ON THE ENUMERATION OF PARKING FUNCTIONS BY LEADING NUMBERS

SEN-PENG EU, TUNG-SHAN FU, AND CHUN-JU LAI

ABSTRACT. Let $\mathbf{x} = (x_1, \ldots, x_n)$ be a sequence of positive integers. An **x**-parking function is a sequence (a_1, \ldots, a_n) of positive integers whose non-decreasing rearrangement $b_1 \leq \cdots \leq b_n$ satisfies $b_i \leq x_1 + \cdots + x_i$. In this paper we give a combinatorial approach to the enumeration of (a, b, \ldots, b) -parking functions by their leading terms, which covers the special cases $\mathbf{x} = (1, \ldots, 1)$, $(a, 1, \ldots, 1)$, and (b, \ldots, b) . The approach relies on bijections between the **x**-parking functions and labeled rooted forests. To serve this purpose, we present a simple method for establishing the required bijections. Some bijective results between certain sets of **x**-parking functions of distinct leading terms are also given.

Résumé. Soit $\mathbf{x} = (x_1, \ldots, x_n)$ un vecteur d'entiers strictement positifs. Une fonction de **x**-parking est un vecteur (a_1, \ldots, a_n) d'entiers strictement positifs tel que son réordonnement croissant, noté $b_1 \leq \cdots \leq b_n$ satisfait $b_i \leq x_1 + \cdots + x_i$. Dans cet article, nous proposons une approche combinatoire unifiée pour l'énumération des fonctions de **x**-parking selon leur terme dominant, dans les cas où **x** est égal à $(1, \ldots, 1), (a, 1, \ldots, 1), (b, \ldots, b)$, et (a, b, \ldots, b) . Cette énumeration s'appuie sur des bijections entre les fonctions de **x**-parking et les arbres étiquetés et les forêts étiquetées. À cette fin, nou présentons un mécanisme qui simplifie de façon significative l'établissement des bijections. Nous donnons plusieurs résultats bijectifs entre certains ensembles de fonctions de **x**-parking ayant des termes dominants distincts.

1. INTRODUCTION

A parking function of length n is a sequence $\alpha = (a_1, \ldots, a_n)$ of positive integers such that the non-decreasing rearrangement $b_1 \leq \cdots \leq b_n$ of α satisfies $b_i \leq i$. Parking functions were introduced by Konheim and Weiss in [4] when they dealt with a hashing problem in computer science. They derived that the number of parking functions of length n is $(n + 1)^{n-1}$, which coincides with the number of labeled trees on n + 1 vertices by Cayley's formula. Several bijections between the two sets are known (e.g., see [1, 7, 8]). Parking functions have been found in connection to many other combinatorial structures such as acyclic mappings, polytopes, non-crossing partitions, hyperplane arrangements, etc. Refer to [1, 2, 3, 6, 9, 10] for more information. The notion of parking functions were further generalized in [6]. Let $\mathbf{x} = (x_1, \ldots, x_n)$ be a sequence of positive integers. The sequence $\alpha = (a_1, \ldots, a_n)$ is called an \mathbf{x} -parking function if the non-decreasing rearrangement $b_1 \leq \cdots \leq b_n$ of α satisfies $b_i \leq x_1 + \cdots + x_i$. Thus the ordinary parking function is the case $\mathbf{x} = (1, \ldots, 1)$. The number of \mathbf{x} -parking functions for an arbitrary \mathbf{x} was obtained by Kung and Yan [5] in terms of the determinantal formula of Gončarove polynomials. See also [12, 13, 14] for the explicit formulas and properties for some specified cases of \mathbf{x} .

Supported in part by National Science Council, Taiwan, ROC (NSC 93-2115-M-390-005 and 93-2115-M-251-001).

Motivated by the work of Foata and Riordan in [1], we give a combinatorial approach to the enumeration of (a, b, \ldots, b) -parking functions by their leading terms in this paper, which covers the special cases $\mathbf{x} = (1, \ldots, 1), (a, 1, \ldots, 1), \text{ and } (b, \ldots, b)$. An **x**-parking function (a_1, \ldots, a_n) is said to be *k*-leading if $a_1 = k$. Let $p_{n,k}$ denote the number of *k*-leading ordinary parking functions of length *n*. Foata and Riordan [1] derived the generating function for $p_{n,k}$ algebraically,

(1)
$$\sum_{k=1}^{n} p_{n,k} x^{k} = \frac{x}{1-x} \left(2(n+1)^{n-2} - \sum_{k=1}^{n} \binom{n-1}{k-1} k^{k-2} (n-k+1)^{n-k-1} x^{k} \right).$$

One of our main results is that we obtain some bijective results between certain sets of $(a, 1, \ldots, 1)$ -parking functions of distinct leading terms, which lead to the explicit formulas for the number of k-leading $(a, 1, \ldots, 1)$ -parking functions. In particular, for the case a = 1, we deduce (1) combinatorially. These results rely on a bijection φ between $(a, 1, \ldots, 1)$ -parking functions and labeled rooted forests, which is a generalization of the second bijection between acyclic mappings and parking functions of Foata and Riordan [1, Section 3]. The key that opens the way is a simple object, called triplet-labeled rooted forest, which not only serves as an intermediate stage of the bijection φ but also enables $(a, 1, \ldots, 1)$ -parking functions to be manipulated on forests easily. Furthermore, based on the bijection φ , we establish an immediate bijection between (a, b, \ldots, b) -parking functions and labeled rooted forests with edge-colorings, which is equivalent to a bijection given by C. Yan in [14], so as to enumerate (a, b, \ldots, b) -parking functions by their leading terms. In the end we propose a structure, by using a generalized triplet-labeled rooted forest, for general **x**-parking functions.

We organize this paper as follows. The notion of triplet-labeled rooted forests and the bijection φ are given in Section 2. How the bijection φ is applied to enumerate $(a, 1, \ldots, 1)$ -parking functions (and hence ordinary parking functions) by the leading terms is given in Section 3. Making use of the notion of labeled rooted forests with edge-colorings, we investigate the cases $\mathbf{x} = (b, \ldots, b)$ and (a, b, \ldots, b) in Section 4. Finally, we propose a structure for general **x**-parking functions in Section 5.

