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Abstract

The Schur functions, sλ(x), form a basis for the vector space of symmetric functions. Recently
Haglund, Haiman and Loehr have derived a combinatorial formula for nonsymmetric Macdonald
polynomials, which gives a new decomposition of the Macodnald polynomial into nonsymmetric com-
ponents. Letting q = t = 0 in this identity implies sλ(x) =

P
µ NSµ(x), where the sum is over

all rearrangements µ of the partition λ. In this paper, we exhibit a bijection between semi-standard
Young tableaux (SSYT) and skyline fillings to give a bijective proof of the formula.

Resumé en Français

Les fonctions de Schur, sλ(x), forment une base de l’espace vectoriel de fonctions symétriques.
Les résultats récents de J. Haglund permettent d’introduire un objet nouveau qui est utilisé pour
décomposer les fonctions de Schur en fonctions nonsymétriques, NSµ(x), numérotées par les com-
positions au lieu des partitions. Le théorème principal de cet article (qui était conjecturé par J.
Haglund) dit que sλ(x) =

P
µ NSµ(x), sommée sur toutes les transpositions µ de λ. Dans cet article,

nous montrons une bijection entre les tableaux de Young semi-standards (SSYT) et les remplissages
d’horizon pour démontrer la conjecture.
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1 Introduction

A symmetric function of degree n over a commutative ring R (with identity) is a formal power series
f(x) =

∑
α cαxα, where α ranges over all weak compositions of n (of infinite length), cα ∈ R, xα stands

for the the monomial xα1
1 xα2

2 ..., and f(xω(1), xω(2), ...) = f(x1, x2, ...) for every permutation ω of the
positive integers, P. Many different bases for the vector space of symmetric functions are known. One
important basis is the Schur functions.

The Schur function sλ = sλ(x) of shape λ in variables x = (x1, x2, ...) is the formal power series
sλ =

∑
T xT , summed over all Semi-Standard Young Tableaux of shape λ. A Semi-Standard Young

Tableaux is formed by first placing the parts of λ into rows of squares, where the ith row has λi squares,
called cells. This diagram, called the Young (or Ferrers) diagram, is drawn in the first quadrant, French
style, as in [HHL+]. Then each of these cells is assigned a positive integer in such a way that the row
entries are weakly increasing and the column entries are strictly increasing. Thus, the values assigned to
the cells of λ collectively form the multiset {1a1 , 2a2 , ..., nan}, for some n where ai is the number of times
i appears in T. Here, xT =

∏n
i=1 xai

i . See [Sta99] for a more detailed discussion of symmetric functions
and the Schur functions in particular.

The Macdonald polynomials H̃µ(x; q, t) are a special class of symmetric functions which contain a
vast array of information. Macdonald [Mac88] introduced them and conjectured that their expansion in
terms of Schur polynomials should have positive coefficients. A combinatorial formula for the Macdonald
polynomials was conjectured by Haglund and proved by Haglund, Haiman, and Loehr [HHL04].

Building on this work, Haglund described [Hag04b] a conjectured combinatorial formula for the non-
symmetric Macdonald polynomials. As a consequence of this conjecture he gives a set of objects that
decompose the Schur functions into non-symmetric functions indexed by compositions of n instead of
partitions of n. They involve statistics generalizing those described in [HHL04]. The weighted sums of
these objects are called the non-symmetric Schur functions, NSλ. A composition µ of n is called a rear-
rangement of a partition λ if it consists of n parts such that when the parts are arranged in descending
order, the ith part equals λi, for all i. Haglund conjectured that the sum of the non-symmetric Schur
functions over all rearrangements of a given partition λ is equal to the ordinary Schur function sλ. In
this paper, we prove:

Theorem 1
∑

λ′ NSλ′(x1, ..., xn) = sλ(x1, ..., xn), where the sum is over all rearrangements λ′ of λ.

This result gave evidence that Haglund’s conjectured formula for the non-symmetric Macdonald
polynomials was correct. Haglund, Haiman, and Loehr recently proved this formula [HHL05]. Setting
q = t = 0 in the formula gives a non-bijective proof of the above theorem.

