COUNTING OCCURRENCES OF 231 IN AN INVOLUTION

Toufik Mansour
Department of Mathematics
University of Haifa, 31905 Haifa, Israel
toufik@math.haifa.ac.il
Sherry H.F. Yan* and Laura L.M. Yang ${ }^{\dagger}$
Center for Combinatorics, LPMC
Nankai University, Tianjin 300071, P.R. China
${ }^{*}$ yanhuifang@sina.com, ${ }^{\dagger}$ yanglm@hotmail.com

Abstract

We study the generating function for the number of involutions on n letters containing exactly $r \geqslant 0$ occurrences of 231 . It is shown that finding this function for a given r amounts to a routine check of all involutions of length at most $2 r+2$.

Nous étudions la fonction génératrice pour le nombre des involutions sur n lettres en comprenent précisément $r \geqslant 0$ apparitions de 231. Nous démontrons q'il est possible a trouver cette fonction pour un nombre r donné par une vérification de routine des toutes les involutions qui ont leur longueur non plus de $2 r+2$. 2000 Mathematics Subject Classification: Primary 05A05, 05A15; Secondary 05C90

1. Introduction

Permutations. Suppose that S_{n} is the set of permutations of $[n]=\{1, \ldots, n\}$, written in one-line notation. Let $\pi=\pi_{1} \pi_{2} \ldots \pi_{n} \in S_{n}$ and $\tau=\tau_{1} \tau_{2} \ldots \tau_{k} \in S_{k}$ be two permutations. An occurrence of τ in π is a subsequence $\pi_{i_{1}} \pi_{i_{2}} \ldots \pi_{i_{k}}$ such that $1 \leq$ $i_{1}<i_{2}<\cdots<i_{k} \leqslant n$ and $\pi_{i_{s}}<\pi_{i_{t}}$ if and only if $\tau_{s}<\tau_{t}$ for any $1 \leqslant s, t \leqslant k$. In such a context, τ is usually called a pattern. We denote the number of occurrences of τ in π by $\tau(\pi)$.
Starting with 1985, much attention has been paid to the counting problem of the number $S_{r}^{\tau}(n)$ of permutations of length n which contain the pattern τ exactly $r \geq 0$ times. Most of the authors consider only the case $r=0$, thus studying permutations avoiding a given pattern (see $[1,2,3,6,13,16,17,18,19,20]$). For the case $r>0$ there exist only a few papers, usually restricting themselves to the patterns of length three. Using two simple involutions (reverse and complement) on S_{n} it is immediate that with respect to being equidistributed, the six patterns of S_{3} fall into two classes, namely $\{123,321\}$ and $\{132,213,231,312\}$. In 1996, Noonan [15] has proved that $S_{1}^{123}(n)=\frac{3}{n}\binom{2 n}{n-3}$. A general
approach to the counting problem was suggested by Noonan and Zeilberger [16]; they gave another proof of Noonan's result, and conjectured that $S_{1}^{132}(n)=\binom{2 n-3}{n-3}$ and

$$
S_{2}^{123}(n)=\frac{59 n^{2}+117 n+100}{2 n(2 n-1)(n+5)}\binom{2 n}{n-4} .
$$

The first conjecture was proved by Bóna [5] and the second one was proved by Fulmek [10]. A general conjecture of Noonan and Zeilberger states that the sequence $\left\{S_{r}^{\tau}(n)\right\}_{n \geqslant 0}$ is P-recursive in n for any r and τ. It was proved by Bóna [4] for $\tau=132$. However, as stated in [4], a challenging question is to describe $S_{r}^{\tau}(n), \tau \in S_{3}$, explicitly for any given r. In 2002, Mansour and Vainshtein suggested in [14] a new approach to this problem in the case $\tau=132$, which allows to get an explicit expression for $S_{r}^{132}(n)$ for any given r. More precisely, they presented an algorithm that computes the generating function $\sum_{n \geqslant 0} S_{r}^{132}(n) x^{n}$ for any $r \geqslant 0$. To get the result for a given r, the algorithm performs certain routine checks for each permutation of $S_{2 r}$.