2. Triplet-labeled rooted forests and the bijection φ

For a rooted forest F and two vertices $u, v \in F$, we say that u is a *descendant* of v if v is contained in the path from u to the root of the component that contains u. If also u and v are adjacent, then u is called a *child* of v, and v is called the *parent* of u. Let T(u) denote the subtree of F consisting of u and the descendants of u, and let F - T(u) denote the remaining part of F when the subtree T(u) and the edge uv are removed. For any two integers m < n, we use the notation $[m, n] = \{m, m+1, \ldots, n\}$. In particular, we write $[n] = \{1, \ldots, n\}$.

In this section we consider the case $\mathbf{x} = (a, 1, ..., 1)$. We call such an \mathbf{x} -parking function α an $(a, \overline{1})$ -parking function. Note that the non-decreasing rearrangement $b_1 \leq \cdots \leq b_n$ of α satisfies $b_i \leq i + a - 1$. Let $\mathcal{P}_n(a, \overline{1})$ denote the set of $(a, \overline{1})$ -parking functions of length n. It is known that $|\mathcal{P}_n(a, \overline{1})| = a(a+n)^{n-1}$ (see [6, 14]). Given an $\alpha = (a_1, \ldots, a_n) \in \mathcal{P}_n(a, \overline{1})$, for $1 \leq i \leq n$, we define

(2)
$$\pi_{\alpha}(i) = \operatorname{Card}\{a_j \in \alpha | \text{ either } a_j < a_i, \text{ or } a_j = a_i \text{ and } j < i\}.$$

Note that $(\pi_{\alpha}(1), \ldots, \pi_{\alpha}(n))$ is a permutation of [n]. In fact, $\pi_{\alpha}(i)$ is the position of the term a_i in the non-decreasing rearrangement of α . Moreover, we define $\tau_{\alpha}(i) = \pi_{\alpha}(i) + a - 1$, for $1 \leq i \leq n$. Note that $a_i \leq \tau_{\alpha}(i)$. We associate α with an *a*-component forest F_{α} , called *triplet-labeled rooted* *forest.* The vertex set of F_{α} is the set

$$\{(i, a_i, \tau_{\alpha}(i)) | a_i \in \alpha\} \cup \{(\rho_i, 0, i) | 0 \le i \le a - 1\}$$

of triplets (i.e., here we identify each vertex with a triplet), where $\rho_i \notin [n]$ is just an artificial label for discriminating the additional triplets. Let $(\rho_0, 0, 0), \ldots, (\rho_{a-1}, 0, a-1)$ be the roots of distinct trees of F_{α} . For any two vertices $v = (x_1, y_1, z_1)$ and $u = (x_2, y_2, z_2)$, u is a child of v whenever $y_2 = z_1 + 1$.

For example, take a = 2 and n = 9. Consider the $(2,\overline{1})$ -parking function $\alpha = (2,5,9,1,5,7,2,4,1)$. We have the permutation $(\pi_{\alpha}(1),\ldots,\pi_{\alpha}(n)) = (3,6,9,1,7,8,4,5,2)$ and the sequence $(\tau_{\alpha}(1),\ldots,\tau_{\alpha}(n)) = (4,7,10,2,8,9,5,6,3)$. The triplet-labeled rooted forest associated with α is shown on the left of Figure 1.

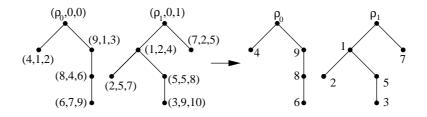


FIGURE 1. the triplet-labeled rooted forest associated with $\alpha = (2,5,9,1,5,7,2,4,1)$ and the corresponding labeled rooted forest $\varphi(\alpha)$ (in the canonical form).

Let $\mathcal{F}_n(a, \overline{1})$ denote the set of *a*-component rooted forests on the set $\{\rho_0, \ldots, \rho_{a-1}\} \cup [n]$ such that the *a* specified vertices $\rho_0, \ldots, \rho_{a-1}$ are the roots of distinct trees. We shall establish a bijection φ between $\mathcal{P}_n(a, \overline{1})$ and $\mathcal{F}_n(a, \overline{1})$ with the triplet-labeled rooted forest as an intermediate stage.

The bijection $\varphi : \mathcal{P}_n(a,\overline{1}) \to \mathcal{F}_n(a,\overline{1})$: Define the mapping φ by carrying $\alpha \in \mathcal{P}_n(a,\overline{1})$ into $\varphi(\alpha) \in \mathcal{F}_n(a,\overline{1})$, where $\varphi(\alpha)$ is the same as the triplet-labeled rooted forest F_α associated with α with vertices labeled by the first entries of the triplets of F_α , i.e., $\varphi(\alpha)$ is obtained from F_α simply by erasing the last two entries of all triplets. As illustrated in Figure 1, the forest on the right is the corresponding forest $\varphi(\alpha)$ of the $(2,\overline{1})$ -parking function $\alpha = (2,5,9,1,5,7,2,4,1)$.

To describe φ^{-1} , for each $F \in \mathcal{F}_n(a, \overline{1})$, first we express F in a form, called *canonical form*, of a plane rooted forest. We write $F = (T_0, \ldots, T_{a-1})$, where T_i denotes the tree of F that is rooted at ρ_i , for $0 \leq i \leq a - 1$. Let T_0, \ldots, T_{a-1} be placed from left to right. If a vertex has more than one child then the labels of these children are increasing from left to right. For example, the forest on the right of Figure 1 is in the canonical form. Then we associate the root ρ_i with the triplet $(\rho_i, 0, i)$, for $0 \leq i \leq a-1$, and associate each non-root vertex $j \in [n]$ with a triplet (j, p_j, q_j) , where p_j and q_j are determined by the following algorithm. Here traversing F by a breadth-first search means that we view F as a rooted tree \hat{F} by connecting the roots of F to a virtual vertex x and then traverse \hat{F} by a breadth-first search from x.

Algorithm A.

(i) Traverse F by a breadth-first search and label the third entries q_j of the non-root vertices from a to a + n - 1.

(ii) For any two vertices $v = (x_1, y_1, z_1)$ and $u = (x_2, y_2, z_2)$, $y_2 = z_1 + 1$ whenever u is a child of v.

As shown in Figure 1, the forest on the left can be recovered from the one on the right by algorithm A. Note that if u is a child of v then $z_2 > z_1$, and hence $y_2 = z_1 + 1 \le z_2$. Sorting the triplets of non-root vertices by the first entries, the sequence $\varphi^{-1}(F) = (p_1, \ldots, p_n)$, which is formed by their second entries, is the required $(a, \overline{1})$ -parking function.