2 Combinatorial Definition of the non-symmetric Schur Func-
tions

A composition Young diagram of n is a figure consisting of n cells arranged in n columns. A column
may contain anywhere from 0 to n cells, and the number of cells in a column is called the height of that
column. This means that a composition Young diagram is simply the Young diagram of a composition
of n into n parts, allowing zeros. The composition 9=0+2+0+3+1+2+0+0+1 is shown in the example
below.

The composition Young diagram for λ = (0, 2, 0, 3, 1, 2, 0, 0, 1)
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A filling, σ, of a composition Young diagram, λ, is a function σ : λ → Z+, which we picture as
an assignment of positive integer entries to the cells of λ. We consider the 0th row to consist of cells
numbered from 1 to n in strictly increasing order. Let σ(i) denote the entry in the ith square of the
composition Young diagram encountered if we read across rows from left to right, beginning at the highest
row and working downwards.

To define the non-symmetric Schur functions, we need the statistics maj(σ, λ) and inv(σ, λ). As in
[Hag04a], a descent of σ is a pair of entries σ(u) > σ(v), where the cell u is directly above v. In other
words, v = (i, j) and u = (i + 1, j), where the ith coordinate denotes the height of cell v and the jth

coordinate denotes one less than the number of cells to the left of v. Define Des(σ) = {u ∈ λ : σ(u) > σ(v)
is a descent}.

Three cells u, v, w ∈ λ form a triple of type A if they are situated as shown below,

v

wu . . .. .

where u and w are in the same row, possibly with cells between them, and the column containing u
and v has height greater than or equal to the height of the column containing w.

Define for x, y ∈ Z+

I(x, y) =
{

1 if x > y
0 if x ≤ y

Let σ be a composition filling and let x, y, z be the entries of σ in the cells of a type A triple (u, v, w):

x

y

z. . . . .

Then the triple (u, v, w) is an inversion triple of type A if and only if I(x, z) + I(z, y)− I(x, y) =1.
The reading order of a filling is an ordering of its cells beginning with the top row and listing the cells

from left to right, travelling down, row by row, to the bottom row. Define a filling σ to be standard if it
is a bijection σ : µ ∼={1,...,n}. The standardization of a composition filling is the unique standard filling ξ
such that σ ◦ ξ−1 is weakly increasing, and for each x in the image of σ, the restriction of ξ to σ−1({x})
is increasing with respect to the reading order. Therefore the triple (u, v, w) is an inversion triple of type
A if and only if after standardization, the ordering from smallest to largest of the entries in cells u, v, w
induces a counter-clockwise orientation.

Similarly, three cells u, v, w ∈ λ form a triple of type B if they are situated as shown below,

u

v

w. . . . .

Here u and w are in the same row (possibly row 0) and the column containing v and w has greater
height than the column containing u.

Let σ be a composition filling and let x, y, z be the entries of σ in the cells of a type B triple (u, v, w):

x

y

z. . . . .
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Then the triple (u, v, w) is an inversion triple of type B if and only if I(y, x) + I(x, z) − I(y, z) = 1.
In other words, the triple (u, v, w) is an inversion triple of type B if and only if after standardization, the
ordering from smallest to largest of the entries in cells u, v, w induces a clockwise orientation.

Denote by semi-standard skyline filling any composition filling K such that Des(K) = ∅ and every
triple is an inversion triple. These conditions arise by setting q = t = 0 in the combinatorial formula for
the non-symmetric Macdonald polynomials.

Definition 1 Let λ be a composition of n into n parts, where some of the parts could be equal to zero.
The non-symmetric Schur function NSλ = NSλ(x) in the variables x = (x1, x2, ..., xn) is the formal
power series NSλ(x) =

∑
K xK summed over all semi-standard skyline fillings K of composition λ.

Here, xK =
∏n

i=1 xσi is the weight of σ.