Involutions. An involution π is a permutation in S_{n} such that $\pi=\pi^{-1}$; let \mathcal{I}_{n} be the set of all the involutions in S_{n}. We denote $I_{r, n}^{\tau}$ the number of involutions $\pi \in \mathcal{I}_{n}$ with $\tau(\pi)=r$, and $I_{r}^{\tau}(x)$ the corresponding generating function, that is, $I_{r}^{\tau}(x)=\sum_{n \geqslant 0} I_{r, n}^{\tau} x^{n}$.
Again, most authors considered the case $r=0$, namely involutions avoiding a given pattern τ (see $[7,9,11,12]$ and references therein). For the case $r>0$ there exist only few results. In 2002, Guibert and Mansour [12] gave an explicit expression for $I_{1, n}^{132}$, namely $I_{1, n}^{132}=\binom{n-2}{[(n-3) / 2]}$. Egge and Mansour in [8] proved that $I_{1, n}^{231}=(n-1) 2^{n-6}$ for $n \geqslant 5$.

In the present paper we suggest a new approach to this problem in the case of $\tau=231$, which allows to get an explicit expression for $I_{r, n}^{231}$ for any given r. More precisely, we present an algorithm that computes the generating function $I_{r}^{231}(x)=\sum_{n \geqslant 0} I_{r, n}^{231} x^{n}$ for any $r \geqslant 0$. To get the result for a given r, the algorithm performs certain routine checks for each element in $\bigcup_{k=1}^{2 r+2} I_{k}$. The algorithm has been implemented in C, and yielded explicit results for $0 \leqslant r \leqslant 7$.

2. Preliminary results

For any involution $\pi \in \mathcal{I}_{n}$, we can assign a bipartite graph G_{π} in the following way which is similar to [14].

Figure 1. The graph $G_{341286957}$

The vertices in one part of G_{π}, denoted V_{1} are the entries of π, and the vertices of the second part, denoted V_{3}, are the occurrences of 231 in π. Entry $i \in V_{1}$ is connected by an edge to occurrence $j \in V_{3}$ if i enters j. For example, let $\pi=341286957$, then π contains 5 occurrences of 231, and the graph G_{π} is presented on Figure 1.
Let \widetilde{G} be an arbitrary connected component of G_{π}, and let \widetilde{V} be its vertex set. We denote $\widetilde{V}_{1}=\widetilde{V} \bigcap V_{1}, \widetilde{V}_{3}=\widetilde{V} \bigcap V_{3}, t_{1}=\left|\widetilde{V}_{1}\right|, t_{3}=\left|\widetilde{V}_{3}\right|$. Denote by G_{π}^{n} the connected component of G_{π} containing entry n.
For any $\pi \in \mathcal{I}_{n}$ with $\pi_{j}=n$ and $\left|V_{1}\left(G_{\pi}^{n}\right)\right|>1$, assume that i_{1} is the minimal index such that there exists a subsequence

$$
\left(\pi_{i_{1}}, \pi_{i_{2}}, i_{1}, \pi_{i_{3}}, i_{2}, \ldots, i_{h}, \pi_{i_{h+2}}, i_{h+1}, \ldots, \pi_{i_{k}}, i_{k-1}, \pi_{i_{k+1}}, i_{k}, i_{k+1}\right)
$$

where $i_{1}<i_{2}<i_{3}<\ldots<i_{k}<i_{k+1}=j$. we call this subsequence connected sequence. For our convenience, we call i_{1} the initial index. Also, It is obvious that $\pi_{i_{1}}$ is the first entry of the subsequence of π contained in G_{π}^{n}.
Definition 2.1. For any $\pi \in \mathcal{I}_{n}$ and $\pi_{j}=n$, we define the 231-tail by

$$
\chi_{\pi}= \begin{cases}\left(n, \pi_{j+1}, \ldots, \pi_{n-1}, j\right), & \text { if } \\ \left(\pi_{i_{1}}, \pi_{i_{1}+1}, \ldots, \pi_{n}\right), & \text { if } \quad\left|V_{1}\left(G_{\pi}^{n}\right)\right|=1, \\ V_{1}\left(G_{\pi}^{n}\right) \mid>1,\end{cases}
$$

where i_{1} is the initial index of π.
For example, the 231-tail of the involution 216483957 is 6483957 . Denote l_{π} and c_{π} the length of π and the number of the occurrences of 231 in π.