Remark: For the special case a = 1, φ is a bijection between the set of ordinary parking functions of length n and the set of labeled rooted trees on [0, n] with root $\rho_0 = 0$, which is equivalent to the second bijection between acyclic mappings and parking functions of Foata and Riordan [1, Section 3].

3. Enumerating $(a, \overline{1})$ -parking functions by leading terms

Let $\mathcal{P}_{n,k}(a,\overline{1})$ denote the set of k-leading $(a,\overline{1})$ -parking functions of length n, and let $p_{n,k}^{(a,\overline{1})} = |\mathcal{P}_{n,k}(a,\overline{1})|$. Let $\mathcal{F}_{n,k}^*(a,\overline{1})$ denote the set of triplet-labeled rooted forests F_{α} associated with $\alpha \in \mathcal{P}_n(a,\overline{1})$. For each $\alpha = (a_1,\ldots,a_n) \in \mathcal{P}_{n,k}(a,\overline{1})$, we observe that $\pi_{\alpha}(1) + a - 1 \ge a_1 = k$. With the benefit of triplet-labeled rooted forests, we obtain the following bijective result.

Theorem 3.1. For $a \leq k \leq a + n - 2$, there is a bijection between the sets \mathcal{R} and $\mathcal{P}_{n,k+1}(a,\overline{1})$, where \mathcal{R} is the set of k-leading $(a,\overline{1})$ -parking functions α of length n that satisfy at least one of the two conditions (i) α has more than one term equal to k, (ii) α has at least k - a + 1 terms less than k, and $\mathcal{P}_{n,k+1}(a,\overline{1})$ is the set of (k + 1)-leading $(a,\overline{1})$ -parking functions of length n.

Proof: Let $\mathcal{F}^*(\mathcal{R}) \subseteq \mathcal{F}^*_{n,k}(a,\overline{1})$ be the set of forests associated with the parking functions in \mathcal{R} . It suffices to establish a bijection $\phi : \mathcal{F}^*(\mathcal{R}) \to \mathcal{F}^*_{n,k+1}(a,\overline{1})$. Given an $F_\alpha \in \mathcal{F}^*(\mathcal{R})$, let $u = (1,k,\tau_\alpha(1)) \in F_\alpha$. Note that the condition (ii) can be rephrased as $\tau_\alpha(1) > k$. Since α satisfies at least one of the two conditions (i) and (ii), there are at least k+1 vertices in the subset $F_\alpha - T(u)$. Traverse $F_\alpha - T(u)$ by a breadth-first search and locate the k-th vertex, say v (we mean that the root of the first tree of $F_\alpha - T(u)$ is the 0-th vertex). The mapping ϕ is defined by carrying F_α into $\phi(F_\alpha)$, where $\phi(F_\alpha)$ is obtained from $F_\alpha - T(u)$ with T(u) attached to v so that u is the first child of v. Updating the second and the third entries of all non-root vertices by algorithm A, the triplet of u becomes $(1, k + 1, \tau(1))$, for some $\tau(1) \geq k + 1$. Hence $\phi(F_\alpha) \in \mathcal{F}^*_{n,k+1}(a,\overline{1})$.

of u becomes $(1, k + 1, \tau(1))$, for some $\tau(1) \ge k + 1$. Hence $\phi(F_{\alpha}) \in \mathcal{F}_{n,k+1}^*(a,\overline{1})$. To find ϕ^{-1} , given an $F_{\beta} \in \mathcal{F}_{n,k+1}^*(a,\overline{1})$ for some $\beta \in \mathcal{P}_{n,k+1}(a,\overline{1})$, let $u = (1, k + 1, \tau_{\beta}(1)) \in F_{\beta}$ and let v be the parent of u. In F_{β} we locate the vertex, say w, the third entry of which is equal to k - 1. Then $\phi^{-1}(F_{\beta})$ is obtained from $F_{\beta} - T(u)$ with T(u) attached to w so that u is the first child of w. By algorithm A, the updated triplet of u becomes $(1, k, \tau(1))$. We observe that either $\tau(1) = k$ if v is another child of w, or $\tau(1) > k$ otherwise. Hence $\phi^{-1}(F_{\beta}) \in \mathcal{F}^*(\mathcal{R})$.

For example, take a = 2 and n = 9. Consider the 2-leading $(2, \overline{1})$ -parking function $\alpha = (2, 5, 9, 1, 5, 7, 2, 4, 1)$. On the left of Figure 2 is the forest F_{α} associated with α . Let u = (1, 2, 4). Note that v = (4, 1, 2) is the second vertex of $F_{\alpha} - T(u)$ that is visited by a breadth-first search. On the right of Figure 2 is the corresponding forest $\phi(F_{\alpha})$, which is obtained from $F_{\alpha} - T(u)$ with T(u) attached to v and with the second and the third entries of the triplets updated. Sorting the triplets of non-root vertices by the first entries, we retrieve the corresponding 3-leading $(2, \overline{1})$ -parking function (3, 6, 9, 1, 6, 7, 2, 4, 1) from their second entries.

4

ENUMERATION OF PARKING FUNCTIONS BY LEADING NUMBERS

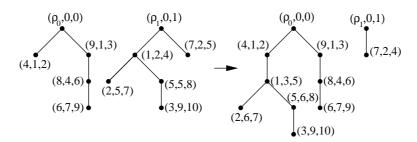


FIGURE 2. the forests associated with the $(2,\overline{1})$ -parking functions (2,5,9,1,5,7,2,4,1) and (3,6,9,1,6,7,2,4,1).

The following recurrence relations for $p_{n,k}^{(a,\overline{1})}$ can be derived from Theorem 3.1. Here, unless specified, the labeled rooted forests in $\mathcal{F}_n(a,\overline{1})$ are considered to be in the canonical form. Recall that $|\mathcal{F}_n(a,\overline{1})| = |\mathcal{P}_n(a,\overline{1})| = a(a+n)^{n-1}$.