As an example, take λ = (1, 0, 2, 0, 2). The skyline fillings with no descents such that every triple is
an inversion triple are as follows:

1 2 3 4 5

531

1 2 3 4 5

531

1 2 3 4 5

531

1 2 3 4 5

531

1 2 3 4 5

531

1 2 3 4 5

531

1 2 3 4 5

531

2 1 2 4 2 5

231

4 3 53

3

λ = (1, 0, 2, 0, 2)

Therefore, NSλ = x2
1x2x3x5 + x1x2x3x4x5 + x1x2x3x

2
5 + x2

1x
2
3x5 + x1x2x

2
3x5 + x1x

2
3x4x5 + x1x

2
3x

2
5.

3 Map from SSYTs to Skyline Fillings

The purpose of this paper is to prove that the sum of the non-symmetric Schur functions over all rear-
rangements of a given partition µ is equal to the ordinary Schur function sµ. (Here, a rearrangement of a
partition µ of n is a composition of n into n parts such that when these parts are arranged in decreasing
order the partition µ is recovered.) To do this, we must exhibit a bijection between semi-standard young
tableaux and skyline fillings which preserves the number of objects with each weight.

Begin with an arbitrary semi-standard young tableau T of shape µ, where µ ` n. The cells are labeled
by some multiset of positive integers {1a1 , 2a2 , ..., nan}. (Note that some of the ai might equal 0.) Map
the value in each cell to a new value as follows: send α to n − α + 1. Call the new filling T ′. (Here, a
filling of shape µ is a function σ : µ → Z+, as defined in [HHL04].) Notice that the column entries are
now strictly decreasing and the row entries are weakly decreasing. Let T ′

i be the set consisting of the
entries of the ith column.

Place the elements of T ′
i on top of row i− 1 as follows:

Begin with the largest member, α1, of T ′
i . Find the left-most entry of row i−1 that is greater than or

equal to α1. We know such an element exists, since in the tableau, the entry to the immediate left of α1
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is greater than or equal to α1. Place α1 on top of this element. Next place the second-largest member,
α2 of T ′

i in the same way. (Again, an entry greater than α2 exists because the entry immediately to the
left of α2 in the tableau is greater than or equal to α2.) Continue in this manner until all the elements
of T ′

i have been placed. Any remaining cell of row i− 1 has no cell directly above it.
Following this process for each column of T produces a filling of a composition Young diagram, as in

the example below:

Example 1 Begin with a Semi-Standard Young Tableau of shape λ =(5,3,3,3,2,1) (note that λ ` 17) as
pictured below and apply the map described above that sends each of the numbers, α, from 1 through 17,
to 17− α + 1.

10

4

10532

2

8

9

5 5

7 8

10 10

11

1 17 16

16

15

14

13 13

13

11 10

10

9

88

8

8

7

SSYT mapping

Next examine the empty composition filling:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

The Empty Composition Filling

We must assign the numbers T1 ={8,9,10,14,16,17} to the first row of our composition filling accord-
ing to the map defined above. The figure below shows the placement of these numbers onto the empty
composition filling:

1 2 3 4 5 6 7 171615141312111098

16 17141098

Placement of the first row

The following figure shows the placement of the second row:

1 2 3 4 5 6 7 171615141312111098

16 17141098

8 13 16 117

Placement of the second row

Next we demonstrate the process of placing each of the additional 3 rows:
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1 2 3 4 5 6 7 171615141312111098

16 17141098

8 13 16 117

8 13 15 10

1 2 3 4 5 6 17161514131211109

16 1714109

8 13 16 117

8

87

13

8

8 13 15 10

1 2 3 4 5 6 17161514131211109

16 1714109

8 13 16 117

8

87

Place row 3

Place rows 4 and 5

Lemma 1 Once the entries of row i− 1 have been placed, the arrangement of the elements of T ′
i on top

of row i− 1 forms the ith row of a skyline filling, and this placement procedure is the only placement of
the elements of T ′

i which yields a skyline filling.

We must show that the following are true:

1. This process yields a skyline filling.

2. This process is the only way to obtain a skyline filling with the given row entries.

Step 1: This process yields a skyline filling.