In fact, for any $\pi \in \mathcal{I}_{n}$ with $\left|V_{1}\left(G_{\pi}^{n}\right)\right|=1$, the 231-tail χ_{π} of π can be represented as $\chi_{\pi}=(n, n-1, \ldots, n-s+1, \lambda)$ where the first entry of λ is not $n-s$. The following lemma holds by the definition of the 231-tail.
Lemma 2.2. Let $\pi \in \mathcal{I}_{n}$, the permutation of 231-tail of π, χ_{π}, is an involution, and there exists an involution π^{\prime} such that $\pi=\left(\pi^{\prime}, \chi_{\pi}\right)$.
Lemma 2.3. Let $\pi \in I_{n}$ with $\chi_{\pi}=(n, n-1, \ldots, n-s+1, \lambda)$, where λ is nonempty, such that $c_{\chi_{\pi}}=r$, then $l_{\chi_{\pi}} \leq 2 r+2$. Furthermore, The equality holds if and only if $\chi_{\pi}=(2 r+2,2 r+1, \ldots, r+3, r+1, r+2, r, r-1, \ldots, 1)$.

Proof. If l_{π} is maximal, then the first entry of χ_{π} is l_{π}. Using Lemma 2.2 we get the last entry of χ_{π} is 1 . By induction we can assume that $\chi_{\pi}=(n, n-1, \ldots, n-s+$ $1, \mu, s, s-1, \ldots, 1)$ where the first entry of μ is not $n-s$ and μ is nonempty. On the other hand $c_{\pi}=r$, so $s \leq r$. Hence

$$
\chi_{\pi}=(2 r+2,2 r+1, \ldots, r+3, r+1, r+2, r, r-1, \ldots, 1) .
$$

Lemma 2.4. For any $\pi \in \mathcal{I}_{n}$ with $\left|V_{1}\left(G_{\pi}^{n}\right)\right|>1$, the subsequence of π contained in the connected component G_{π}^{n} is just the 231-tail χ_{π} of π.

Proof. According to the definition of the 231-tail, it is sufficient to prove that the bipartite graph corresponding to χ_{π} is connected. Assume $\pi_{j}=n$ and i_{1} is the initial index. Suppose that the connected sequence is

$$
\left(\pi_{i_{1}}, \pi_{i_{2}}, i_{1}, \pi_{i_{3}}, i_{2}, \ldots, i_{h}, \pi_{i_{h+2}}, i_{h+1}, \ldots, \pi_{i_{k}}, i_{k-1}, \pi_{i_{k+1}}, i_{k}, i_{k+1}\right)
$$

where $i_{1}<i_{2}<i_{3}<\ldots<i_{k}<i_{k+1}=j$. It is obvious that the vertices

$$
\pi_{i_{1}}, \pi_{i_{2}}, i_{1}, \pi_{i_{3}}, i_{2}, \ldots, i_{h}, \pi_{i_{h+2}}, i_{h+1}, \ldots, \pi_{i_{k}}, i_{k-1}, \pi_{j}, i_{k}, j
$$

are all contained in the connected component G_{π}^{n}.
For $i_{h}<m<i_{h+1}$, if $i_{h}<\pi_{m}<\pi_{i_{h+1}}$, then $\pi_{m} \pi_{i_{h+1}} i_{h}$ forms a pattern of 231 in π; if $\pi_{m}>\pi_{i_{h+1}}$, then $\pi_{i_{h}} \pi_{m} i_{h}$ is a subsequence of the pattern 231 in π; if $\pi_{m}<i_{h}$, then $m \pi_{i_{h}} \pi_{m}$ is a subsequence of the pattern of 231 in π. In these cases, we know that π_{m} is contained in G_{π}^{n}.
For $j<m<n$, if $\pi_{m}<\pi_{i_{k}}$, then $\pi_{i_{k}} n \pi_{m}$ forms a pattern of 231 in π; if $\pi_{m}>\pi_{i_{k}}$, then $\pi_{i_{k}} \pi_{m} j$ forms a pattern of 231 in π. In these cases, we know that π_{m} is contained in G_{π}^{n}.

Studying occurrences of 132 in a permutation which leads to consideration of 231 in a permutation, Mansour and Vainshtein have proved that the relation $t_{1} \leq 2 t_{3}+1$ in [14]. It is clear that the set of involutions is a subset of permutations. So we have

Lemma 2.5. (see [14, Lemma 2.1]) For any connected component \widetilde{G} of G_{π}, one has $t_{1} \leq 2 t_{3}+1$.