Theorem 3.2. For $a \le k \le a + n - 2$, we have

(3)
$$p_{n,k}^{(a,\overline{1})} - p_{n,k+1}^{(a,\overline{1})} = \binom{n-1}{k-a} a k^{k-a-1} (n-k+a)^{n-k+a-2}.$$

Proof: By Theorem 3.1, $p_{n,k}^{(a,\overline{1})} - p_{n,k+1}^{(a,\overline{1})}$ is equal to the number of k-leading $(a,\overline{1})$ -parking functions α such that the first term of α is the unique term equal to k, and $\tau_{\alpha}(1) = k$. We shall count the number of forests that are mapped by such parking functions under the mapping φ . Let $F = \varphi(\alpha) \in \mathcal{F}_n(a,\overline{1})$ and let $u = 1 \in F$. We observe that F - T(u) is an a-component labeled forest on k vertices containing the roots $\rho_0, \ldots, \rho_{a-1}$, and T(u) is a labeled tree on n - k + a vertices containing u. Since there are $\binom{n-1}{k-a}$ ways to choose k - a numbers from [2, n] for the non-root vertices of F - T(u) and since there are ak^{k-a-1} and $(n - k + a)^{n-k+a-2}$ possibilities for the induced forest F - T(u) and tree T(u), the number of the required forests is $\binom{n-1}{k-a}ak^{k-a-1}(n-k+a)^{n-k+a-2}$.

In order to evaluate $p_{n,k}^{(a,\overline{1})}$ by Theorem 3.2, we need the following initial conditions (4). Since an $(a,\overline{1})$ -parking function of length n with leading term k, $(1 \le k \le a)$ is simply a juxtaposition of k and an $(a + 1,\overline{1})$ -parking function of length n - 1, we have

(4)
$$p_{n,k}^{(a,\bar{1})} = (a+1)(a+n)^{n-2}, \quad \text{for } 1 \le k \le a.$$

Now we can derive the explicit formula for $p_{n,k}^{(a,\overline{1})}$ by (3) and (4). In particular, we have $p_{n,a+n-1}^{(a,\overline{1})} = a(a+n-1)^{n-2}$ since an (a+n-1)-leading $(a,\overline{1})$ -parking function of length n is a juxtaposition of a+n-1 and an $(a,\overline{1})$ -parking function of length n-1. We derive the following enumerator for $(a,\overline{1})$ -parking functions by the leading terms.

Theorem 3.3. If $P^{(a,\overline{1})}(x) = \sum_{k=1}^{a+n-1} p_{n,k}^{(a,\overline{1})} x^k$, then

$$P^{(a,\overline{1})}(x) = \frac{x}{1-x} \left((a+1)(a+n)^{n-2} - \sum_{k=a}^{a+n-1} \binom{n-1}{k-a} ak^{k-a-1}(n-k+a)^{n-k+a-2} x^k \right).$$

Proof: We have

$$\left(\frac{1}{x}-1\right)P^{(a,\overline{1})}(x) = p_{n,1}^{(a,\overline{1})} - \left(\sum_{k=1}^{a+n-2} \left(p_{n,k}^{(a,\overline{1})} - p_{n,k+1}^{(a,\overline{1})}\right)x^k\right) - p_{n,a+n-1}^{(a,\overline{1})}x^{a+n-1}$$
$$= (a+1)(a+n)^{n-2} - \sum_{k=a}^{a+n-1} \binom{n-1}{k-a}ak^{k-a-1}(n-k+a)^{n-k+a-2}x^k,$$

as required.

Remark: For the case a = 1, we deduce that the number $p_{n,k}$ of k-leading ordinary parking functions satisfies the recurrence relations

(5)
$$p_{n,k} - p_{n,k+1} = \binom{n-1}{k-1} k^{k-2} (n-k+1)^{n-k-1}$$

for $1 \le k \le n-1$, with the initial condition $p_{n,1} = 2(n+1)^{n-2}$. The enumerator (1) for ordinary parking functions by the leading terms is derived anew.

Making use of the bijection φ for the case a = 1, we derive the following interesting result for ordinary parking functions.

Theorem 3.4. If n is even, then there is a two-to-one correspondence between the set of 1-leading parking functions of length n and the set of $(\frac{n}{2} + 1)$ -leading parking functions of length n.

Proof: Let \mathcal{A} (resp. \mathcal{B}) denote the set of labeled trees corresponding to the 1-leading (resp. $(\frac{n}{2} + 1)$ -leading) parking functions of length n under the mapping φ . We shall establish a two-to-one correspondence ϕ between \mathcal{A} and \mathcal{B} . For each $T \in \mathcal{A}$, the two vertices u = 1 and v = 0 of T are adjacent. Let T(v) = T - T(u). Since T has n + 1 vertices and n is even, one of T(v) and T(u) contains more than $\frac{n}{2}$ vertices. If $|T(v)| > \frac{n}{2}$, then we traverse T(v) from v by a breadth-first search and locate the $\frac{n}{2}$ -th non-root vertex, say w. The tree $\phi(T) \in \mathcal{B}$ is obtained from T(v) with T(u) attached to w so that u becomes the first child of w. Otherwise $|T(u)| > \frac{n}{2}$. Locate the $\frac{n}{2}$ -th non-root vertex of T(u), say w', by a breadth-first search. Then $\phi(T)$ is obtained from T(u) with T(v) attached to w' so that v becomes the first child of w' and with a relabeling u = 0 and v = 1.

To find ϕ^{-1} , given a tree $T' \in \mathcal{B}$, let u = 1, v = 0, and T(v) = T' - T(u). We retrieve two trees of \mathcal{A} from T(u) and T(v). One is obtained by attaching T(u) to v so that u becomes the first child of v, and the other is obtained by attaching T(v) to u so that v becomes the first child of u and relabeling u = 0 and v = 1.

For example, take n = 6. On the left of Figure 3 are the labeled trees T corresponding to the 1-leading parking functions (1, 4, 1, 2, 4, 1) and (1, 5, 2, 1, 5, 2), respectively. Let u = 1, v = 0 and T(v) = T - T(u). For the first tree, we observe that |T(v)| > 3 and the vertex 2 is the third non-root vertex of T(v) that is visited by a breadth-first search. We attach T(u) to 2 to obtain the required tree on the right. For the second tree, we observe that |T(v)| > 3 and again the vertex 2 is the third non-root vertex of T(u). Likewise, we attach T(v) to 2 and relabel u = 0 and v = 1. Note that the tree on the right of Figure 3 corresponds to the 4-leading parking function (4, 3, 1, 6, 3, 1).