Proof. By construction, the filling has no descents. Therefore, we must show that all triples are inversion
triples. Recall that we can get an non-inversion triple from either of the following two types of triples of
cells:
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v

wu

wu

v ...
...

Type BType A

In type A, the column containing u and v is weakly taller than the column containing w while in
type B, the column containing v and w is taller. After standardization, a type A non-inversion implies a
clockwise ordering when the cells are ordered from smallest to largest, and a type B non-nversion implies
a counter-clockwise ordering when the cells are ordered from smallest to largest.

First check for type A non-inversion triples. They must look like the cell configuration pictured be-
low, where the column containing u and v has height greater than or equal to the height of the column
containing w and t:

...

... w

tv

u

Here, we must have u ≤ v. Therefore, to get a non-inversion triple, we must have u ≤ w ≤ v. Since
the elements of T ′

i are all distinct, this implies that u < w. But then w would have been placed before
u. Since w ≤ v, w would have been placed on top of v or on top of some entry to the left of v. So this
configuration would not happen. Therefore, there are no type A non-inversion triples.

Next check for type B non-inversion triples. This can occur in two ways. Either the left cell in the
triple has a cell on top of it (Case 1) or the left cell does not have a cell on top of it (Case 2).

......

...

Case 2Case 1

z

y

xz

y

x

w

We know that y ≤ z. Thus, to get an non-inversion triple, we must have y ≤ x ≤ z. Standardization
implies that we may assume y < x < z.

In Case 1, since y is less than or equal to x and z, y could be placed on top of either. Since w was
placed on top of x, w must have been placed before y. So w must be greater than y.

In order for this triple to be a non-inversion triple of type B, the column containing z and y must
be taller when we’ve completed our composition filling. If the w, x column terminated on the next row,
a cell, c, would be added on top of y while nothing was added on top of w. However, since w > y, c
would not be placed on top of y because w is a cell farther to the left on top of which c could be placed
without creating any descents. So the column containing w and x can not terminate on the very next
row. However, if it does not terminate, an entry must be placed on top of w and an entry must be placed
on top of y. Since w > y, the entry on top of w will be greater than the entry on top of y. So we will
be dealing with the same situation in row i + 1 as we dealt with in row i. Thus the column containing w
and x cannot terminate before the column containing y and z. Therefore Case 1 cannot happen.

In Case 2, since y is less than x and z, we could have placed y on top of x instead. Placing y on top
of z means y was not placed as far to the left as it should have been. Thus case 2 cannot happen.

Therefore, our process yields a filling with no descents such that all triples are inversion triples. We
conclude that our process yields a skyline filling.

2

Step 2: This process is the only way to obtain a skyline filling from the given row entries {T ′
i}.
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Proof. Assume there is another way to get a skyline filling from the same row entries {T ′
i}. Denote by

K the skyline filling created by the process above. Denote by K ′ a different skyline filling whose rows
contain the same entries (T ′

i ) as the rows of K but in a different order.
Find the lowest row i of K ′ whose ordering is not equal to the ordering of row i of K. Consider the

largest element of T ′
i whose placement in K ′ does not agree with its placement in K. Call this element

u. In K, u was placed in the left-most possible position. Therefore, u must lie in a position further to
the right in K ′.

Say u lies above the entry v in K and above w in K ′. Then this part of the skyline filling looks like
the picture below, where x and y might be empty cells:

u
w

. . .

. . .

. . .

. . . v

K

v

u x

w

K’

y

Since u is the largest cell of K ′ to lie in a different place from where it lies in K, y must be less than
u. If the column in K ′ containing y and v were taller than the column containing u and w, then the
triple y, u, v would be a non-inversion triple of type A. So the column containing u and w must be taller
than the column containing y and v. Then w < v, since otherwise u, v, w would be a non-inversion triple
of type B.

The 0th row of K ′ contains the numbers from 1 to n, in increasing order. Therefore, at some row
below the row containing v and w, the entry, d, in the column containing v is less than the entry, e, in
the column containing w. Find the highest row where this occurs below the row containing v and w. Let
f be the entry above d and g be the entry above e. (See Figure 1, below.) Then g < f < d < e. So g, d, e
is a non-inversion triple of type B.