Remark 2.6. For any $\pi \in I_{n}$ with $c_{\chi_{\pi}}=r(r>0)$, if $\left|V_{1}\left(G_{\pi}^{n}\right)\right|=1$, then $l_{\chi_{\pi}} \leq 2 r+2$; otherwise $l_{\chi_{\pi}} \leq 2 r+1$.

3. Main Theorem and explicit results

Denote by K_{t} the subset of $\bigcup_{k \leqslant 2 t+2} \mathcal{I}_{k}$ whose elements can be expressed as $(k, k-$ $1, \ldots, k-s+1, \lambda)$ where λ is nonempty, and by H_{t} be the subset of $\bigcup_{k \leqslant 2 t+1} \mathcal{I}_{k}$ such that the corresponding bipartite graph of each element is connected. It is obvious that $K_{t} \cap H_{t}=\emptyset$. Then the main result of this paper can be formulated as follows.

Theorem 3.1. For any $r \geqslant 1$,

$$
\begin{equation*}
I_{r}^{231}(x)=\frac{x}{1-x} I_{r}^{231}(x)+\sum_{\mu \in K_{r} \cup H_{r}} x^{l_{\mu}} I_{r-c_{\mu}}^{231}(x) . \tag{*}
\end{equation*}
$$

Proof. Denote by $F_{r}^{\mu}(x)$ the generating function for the number of involutions $\pi \in \mathcal{I}_{n}$ such that χ_{π} is just order-isomorphic to μ. We discuss three cases to find $F_{r}^{\mu}(x)$:

- If π is an involution in \mathcal{I}_{n} with $\chi_{\pi}=(n, n-1, \ldots, n-s+1)$, then $l_{\mu}=s$ and $\mu=(s, s-1, \ldots, 1)$, so we have

$$
F_{r}^{\mu}(x)=x^{s} I_{r}^{231}(x)
$$

- If π is an involution in \mathcal{I}_{n} with $\chi_{\pi}=(n, n-1, \ldots, n-s+1, \lambda)$ where λ is nonempty, then $\mu \in K_{r}$ by Lemma 2.3, thus we have

$$
F_{r}^{\mu}(x)=x^{l_{\mu}} I_{r-c_{\mu}}^{231}(x) .
$$

- If π is an involution in \mathcal{I}_{n} with $\chi_{\pi}=\left(\pi_{i_{1}}, \pi_{i_{1}+1}, \ldots, \pi_{n}\right)$ where i_{1} is the initial index of π, then Lemma 2.5 and Lemma 2.4 yield $\mu \in H_{r}$ and

$$
F_{r}^{\mu}(x)=x^{l_{\mu}} I_{r-c_{\mu}}^{231}(x)
$$

Hence, summing over all $\mu \in\{(s, s-1, s-2, \ldots, 2,1) \mid s \geqslant 1\} \cup K_{r} \cup H_{r}$ we get the desired result.

Theorem 3.1, Lemma 2.3, and Lemma 2.5 provide a finite algorithm for finding $I_{r}^{231}(x)$ for any given $r>0$, since we only have to consider all involutions in I_{k}, where $k \leqslant 2 r+2$, and to perform certain routine operations with all 231-tails found so far.

Remark 3.2. In fact, according to the Lemma 2.3, it is sufficient to check all involutions in I_{k}, where $k \leq 2 r+1$. As a consequence, Formula (*) can be reduced as follows:

$$
I_{r}^{231}(x)=\frac{x}{1-x} I_{r}^{231}(x)+x^{2 r+2} I_{0}^{231}(x)+\sum_{\mu \in K_{r}^{*} \cup H_{r}} x^{l_{\mu}} I_{r-c_{\mu}}^{231}(x),
$$

where K_{r}^{*} is the set of all involutions of the form $(n, n-1, \ldots, n-s+1, \lambda)$ of in I_{k} where $k \leq 2 t+1$ and λ is nonempty.