6

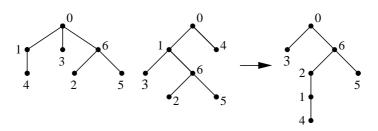


FIGURE 3. an example of the two-to-one correspondence for n = 6

4. Edge-colored labeled rooted trees and forests

In this section we shall enumerate **x**-parking functions by the leading terms for the cases $\mathbf{x} = (b, \ldots, b)$ and (a, b, \ldots, b) . First, we define the required structure for the case $\mathbf{x} = (b, \ldots, b)$. Let $\mathcal{T}_n(\bar{b})$ denote the set of labeled trees, called *b*-trees, on the vertex set [0, n], whose edges are colored with the colors $0, 1, \ldots, b - 1$. There is no further restriction on the colorings of edges. Unless specified, each $T \in \mathcal{T}_n(\bar{b})$ is rooted at 0 and is in the canonical form regarding the vertex-labeling. Let $\kappa(i)$ denote the color of the edge that connects the vertex *i* and its parent. It is known that $|\mathcal{T}_n(\bar{b})| = b^n (n+1)^{n-1}$.

For the case $\mathbf{x} = (b, \ldots, b)$, we call such **x**-parking functions (\overline{b}) -parking functions. Let $\mathcal{P}_n(\overline{b})$ denote the set of (\overline{b}) -parking functions of length n. Note that the non-decreasing rearrangement $b_1 \leq \cdots \leq b_n$ of $\alpha \in \mathcal{P}_n(\overline{b})$ satisfies $b_i \leq bi$. We shall establish a bijection $\psi_b : \mathcal{P}_n(\overline{b}) \to \mathcal{T}_n(\overline{b})$ based on the bijection φ for the case a = 1. Given an $\alpha = (a_1, \ldots, a_n) \in \mathcal{P}_n(\overline{b})$, we associate α with two sequences $\beta = (p_1, \ldots, p_n)$ and $\gamma = (r_1, \ldots, r_n)$, where $p_i = \lceil \frac{a_i}{b} \rceil$ (the least integer that is greater than or equal to $\frac{a_i}{b}$) and $r_i = bp_i - a_i$, for $1 \leq i \leq n$. It is easy to see that β is an ordinary parking function of length n and $\gamma \in [0, b - 1]^n$, and that α is uniquely determined by such a pair (β, γ) , i.e., $a_i = bp_i - r_i$, for $1 \leq i \leq n$. To establish the mapping ψ_b , we first locate the corresponding labeled tree $\varphi(\beta) \in \mathcal{F}_n(1,\overline{1})$ of β , and then define ψ_b by carrying α into $\varphi(\beta)$ with the edge-coloring $\kappa(i) = r_i$, for $1 \leq i \leq n$.

For example, take b = 2. For the $(\overline{2})$ -parking function $\alpha = (2, 7, 4, 18, 1, 9, 2, 9, 8)$, we have the associated ordinary parking function $\beta = (1, 4, 2, 9, 1, 5, 1, 5, 4)$ and the sequence $\gamma = (0, 1, 0, 0, 1, 1, 0, 1, 0)$. On the left of Figure 4 is the triplet-labeled rooted tree associated with β . The 2-tree corresponding to α is shown on the right of Figure 4, where the dotted edges and solid edges represent the colors 0 and 1, respectively.

To find ψ_b^{-1} , given a $T \in \mathcal{T}_n(\bar{b})$, we can retrieve the ordinary parking function (p_1, \ldots, p_n) from the vertex-labeling of T, and then derive the require (\bar{b}) -parking function $\psi_b^{-1}(T) = (a_1, \ldots, a_n) \in \mathcal{P}_n(\bar{b})$ by setting $a_i = bp_i - \kappa(i)$, for $1 \le i \le n$.

Proposition 4.1. The mapping $\psi_b : \mathcal{P}_n(\overline{b}) \to \mathcal{T}_n(\overline{b})$ mentioned above is a bijection.

Let $p_{n,m}^{(b)}$ denote the number of *m*-leading (\bar{b}) -parking functions of length *n*. Recall that we have determined the number $p_{n,k}$ of *k*-leading ordinary parking functions of length *n* by (5) and an initial condition. We derive $p_{n,m}^{(\bar{b})}$ as follows.

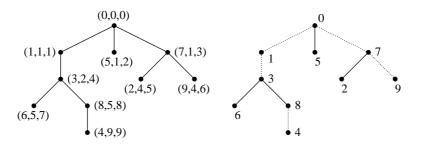


FIGURE 4. the triplet-labeled rooted tree associated with the parking function (1, 4, 2, 9, 1, 5, 1, 5, 4) and the 2-tree corresponding to (2, 7, 4, 18, 1, 9, 2, 9, 8)

Proposition 4.2. For $1 \le k \le n$ and $(k-1)b+1 \le m \le kb$, we have $p_{n,m}^{(\overline{b})} = b^{n-1}p_{n,k}$.

Proof: If $(k-1)b+1 \leq m \leq kb$, then each *m*-leading (\bar{b}) -parking function of length *n* is associated with a pair (β, γ) , where β is a *k*-leading parking function of length *n* and $\gamma \in [0, b-1]^n$ with the first term equal to bk-m. Since there are $b^{n-1}p_{n,k}$ possibilities for such a pair (β, γ) , the assertion follows.

Let us turn to the case $\mathbf{x} = (a, b, \dots, b)$. In [14] C. Yan introduced the notion of sequences of rooted *b*-forests in order to generalize a bijection of Foata and Riordan [1]. A rooted *b*-forest is a labeled rooted forest with edges colored with the colors $0, \dots, b-1$ (note that each component may be rooted at any vertex). Consider a sequence (S_0, \dots, S_t) of rooted *b*-forests on [n] such that (i) each S_i is a rooted *b*-forest, (ii) S_i and S_j are disjoint if $i \neq j$, and (iii) the union of the vertex sets $S_i, (0 \leq i \leq t)$ is [n]. Let \hat{S}_i denote the rooted tree obtained by connecting the roots of S_i to a new root vertex ρ_i , where the edges incident to ρ_i are not colored with any color, denoted by -1 for such an edge. Let $\mathcal{F}_n(a, \bar{b})$ denote the set of *a*-component rooted forests of the form $(\widehat{S}_0, \dots, \widehat{S}_{a-1})$, where (S_0, \dots, S_{a-1}) is a sequence of rooted *b*-forest on [n]. We call members of $\mathcal{F}_n(a, \bar{b})$ extended *b*-forests. Let $\kappa(i)$ denote the color of the edge that connects the vertex *i* and its parent. It is known that $|\mathcal{F}_n(a, \bar{b})| = a(a + nb)^{n-1}$ (see [6, 14]).