...

...
e

gf

d

Figure 1

Therefore, regardless of which column is taller, K ′ contains at least one non-inversion triple. So K ′ is
not a skyline filling. Therefore the skyline filling obtained through the process described at the beginning
of this section yields the only possible skyline filling with the given row entries.

2

4 Map from Skyline Fillings to SSYTs

Begin with an arbitrary skyline filling. Select all the entries in the bottom row. Arrange them in a
vertical column, sorted into descending order up columns. Then select the entries in the second row,
and arrange them in a column immediately to the right of the first column, again in decreasing order.
Continue in this manner until there are no more rows left in the composition filling. The shape one gets
is clearly a Young diagram, since each column of this figure has height less than or equal to the height of
the column to its left.

Lemma 2 The entries in a column of the Young diagram filling are strictly decreasing as one travels up
the column.

Proof. It is clear by the way we ordered the columns that they are weakly decreasing as one travels up
the column. It remains to show that there cannot be two equal entries in a given column. If there were,
then in the composition filling there would be two equal entries in a row. (See Figure 2, below).
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b

a a

c

Figure 2

If the column containing b is taller than or equal to the column containing c, then the triple a, a, b
would be a type A non-inversion triple. Thus the column containing c has height greater than the column
containing b.

If b ≤ c, then the triple a, b, c (where a is the entry on top of c) is a type B non-inversion triple. So
b > c. The argument at the end of section 3 demonstrates that this also leads to a non-inversion triple
found in lower rows.

2

We just proved that no two entries in the same row of a composition filling can be equal. This implies
that all the entries in a column of our young diagram filling must be distinct.

Lemma 3 Each entry in the Young diagram filling is less than or equal to the entry immediately to its
left.

Proof. The entry, j, at height α in the ith column of the Young diagram filling is the αth largest entry
in the ith row of the skyline filling. If this value is greater than the value to its left in the Young diagram
filling, at most α − 1 entries on the (i − 1)st row are greater than or equal to j while α entries on the
ith row are greater than or equal to j. Then the pigeon-hole principle tells us that at least one entry on
the ith row is greater than the entry below it. But then we have a descent and therefore our composition
filling is not a skyline filling. Thus, we have a contradiction. So each entry must be less than or equal to
the entry immediately to its left.

2

The cells in the Young diagram filling are labelled by the members of the multiset {1a1 , 2a2 , ..., kak}.
The total number of cells in the skyline filling, n, is equal to the total number of cells in the Young
diagram. Map the value in each cell to a new value by sending α to n − α + 1. Before the mapping,
the labels were weakly decreasing by column and strictly decreasing by row. Since the map reverses the
orders of the labels while preserving the fact that no repeated entries occur within a column, the labels
are now weakly increasing by row and strictly increasing by column. Thus, we now have a Semi-Standard
Young Tableau.

Say two different composition fillings yield the same SSYT. Then these two composition fillings would
have the same set of entries on each row. But we saw in section 3 that once we know the entries on a
row, the placement of those entries in a skyline filling is unique. So these two skyline fillings are identical.
Thus, our map is injective.

Example 2 Below we demonstrate the mapping first from a semi-standard skyline filling to a Young
diagram filling and then to a semi-standard Young tableau:

1 2 3 4 5 6 7 8
8
8
8

9
9
7

10
10

11 12 13 14
14
13
13
13
8

15 16
16
16
15

17
17
11
10

17
16
14
10
9
8

16
13
11
8
7

15
13
10
8

13 8 1
2
4
8
9
10

2
5
7
10
11

3
5
8
10

5 10
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5 The two maps defined above are inverses

Looking back at the two examples, one sees that in this particular case, the two maps are inverses. In
fact, this is true in general.

Lemma 4 The two maps defined in sections 3 and 4 are inverses.