Let us start from the case $r=0$. Observe that $(*)$ remains valid for $r=0$, provided the left hand side is replaced by $I_{0}^{231}(x)-1$; subtracting 1 here accounts for the empty permutation. Note that when $r=0, K_{0} \cup H_{0}$ is empty. Hence we get $I_{0}^{231}(x)-1=$ $\frac{x}{1-x} I_{0}^{231}(x)$, equivalently

$$
\begin{equation*}
I_{0}^{231}(x)=\frac{1-x}{1-2 x}, \tag{**}
\end{equation*}
$$

which is the result of Simion and Schmidt (see [17, Proposition 6]).
Let now $r=1$. Observe that $K_{1} \cup H_{1}=\{4231\}$. Therefore, $(*)$ amounts to

$$
I_{1}^{231}(x)=\frac{x}{1-x} I_{1}(x)+x^{4} I_{0}^{231}(x),
$$

and we get the following result from Formula ($* *$).
Corollary 3.3. (see Egge and Mansour [8, Theorem 4.3]) The generating function $I_{1}^{231}(x)$ for the number of involutions containing exactly one occurrence of the pattern 231 is given by

$$
I_{1}^{231}(x)=\frac{x^{4}(1-x)^{2}}{(1-2 x)^{2}} ;
$$

equivalently, for $n \geq 5$,

$$
I_{1, n}^{231}=(n-1) 2^{n-6} .
$$

Let $r=2$. Exhaustive search adds four new elements to the previous list; these are $653421,52431,53241$, and 3412 , therefore we get

Corollary 3.4. The generating function $I_{2}^{231}(x)$ is given by

$$
I_{2}^{231}(x)=\frac{x^{4}(1-x)^{2}}{(1-2 x)^{3}}\left(1-3 x^{2}-2 x^{3}+x^{4}-x^{5}\right) ;
$$

equivalently, for $n \geqslant 9$,

$$
I_{2, n}^{231}=\left(n^{2}+137 n-234\right) 2^{n-11} .
$$

Let $r=3,4,5,6,7$; exhaustive search in $\mathcal{I}_{8}, \mathcal{I}_{10}, \mathcal{I}_{12}, \mathcal{I}_{14}$, and \mathcal{I}_{16} reveals $13,24,41,69$, and 103 elements, respectively, and we get

Corollary 3.5. Let $3 \leqslant r \leqslant 7$, then

$$
I_{r}^{231}(x)=\frac{(1-x)^{2}}{(1-2 x)^{r+1}} Q_{r}(x)
$$

where

$$
\begin{aligned}
Q_{3}(x)= & x^{5}\left(4-14 x+8 x^{2}+11 x^{3}-6 x^{4}-2 x^{5}+2 x^{6}+5 x^{7}-2 x^{8}+x^{9}\right) ; \\
Q_{4}(x)= & x^{6}\left(6-32 x+49 x^{2}+7 x^{3}-73 x^{4}+40 x^{5}+30 x^{6}-37 x^{7}+2 x^{8}+4 x^{10}\right. \\
& \left.-9 x^{11}+3 x^{12}-x^{13}\right) ; \\
Q_{5}(x)= & x^{6}\left(8-58 x+146 x^{2}-120 x^{3}-40 x^{4}-24 x^{5}+290 x^{6}-184 x^{7}-197 x^{8}\right. \\
& \left.+228 x^{9}+30 x^{10}-132 x^{11}+62 x^{12}+13 x^{14}-16 x^{15}+14 x^{16}-4 x^{17}+x^{18}\right) ; \\
Q_{6}(x)= & x^{6}\left(4-31 x+80 x^{2}-56 x^{3}+4 x^{4}-384 x^{5}+1097 x^{6}-830 x^{7}-483 x^{8}\right. \\
& +660 x^{9}+685 x^{10}-1091 x^{11}-59 x^{12}+722 x^{13}-195 x^{14}-338 x^{15} \\
& \left.+285 x^{16}-92 x^{17}+20 x^{18}-45 x^{19}+35 x^{20}-20 x^{21}+5 x^{22}-x^{23}\right) ; \\
Q_{7}(x)= & x^{7}\left(17-199 x+969 x^{2}-2502 x^{3}+3642 x^{4}-3274 x^{5}+3324 x^{6}-4714 x^{7}\right. \\
& +1874 x^{8}+6326 x^{9}-8262 x^{10}-231 x^{11}+5474 x^{12}-637 x^{13}-4022 x^{14} \\
& +1933 x^{15}+1340 x^{16}-1129 x^{17}-518 x^{18}+982 x^{19}-498 x^{20}+166 x^{21} \\
& \left.-92 x^{22}+105 x^{23}-62 x^{24}+27 x^{25}-6 x^{26}+x^{27}\right) .
\end{aligned}
$$