For $\mathbf{x} = (a, b, \dots, b)$, we call such an \mathbf{x} -parking function α an (a, \overline{b}) -parking function. In this case the non-decreasing rearrangement $b_1 \leq \dots \leq b_n$ of α satisfies $b_i \leq a + (i-1)b$. Let $\mathcal{P}_n(a, \overline{b})$ denote the set of (a, \overline{b}) -parking functions of length n. We shall establish a bijection $\varphi_b : \mathcal{P}_n(a, \overline{b}) \to \mathcal{F}_n(a, \overline{b})$ based on the bijection $\varphi : \mathcal{P}_n(a, \overline{1}) \to \mathcal{F}_n(a, \overline{1})$ given in Section 2. Given an $\alpha = (a_1, \dots, a_n) \in \mathcal{P}_n(a, \overline{b})$, we associate α with two sequences $\beta = (p_1, \dots, p_n)$ and $\gamma = (r_1, \dots, r_n)$, where

(6)
$$p_i = \begin{cases} a_i & \text{if } a_i \le a, \\ \left\lceil \frac{a_i - a}{b} \right\rceil + a & \text{otherwise;} \end{cases}$$
 and $r_i = \begin{cases} -1 & \text{if } a_i \le a, \\ b(p_i - a) - a_i + a & \text{otherwise} \end{cases}$

It is straightforward to verify that β is an $(a, \overline{1})$ -parking function of length n and $\gamma \in [-1, b-1]^n$ with $r_i = -1$ whenever $a_i \leq a$. Moreover, α is uniquely determined by such a pair (β, γ) , i.e., $a_i = p_i$ if $p_i \leq a$, and $a_i = b(p_i - a) - r_i + a$ otherwise. To establish the mapping φ_b , we first locate the corresponding labeled forest $\varphi(\beta) \in \mathcal{F}_n(a,\overline{1})$ of β and then define φ_b by carrying α into $\varphi(\beta)$ with the edge-coloring $\kappa(i) = r_i$, for $1 \leq i \leq n$.

For example, take a = 2 and b = 2. For the $\alpha = (2, 7, 15, 1, 8, 12, 2, 5, 1)$, we have the associated pair (β, γ) , where $\beta = (2, 5, 9, 1, 5, 7, 2, 4, 1)$ and $\gamma = (-1, 1, 1, -1, 0, 0, -1, 1, -1)$. As shown in Figure 1, we have obtained the labeled forest $\varphi(\beta)$. The required extended *b*-forest $\varphi_b(\alpha)$ is shown in Figure 5, where the arrowed edges are not colored, and the dotted and solid edges represent the colors 0 and 1, respectively.

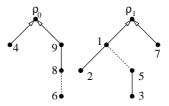


FIGURE 5. the extended 2-forest corresponding to the $(2,\overline{2})$ -parking function (2,7,15,1,8,12,2,5,1)

To find φ_b^{-1} , given an $F \in \mathcal{F}_n(a, \overline{b})$, we can retrieve an $(a, \overline{1})$ -parking function (p_1, \ldots, p_n) from the vertex-labeling of F and then derive the require (a, \overline{b}) -parking function $\varphi_b^{-1}(F) = (a_1, \ldots, a_n)$ by setting $a_i = p_i$ if $p_i \leq a$, and $a_i = b(p_i - a) - \kappa(i) + a$ otherwise.

Proposition 4.3. The mapping $\varphi_b : \mathcal{P}_n(a, \overline{b}) \to \mathcal{F}_n(a, \overline{b})$ mentioned above is a bijection.

The bijection φ_b is equivalent to Yan's bijection in [14]. Our method not only simplifies the construction but also provides an approach to the enumeration of (a, b, \ldots, b) -parking functions by the leading terms. Let $\mathcal{P}_{n,m}(a, \bar{b})$ denote the set of *m*-leading (a, \bar{b}) -parking functions of length *n* and let $p_{n,m}^{(a,\bar{b})} = |\mathcal{P}_{n,m}(a, \bar{b})|$.

Lemma 4.4. For $0 \le k \le n-2$ and $a + kb + 1 \le i, j \le a + (k+1)b$, there is a bijection between $\mathcal{P}_{n,i}(a,\bar{b})$ and $\mathcal{P}_{n,j}(a,\bar{b})$, and hence $p_{n,i}^{(a,\bar{b})} = p_{n,j}^{(a,\bar{b})}$.

Proof: Given an $\alpha = (a_1, \ldots, a_n) \in \mathcal{P}_{n,i}(a, \overline{b})$, if the first term $(a_1 = i)$ is replaced by j, where $a + kb + 1 \leq i, j \leq a + (k+1)b$, then it corresponds to replace the color $\kappa(1) = b(k+1) - i + a$ of $\varphi_b(\alpha)$ by the color b(k+1) - j + a. Hence there is an immediate bijection between $\mathcal{P}_{n,i}(a, \overline{b})$ and $\mathcal{P}_{n,j}(a, \overline{b})$ by using Proposition 4.3 and an interchange of the color $\kappa(1)$.

The following result is extended from Theorem 3.1.

Theorem 4.5. For $0 \le k \le n-2$, there is a bijection between the sets \mathcal{R} and $\mathcal{P}_{n,a+kb+1}(a, \overline{b})$, where \mathcal{R} is the set of (a + kb)-leading (a, \overline{b}) -parking functions α of length n that satisfy at least one of the two conditions (i) α has more than one term belong to the interval [a + (k - 1)b + 1, a + kb] (or α has more than one term equal to a in case k = 0), (ii) α has at least k + 1 terms less then a + kb, and $\mathcal{P}_{n,a+kb+1}(a, \overline{b})$ is the set of (a + kb + 1)-leading (a, \overline{b}) -parking functions of length n.

