges in the chain into which
an element splits get doubly colored.

3. Characterization of N2

The classification of the set N2 is done in two steps. The first direction shows that any poset
reducing to a convex subposet of N × N or of N × N on the cylinder, subject to a technical



A NON-MESSING-UP PHENOMENON FOR POSETS 5

(a) (b) (c) (d)

Figure 4. How to split a vertex.

constraint imposed by Lemma 5, has the non-messing-up property. The second step shows the
reverse inclusion. Both directions are proved by induction on the size of a connected poset.

Theorem 7. The collection N2 is exactly the set of posets each of whose connected components

P reduces to P̃ , a convex subposet of N × N or of N × N on the cylinder for some N , given the
following stipulation:

Technical Condition. For any diamond {w l x, y l z} in P̃ that
does not realize a generator of the fundamental group of the cylinder,

max{s(w), s(z)} ≤ min{s(x), s(y)}.

The required coloring of the connected poset P ∈ N2 is induced by the coloring of P̃ , which is inherited
from the coloring in Theorem 1 or Theorem 6.

Both directions of the proof consider a subposet P ′ formed by removing either a maximal or a
minimal element from P . Thus P ′ is convex in P , and it is not hard to see that the suppositions for
P must hold for P ′ as well. Each connected component in P ′ has fewer than |P | elements, so the
theorem holds for P ′ by the inductive assumption.

One case considered in the proof is when a maximal or minimal element of P is adjacent to two
other elements but is not in a diamond, and its removal does not disconnect the poset. Observe that
this describes a poset P that can only reduce to a poset on the cylinder, while a maximal proper
subposet of P reduces to a convex subposet in the plane.

Examples of posets with the non-messing-up property are depicted in Figures 5(a), 6(a), 7(a),
and 8(a). The first two of these reduce to convex subposets of N × N , and the last two reduce to
convex subposets of N × N on the cylinder.

(a) (b)

Figure 5. (a) A poset P ∈ N2. (b) The reduced poset P̃ , where the elements that
split to form P are circled.
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(a) (b)

Figure 6. (a) A poset P ∈ N2. (b) The reduced poset P̃ , where the elements that
split to form P are circled.

Notice that a Type II diamond as described in Lemma 4 occurs only in elements of N2 that reduce
to posets on the cylinder. Moreover, such a diamond must realize a generator of the fundamental
group of the cylinder because of the definition of an induced coloring. This explains the technical
condition.

(a) (b)

x

x

Figure 7. (a) A poset P ∈ N2. (b) The reduced poset P̃ as viewed with identified
sides, where the elements that split to form P are circled and the elements that are
identified are both labeled x.

The requirement for membership in N2 is the existence of a pair of chain covers {C1, C2} with
particular properties. We might also ask if there are other choices for Ci. A poset of the form
depicted in Figure 7(a), that is, a poset consisting of a single diamond and its bottom and top
chains, can also be colored so that the diamond has Type I if the bounds of Lemma 5 are satisfied.
Otherwise, the only freedom in defining the chain covers arises from the various ways to reduce P

due to splits as depicted in Figure 4(a).

4. Further directions

The classification of N2 prompts further questions relating to the non-messing-up property. In
the final section of this paper, we suggest several such questions and provide answers to some.
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(a) (b)

x

x

Figure 8. (a) A poset in N2. (b) The reduced poset P̃ as viewed with identified
sides, where the elements that split to form P are circled and the elements that are
identified are both labeled x.

4.1. The set N2
′ ( N2 with reduced redundancy.

In the classification of N2, there were instances of a Ci chain entirely contained in a C3−i chain.
These chain covers have the non-messing-up property, but there is a certain redundancy: this par-
ticular Ci chain adds no information about the relations in the poset since its labels are already
ordered after the C3−i-sort.

Definition. The class N2
′ consists of all posets P ∈ N2 via {C1, C2} such that ci 6⊆ c3−i for all

c1 ∈ C1 and c2 ∈ C2.

Because the coloring of a non-messing-up poset is induced by its reduced poset, the elements
of N2

′ can be determined by looking at these reduced posets. Call a chain that shares no covering
relation with any diamond a branch chain and a maximal such chain a maximal branch chain.

Theorem 8. The collection N2
′ is the set of posets in N2 where every maximal branch chain in

the reduced poset P̃ consists of exactly two elements, and every element of P̃ is adjacent to at least

two other elements in P̃ .

4.2. The set N2
′′ ⊆ N2 with reduced redundancy.

In the Non-Messing-Up Theorem as stated in Theorem 1, the rows and columns have minimal
redundancy in the sense that for any row r and any column c, #(r ∩ c) = 1.

Definition. The class N2
′′ consists of all posets P ∈ N2 via {C1, C2} such that #(c1 ∩ c2) ≤ 1

for all ci ∈ Ci.

Theorem 9. The collection N2
′′ is the set of posets each of whose connected components is a

convex subposet of N × N or of N × N on the cylinder.

4.3. Open questions.
This paper studies finite posets and saturated chains, but interesting results may arise if we

relax one or both of these restrictions. Similarly, we could study posets with some variation of
the non-messing-up phenomenon. For example, we could consider more than two sets of chains, or
expand beyond identities like SiS3−iSi(L(P )) = S3−iSi(L(P )) for all labelings L of P and i ∈ {1, 2},
where Si(L(P )) represents Ci-sorting a labeling L of a poset P .

Additionally, as stated earlier, any labeling of a poset P ∈ N2 produces a linear extension of P

after performing the two sorts. It would be interesting to understand the distribution of the linear
extensions that arise in this way.
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