As an easy consequence of Theorem 3.1 we get the following result.
Corollary 3.6. For any $r \geq 1$ there exist a polynomial $P_{5 r-1}(x)$ of degree $5 r-1$ with integer coefficients such that

$$
I_{r}^{231}(x)=\frac{(1-x)^{2}}{(1-2 x)^{r+1}} P_{5 r-1}(x)
$$

Proof. Immediately, by the above cases we have the corollary holds for $1 \leq r \leq 7$. Let us assume by induction that the corollary holds for $1,2, \ldots, r-1$; for r the equation (*) give

$$
I_{r}^{231}(x)=\frac{(1-x)^{2}}{(1-2 x)^{r+1}} \sum_{\rho \in K_{r} \cup H_{r}} x^{l_{\rho}} \frac{(1-2 x)^{r}}{1-x} I_{r-c_{\rho}}^{231}(x) .
$$

By the induction assumption and $I_{0}^{231}(x)=\frac{1-x}{1-2 x}$ we have that $x^{l_{\rho}} \frac{(1-2 x)^{r}}{1-x} I_{r-c_{\rho}}(x)$ is a polynomial with integer coefficients of degree a. So Lemma 2.3 and 2.5 yields

$$
a=\max \left\{b_{j} \mid j=1, \ldots, r\right\}
$$

where $b_{j}=2 j+2+r-(r-j+1)+1+5(r-j)-1=5 r-2 j+1$, which means $a=5 r-1$, as claimed.

4. Further results

Another direction would be to match the approach of this paper with the previous results on restricted 231-avoiding involutions. Let $\Phi_{r}(x ; k)$ be the generating function for the number of involutions in \mathcal{I}_{n} containing r occurrences of 231 and avoiding the pattern $12 \ldots k \in \mathfrak{S}_{k}$.

We denote by e_{λ} the length of the longest increasing subsequence of any involution λ. For example, let $\lambda=3412$, then $e_{\lambda}=2$. We denote by $K_{t}(k) \cup H_{t}(k)$ the set of all involutions $\lambda \in K_{t} \cup H_{t}$ such that $e_{\lambda} \leq k-1$.

Theorem 4.1. For any $r \geqslant 1$ and $k \geqslant 3$,

$$
\Phi_{r}(x ; k)=\frac{x}{1-x} \Phi_{r}(x ; k-1)+\sum_{\mu \in K_{r}(k) \cup H_{r}(k)} x^{l_{\mu}} \Phi_{r-c_{\mu}}^{231}\left(x ; k-e_{\mu}\right) .
$$

Besides, $\Phi_{r}(x ; 1)=\Phi_{r}(x ; 2)=0$, and $\Phi_{0}(x ; 1)=1$ and $\Phi_{0}(x ; 2)=\frac{1}{1-x}$.
Similar to the case of $I_{r}^{231}(x)$, the statement of the above theorem remains valid for $r=0$, provided the left hand side is replaced by $\Phi_{r}(x ; k)-1$. This allows to recover known explicit expressions for $\Phi_{r}(x ; k)$ for $r=0,1$, as follows.

Corollary 4.2. (see Egge and Mansour [8]) For all $k \geq 1$,
$\Phi_{0}(x ; k)=\sum_{j=0}^{k-1}\left(\frac{x}{1-x}\right)^{j} ;$
$\Phi_{1}(x ; k)=x^{4} \sum_{j=0}^{k-3}(j+1)\left(\frac{x}{1-x}\right)^{j}$.
The final direction would be to match the approach of this note with the previous results on restricted 231 -avoiding even or odd involutions. We say π an even (resp; odd) involution if the number of inversion in π, namely $21(\pi)$ is even (resp; odd). We denote by $K_{r}^{+} \cup H_{r}^{+}$the set of all the even involutions $\lambda \in K_{r} \cup H_{r}$ and denote by $K_{r}^{-} \cup H_{r}^{-}$the set of all the odd involutions $\lambda \in K_{r} \cup H_{r}$.
Let $I_{r}^{+}(x)$ (resp; $I_{r}^{-}(x)$) be the generating function for the number of even (resp; odd) involutions in \mathcal{I}_{n} containing r occurrences of 231 . Our new approach allows to get an explicit expression for $I_{r}^{+}(x)$ (or $I_{r}^{-}(x)$) for any given $r \geqslant 0$.