Proof: Given an $\alpha \in \mathcal{R}$, let (β, γ) be the pair associated with α determined by (6). We observe that β is an (a + k)-leading $(a, \overline{1})$ -parking function with at least one of the two properties (i) β has more than one term equal to a + k, (ii) $\pi_{\beta}(1) = \pi_{\alpha}(1) > k + 1$. By Theorem 3.1, there is a bijection ϕ that carries β into an (a + k + 1)-leading $(a, \overline{1})$ -parking function $\phi(\beta)$ of length n. From the pair $(\phi(\beta), \gamma)$, we retrieve an (a + (k + 1)b)-leading (a, \overline{b}) -parking function. The assertion follows from Lemma 4.4.

The following theorem is analogous to Theorems 3.2, and the proof is similar.

Theorem 4.6. If $0 \le k \le n - 2$, then

(7)
$$p_{n,a+kb}^{(a,\overline{b})} - p_{n,a+kb+1}^{(a,\overline{b})} = \binom{n-1}{k} ab^{n-k-1}(a+kb)^{k-1}(n-k)^{n-k-2}.$$

To evaluate $p_{n,m}^{(a,\overline{b})}$ by Lemma 4.4 and Theorem 4.6, we need the following initial conditions (8). Note that an (a,\overline{b}) -parking function of length n with leading term m, $(1 \le m \le a)$ is a juxtaposition of m and an $(a + b, \overline{b})$ -parking function of length n - 1. Hence

(8)
$$p_{n,m}^{(a,\overline{b})} = (a+b)(a+nb)^{n-2}, \quad \text{for } 1 \le m \le a$$

By a similar argument of Theorem 3.3, we derive the enumerator for (a, \overline{b}) -parking functions by the leading terms.

Theorem 4.7. If
$$P^{(a,\overline{b})}(x) = \sum_{m=1}^{a+(n-1)b} p_{n,m}^{(a,b)} x^m$$
, then

$$P^{(a,\overline{b})}(x) = \frac{x}{1-x} \left((a+b)(a+nb)^{n-2} - \sum_{k=0}^{n-1} \binom{n-1}{k} ab^{n-k-1}(a+kb)^{k-1}(n-k)^{n-k-2} x^{a+kb} \right).$$

5. A structure for general \mathbf{x} -parking functions

In this section we propose a forest structure for general **x**-parking functions. Given a sequence $\mathbf{x} = (x_1, \ldots, x_n)$ of positive integers, let $\mathcal{P}_n(\mathbf{x})$ denote the set of the **x**-parking functions $\alpha = (a_1, \ldots, a_n)$ of length n and let $b_1 \leq \cdots \leq b_n$ be the non-decreasing rearrangement of α . Likewise, we define the permutation $(\pi_\alpha(1), \ldots, \pi_\alpha(n))$ by (2). Let $d_i = x_1 + \cdots + x_i$, for $1 \leq i \leq n$. We associate α with an x_1 -component triplet-labeled rooted forest F_α satisfying the following conditions:

- (i) The roots of F_{α} are the triplets (0,0,0) and $(\rho_{(0,1)},0,1),\ldots,(\rho_{(0,x_1-1)},0,x_1-1)$.
- (ii) For $1 \leq j \leq n-1$, there are x_{j+1} triplets in F_{α} associated with b_j . If b_j is the term a_i , for some $i \in [n]$ (i.e., $\pi_{\alpha}(i) = j$), then F_{α} contains the triplet (i, a_i, d_j) and the additional $x_{j+1} 1$ triplets $(\rho_{(j,1)}, a_i, d_j + 1), \ldots, (\rho_{(j,x_{j+1}-1)}, a_i, d_{j+1} 1)$. Finally, there is a triplet (k, a_k, d_n) associated with b_n , where b_n is the term a_k , for some $k \in [n]$ (i.e., $\pi_{\alpha}(k) = n$).

(iii) For any two vertices $v = (x_1, y_1, z_1)$ and $u = (x_2, y_2, z_2)$, u is a child of v if $y_2 = z_1 + 1$.

Note that the third entries of the triplets are from 0 to $x_1 + \cdots + x_n$. If we erase the second and the third entries of the triplets, then we turn F_{α} into a rooted forest F with $x_1 + \cdots + x_n + 1$ vertices satisfying the following conditions.

- (C.1) The vertex set of F is $[0,n] \cup_{j=0}^{n-1} \{\rho_{(j,1)}, \dots, \rho_{(j,x_{j+1}-1)}\}.$
- (C.2) The roots of F are 0 and $\rho_{(0,1)}, \ldots, \rho_{(0,x_1-1)}$.

- (C.3) The vertices $\rho_{(j,1)}, \ldots, \rho_{(j,x_{j+1}-1)}$ share the same parent with a vertex $u_j \in [n]$, for $1 \leq j \leq n-1$, such that $u_i \neq u_j$ if $i \neq j$.
- (C.4) There is an ordering among $\rho_{(j,i)}$, which is created by a breadth-first search in F, $\rho_{(j,i)} < \rho_{(j',i')}$ if j < j', or j = j' and i < i'.

Let $\mathcal{F}_n(\mathbf{x})$ denote the set of rooted forests satisfying conditions (C.1)–(C.4). It is easy to see that there is a bijection $\varphi_{\mathbf{x}}$ between $\mathcal{P}_n(\mathbf{x})$ and $\mathcal{F}_n(\mathbf{x})$, with the triplet-labeled rooted forests as the intermediate stage, which is established in a similar manner to the bijection φ given in Section 2.

Let us consider **x**-parking functions α for a specified case $\mathbf{x} = (1, \ldots, 1, a, 1, \ldots, 1)$, where *a* occurs at the *k*-th entry of **x** and $k \geq 2$. We call α a (k, a)-inflating parking function. Let $\mathcal{Q}_n(k, a)$ denote the set of (k, a)-inflating parking functions of length *n*. Given an $\alpha = (a_1, \ldots, a_n) \in \mathcal{Q}_n(k, a)$, we observe that the non-decreasing rearrangement $b_1 \leq \cdots \leq b_n$ of α satisfies $b_i \leq i$ if $i \leq k - 1$, and $b_i \leq i + a - 1$ otherwise. Define $\tau_{\alpha}(i) = \pi_{\alpha}(i)$, for $1 \leq \pi_{\alpha}(i) \leq k - 1$, and $\tau_{\alpha}(i) = \pi_{\alpha}(i) + a - 1$, for $k \leq \pi_{\alpha}(i) \leq n$.