Proof.
To see this, begin with the map from a SSYT to a skyline filling. This map sends the numbers in a

given column to the corresponding row, changing the numbers by mapping α to n − α + 1, where n is
the number which the shape of the SSYT partitions. Then, when we map this skyline filling back to an
SSYT, first we take the numbers in each row and place them in the corresponding column in decreasing
order. Then we send α to n− α + 1, which inverts the mapping we did in the first step. So we have the
same numbers in each column, arranged in increasing order. Therefore we have the same SSYT that we
began with.

Going the other way, we begin with a skyline filling and map each row to a column with the same
numbers in decreasing order. We change this shape to a SSYT by mapping α to n − α + 1. When we
map back to a skyline filling, we first send α to n − α + 1, which inverts the mapping. Next, we enter
each column into its corresponding row via the unique map defined in section 3. Since this is the only
skyline filling with these particular entries in each row, this is the skyline filling we began with.

2

Thus, the two injective maps are inverses and form a bijection between skyline fillings of rearrange-
ments of µ and SSYT of shape µ. Since the sλ are symmetric, the number of SSYT of weight xa1

1 xa2
2 ...xan

n

is equal to the number of SSYT of weight xa1
n−1x

a2
n−2...x

an
1 . Since our map sends each SSYT of weight

xa1
1 xa2

2 ...xan
n to a skyline filling of weight xa1

n−1x
a2
n−2...x

an
1 , the coefficient of

∏n
i=1 xαi

i in sλ(x) is equal to
the coefficient of

∏n
i=1 xαi

i in
∑

λ′ NSλ′(x), for all possible multisets {α1, ...αn} with 0 ≤ αi ≤ n, ∀i, and∑n
i=1 αi = n.
This proves that the sum of the non-symmetric Schur functions over all rearrangements of a partition,

µ, is equal to the Schur function sµ.

6 A Basis For the Algebra of degree n Polynomials in n variables

Several other bases for symmetric functions have non-symmetric analogues. For instance, the non-
smmyetric monomial corresponding to a given composition γ of n into n parts is given by NMγ =
xγ1

1 xγ2
2 ...xγn

n . It is clear that the sum over all rearrangements of a given partition µ of the non-symmetric
monomials is equal to the monomial symmetric function mµ. Every polynomial of degree n in n variables
can be written as a sum of non-symmetric monomials, so the non-symmetric monomials form a basis for
the algebra of polynomials of degree n in n variables.

Definition 2 The reverse dominance order on compositions is defined as follows:
µ ≤ γ ⇐⇒

∑n
i=k µi ≤

∑n
i=k γi for 1 ≤ i ≤ n.

A semi-standard skyline filling is said to have type α if it contains αi copies of the number i for each
i. If γ and α are compositions of n into n parts, let NKγ,α denote the number of semi-standard skyline
fillings of shape γ and type α. NKγ,α is called a non-symmetric Kostka number. The ordinary Kostka
numbers are obtained as a sum of non-symmetric Kostka numbers: Kλ,α =

∑
NKγ,α, where the sum is

over all rearrangements γ of λ.

Theorem 2 Suppose that µ and γ are both compositions of n into n parts and NKµ,γ 6= 0. Then µ ≥ γ
in the dominance order. Moreover, NKµ,µ = 1.
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Proof. Assume that NKµ,γ 6= 0. By definition, there exists a semi-standard skyline filling of shape µ
and type γ. Assume that a part k appears in one of the first k − 1 columns. Then this k column would
contain a descent, since there is an entry less than k in the column at a lower position than k. Therefore,
the parts k, k+1, ..., n all appear in the last n−k+1 columns. So µk +µk+1+ ...+µn ≥ γk +γk+1+ ...+γn

for each k, as desired. Moreover, if µ = γ, then the ith column must contain only entries with value i, so
NKµ,µ = 1. 2

Corollary 1 The non-symmetric Schur functions form a basis for the algebra of polynomials of degree
n in n variables.

Proof. Theorem 2 is equivalent to the assertion that the transition matrix from the non-symmetric
Schur functions to the non-symmetric monomials (with respect to the reverse dominance order) is upper
triangular with 1’s on the main diagonal. Since this matrix is invertible, the non-symmetric Schur
functions of degree n are a basis for polynomials of degree n in n variables. 2
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