Theorem 4.3. For all $r \geqslant 1$,

$$
\begin{aligned}
& I_{r}^{+}(x)=\frac{x+x^{4}}{1-x^{4}} I_{r}^{+}(x)+\frac{x^{2}+x^{3}}{1-x^{4}} I_{r}^{-}(x)+\sum_{\mu \in K_{r}^{+} \cup H_{r}^{+}} x^{l_{\mu}} I_{r-c_{\mu}}^{+}(x)+\sum_{\mu \in K_{r}^{-} \cup H_{r}^{-}} x^{l_{\mu}} I_{r-c_{\mu}}^{-}(x) ; \\
& I_{r}^{-}(x)=\frac{x+x^{4}}{1-x^{4}} I_{r}^{-}(x)+\frac{x^{2}+x^{3}}{1-x^{4}} I_{r}^{+}(x)+\sum_{\mu \in K_{r}^{+} \cup H_{r}^{+}} x^{l_{\mu}} I_{r-c_{\mu}}^{-}(x)+\sum_{\mu \in K_{r}^{-} \cup H_{r}^{-}} x^{l_{\mu}} I_{r-c_{\mu}}^{+}(x) .
\end{aligned}
$$

In particular, we have

$$
I_{0}^{+}(x)-1=\frac{x+x^{4}}{1-x^{4}} I_{0}^{+}(x)+\frac{x^{2}+x^{3}}{1-x^{4}} I_{0}^{-}(x)
$$

and

$$
I_{0}^{-}(x)=\frac{x+x^{4}}{1-x^{4}} I_{0}^{-}(x)+\frac{x^{2}+x^{3}}{1-x^{4}} I_{0}^{+}(x) .
$$

Proof. Here we only prove the result of $I_{r}^{+}(x)$ for any $r \geq 1$. By the same method, we can obtain the formula for $I_{r}^{-}(x)$. Denote by $F_{r}^{\mu}(x)$ the generating function for the number of even involutions in $\pi \in I_{n}$ such that χ_{π} is order-isomorphic to μ.
To find $F_{r}^{\mu}(x)$, we recall four four cases. If $\mu=(s, s-1, \ldots, 1)$ and μ is even (that is, $21(\mu)=\frac{(s-1) s}{2}=2 k$ for some positive integer k), then in this case we have

$$
F_{r}^{\mu}(x)=x^{s} I_{r}^{+}(x)
$$

If $\mu=(s, s-1, \ldots, 1)$ and μ is odd (that is, $21(\mu)=\frac{(s-1) s}{2}=2 k-1$ for some positive integer k), then in this case we have

$$
F_{r}^{\mu}(x)=x^{s} I_{r}^{-}(x)
$$

If $\mu \in K_{r}^{+} \cup H_{r}^{+}$, then

$$
F_{r}^{\mu}(x)=x^{l_{\mu}} I_{r-c_{\mu}}^{+}(x) .
$$

If $\mu \in K_{r}^{-} \cup H_{r}^{-}$, then

$$
F_{r}^{\mu}(x)=x^{l_{\mu}} I_{r-c_{\mu}}^{-}(x) .
$$

Hence, if summing over all $\mu \in K_{r} \cup H_{r} \cup\{(s, s-1, s-2, \ldots, 2,1) \mid s \geq 1\}$ then we get the desired result. When $r=0$, subtracting 1 here accounts for the empty permutation.

As an example of the above theorem for $r=0,1,2$, we get
Corollary 4.4.

$$
I_{r}^{+}(x)=\frac{E_{r}(x)}{(1-2 x)^{r+1}\left(1-x+2 x^{2}\right)^{r+1}}, \quad I_{r}^{-}(x)=\frac{O_{r}(x)}{(1-2 x)^{r+1}\left(1-x+2 x^{2}\right)^{r+1}} ;
$$