In addition to the triplets (0,0,0) and $\{(i,a_i,\tau_\alpha(i))| 1 \le i \le n\}$, we locate the (k-1)-th term in the non-decreasing rearrangement of α , say $b_{k-1} = a_r$, and associate it with another a-1 triplets $(\rho_1, a_r, k), \ldots, (\rho_{a-1}, a_r, k+a-2)$. The tree T_α associated with α is on the above triplets with the root at (0,0,0). For any two vertices $v = (x_1, y_1, z_1)$ and $u = (x_2, y_2, z_z)$, u is a child of v if $y_2 = z_1 + 1$.

For example, take k = 4 and a = 3. Consider the (4, 3)-inflating parking $\alpha = (5, 1, 4, 5, 1, 10, 3, 3, 7)$. We have the permutation $(\pi_{\alpha}(1), \ldots, \pi_{\alpha}(n)) = (6, 1, 5, 7, 2, 9, 3, 4, 8)$ and $(\tau_{\alpha}(1), \ldots, \tau_{\alpha}(n)) = (8, 1, 7, 9, 2, 11, 3, 6, 10)$. Note that $a_7 = 3$ is the third term in the non-decreasing rearrangement of α . There associate two additional triplets $w_1 = (\rho_1, 3, 4)$ and $w_2 = (\rho_2, 3, 5)$. The tree associated with α is shown on the left of Figure 6.

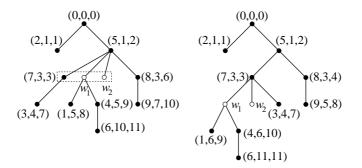


FIGURE 6. the triplet-labeled rooted tree associated with the (4, 3)-inflating parking function $\alpha = (5,1,4,5,1,10,3,3,7)$ and the tree associated with $\phi(\alpha)$.

Theorem 5.1. There is a bijection between the set of (k, a)-inflating parking functions of length n and the set of ordinary parking functions of length n + a - 1 with the initial a - 1 terms equal to k.

Proof: We shall establish a bijection ϕ between two sets. Let T_{α} be the tree associated with α mentioned above. Locate the vertex of T_{α} with the third entry equal to k-1, say $u = (r, a_r, k-1)$, and let $w_j = (\rho_j, a_r, k+j-1) \in T_{\alpha}$, for $1 \leq j \leq a-1$. We form a new triplet-labeled rooted

tree from $T_{\alpha} - (T(w_1) \cup \cdots \cup T(w_{a-1}))$ by attaching $T(w_1), \ldots, T(w_{a-1})$ to u so that w_1, \ldots, w_{a-1} become the first a-1 children of u. Then update the second and the third entries of all triplets by algorithm A. Sorting the triplets by the first entries in the order $\rho_1, \ldots, \rho_{a-1}$ and then $1, \ldots, n$, we obtain the corresponding ordinary parking function $\phi(\alpha) = (a_{\rho_1}, \ldots, a_{\rho_{a-1}}, a_1, \ldots, a_n)$ from their second entries, where $a_{\rho_1} = \cdots = a_{\rho_{a-1}} = k$.

As illustrated in Figure 6, the triplet-labeled rooted tree associated with $\phi(\alpha)$ is shown on the right, where $w_1 = (\rho_1, 4, 5)$ and $w_2 = (\rho_2, 4, 6)$ and $\phi(\alpha) = (4, 4, 6, 1, 4, 6, 1, 11, 3, 3, 5)$. Note that so far we have solved explicitly the number of (k, a)-inflating parking functions for the case a = 2. We are interested to know explicit formulas for other cases.

The forest structure reveals that the number of k-leading x-parking functions is a step function in k.

Theorem 5.2. For any $\mathbf{x} = (x_1, \ldots, x_n)$, let $d_i = x_1 + \cdots + x_i$, $(1 \le i \le n)$ and $d_0 = 0$. If $d_{k-1} + 1 \le p, q \le d_k$, then the number of p-leading \mathbf{x} -parking functions of length n is equal to the number of q-leading \mathbf{x} -parking functions of length n.

References

- [1] D. Foata, J. Riordan, Mappings of acyclic and parking functions, Aequationes Math. 10 (1974), 10–22.
- [2] J. Françon, Acyclic and parking functions, J. Combin. Theory Ser. A 18 (1975), 27-35.
- [3] J. D. Gilbey, L. H. Kalikow, Parking functions, valet functions and priority queues, *Discrete Math.* 197/198 (1999), 351–373.
- [4] A. G. Konheim, B. Weiss, An occupancy discipline and applications, SIAM J. Appl. Math. 14 (1996), 1266–1274.
- [5] J. P. S. Kung, C. H. Yan, Gončarov polynomials and parking functions, J. Combin. Theory Ser. A 102 (2003), 16–37.
- [6] J. Pitman, R. Stanley, A polytope related to empirical distributions, plane trees, parking functions, and the associahedron, Discrete Comput. Geom. 27(4) (2002), 603–634.
- [7] J. Riordan, Ballots and trees, J. Combin. Theory 6 (1969), 408-411.
- [8] M. P. Schützenberger, On an enumeration problem. J. Combin. Theory 4 (1968), 219–221.
- [9] R. P. Stanley, Hyperplane arrangements, interval orders and trees, Proc. Nat. Acad. Sci. 93 (1996), 2620–2625.
- [10] R. P. Stanley, Parking functions and non-crossing partitions, The Wilf Festschrift, Electro. J. Combin. 4 (1997), R20.
- [11] R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, Cambridge, 1999.
- [12] C. H. Yan, Generalized tree inversions and k-parking functions, J. Combin. Theory Ser. A 79 (1997), 268-280.
- [13] C. H. Yan, On the enumeration of generalized parking functions, Congressus Numerantium 147 (2000), 201–209.
- [14] C. H. Yan, Generalized parking functions, tree inversions and multicolored graphs, Adv. in Appl. Math. 27 (2001), 641–670.

DEPARTMENT OF APPLIED MATHEMATICS, NATIONAL UNIVERSITY OF KAOHSIUNG, KAOHSIUNG 811, TAIWAN, ROC E-mail address: speu@nuk.edu.tw

MATHEMATICS FACULTY, NATIONAL PINGTUNG INSTITUTE OF COMMERCE, PINGTUNG 900, TAIWAN, ROC *E-mail address*: tsfu@npic.edu.tw

DEPARTMENT OF APPLIED MATHEMATICS, NATIONAL UNIVERSITY OF KAOHSIUNG, KAOHSIUNG 811, TAIWAN, ROC