where
$E_{0}(x)=1-2 x+2 x^{2}-2 x^{3} ;$
$E_{1}(x)=2 x^{6}\left(1-2 x+2 x^{2}-2 x^{3}\right) ;$
$E_{2}(x)=x^{4}\left(1-5 x+11 x^{2}-15 x^{3}+10 x^{4}+5 x^{5}-11 x^{6}-5 x^{7}+47 x^{8}-94 x^{9}+86 x^{10}-\right.$ $\left.62 x^{11}+16 x^{12}\right) ;$
$O_{0}(x)=x^{2}$;
$O_{1}(x)=x^{4}\left(1-4 x+8 x^{2}-12 x^{3}+13 x^{4}-8 x^{5}+4 x^{6}\right)$;
$O_{2}(x)=x^{6}\left(2-6 x+6 x^{2}-2 x^{3}-9 x^{4}+4 x^{5}+20 x^{6}-36 x^{7}+53 x^{8}-24 x^{9}+8 x^{10}\right)$.
Again, as an easy consequence of Theorem 4.3 we get the following result.
Corollary 4.5. For any $r \geqslant 0$, there exists two polynomials $P_{m_{r}}(x)$ and $P_{n_{r}}(x)$ of degree m_{r} and n_{r} with integer coefficients such that

$$
I_{r}^{+}(x)=\frac{P_{m_{r}}(x)}{(1-2 x)^{r+1}\left(1-x+2 x^{2}\right)^{r+1}}, \quad I_{r}^{-}(x)=\frac{P_{n_{r}}(x)}{(1-2 x)^{r+1}\left(1-x+2 x^{2}\right)^{r+1}},
$$

where $m_{r}, n_{r} \leq \frac{r(r+9)}{2}$.

It can be proved by induction on r as the proof of Corollary 3.6. Here we delete its proof.
As a remark we can derive another results from Theorem 4.3. For example, the generating function for the number of even or odd involution containing exactly r occurrences of the pattern 231 and avoiding $12 \ldots k$ (or avoiding $k \ldots 21$).

References

[1] N. Alon and E. Friedgut, On the number of permutations avoiding a given pattern, J. Combin. Theory Ser. A 89 (2000)133-140.
[2] M.D. Atkinson, Restricted permutations, Discrete Math. 195 (1999) 27-38.
[3] M. Bóna, Exact enumeration of 1342-avoiding permutations: a close link with labeled trees and planar maps, J. Combin. Theory Ser. A 80 (1997) 257-272.
[4] M. Bóna, The number of permutations with exactly $r 132$-subsequences is P-recursive in the size! Adv. Appl. Math. 18 (1997) 510-522.
[5] M. Bóna, Permutations with one or two 132-subsequences, Discrete Math. 181 (1998) 267274.
[6] T. Chow and J. West, Forbidden subsequences and Chebyshev polynomials, Discrete Math. 204 (1999) 119-128.
[7] E.S. Egge, Restricted 3412-avoiding involutions: Continued fractions, Chebyshev polynomials and enumerations, Adv. in Appl. Math., to appear.
[8] E. Egge and T. Mansour, 231-Avoiding involutions and Fibonacci numbers, Australasian Journal of Combinatorics, to appear.
[9] E.S. Egge and T. Mansour, Involutions restricted by 3412, Continued fractions, and Chebyshev polynomials, preprint.
[10] M. Fulmek, Enumeration of permutations containing a presribed number of occurrences of a pattern of length three, Adv. Appl. Math. 30 (2003) 607-632.
[11] O. Guibert, Combinatoire des permutations à motifs exclus en liaison avec mots, cartes planaires et tableaux de Young, PHD-thesis, University Bordeaux 1, France (1995).
[12] O. Guibert and T. Mansour, Restricted 132-involutions, Séminaire Lotharingien de Combinatoire 48 (2002), Article B48a (23pp.).
[13] T. Mansour and A. Vainshtein, Restricted permutations, continued fractions, and Chebyshev polynomials, Electron. J. Combin. 7 (2000) \#R17.
[14] T. Mansour and A. Vainshtein, Counting occurences of 132 in a permutation, Adv. Appl. Math. 28 (2002) 185-195.
[15] J. Noonan, The number of permutations containing exactly one increasing subsequence of length three, Discrete Math. 152 (1996) 307-313.
[16] J. Noonan and D. Zeilberger, The enumeration of permutations with a prescribed number of "forbidden" patterns, Adv. Appl. Math. 17 (1996) 381-407.
[17] R. Simion, F.W. Schmidt, Restricted Permutations, Europ. J. of Combin. 6 (1985) 383-406.
[18] Z. Stankova, Forbidden subsequences, Discrete Math. 132 (1994) 291-316.
[19] Z. Stankova, Classification of forbidden subsequences of length 4, European J. Combin. 17 (1996) 501-517.
[20] J. West, Generating trees and the Catalan and Schröder numbers, Discrete Math. 146 (1995) 247-262.

