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Abstract

We study the generating function for the number of involutions on n letters containing
exactly r > 0 occurrences of 231. It is shown that finding this function for a given r
amounts to a routine check of all involutions of length at most 2r + 2.

Nous étudions la fonction génératrice pour le nombre des involutions sur n lettres en
comprenent précisément r > 0 apparitions de 231. Nous démontrons q’il est possible
a trouver cette fonction pour un nombre r donné par une vérification de routine des
toutes les involutions qui ont leur longueur non plus de 2r + 2.

2000 Mathematics Subject Classification: Primary 05A05, 05A15; Secondary
05C90

1. Introduction

Permutations. Suppose that Sn is the set of permutations of [n] = {1, . . . , n}, written
in one-line notation. Let π = π1π2 . . . πn ∈ Sn and τ = τ1τ2 . . . τk ∈ Sk be two
permutations. An occurrence of τ in π is a subsequence πi1πi2 . . . πik such that 1 ≤
i1 < i2 < · · · < ik 6 n and πis < πit if and only if τs < τt for any 1 6 s, t 6 k. In such
a context, τ is usually called a pattern. We denote the number of occurrences of τ in
π by τ(π).

Starting with 1985, much attention has been paid to the counting problem of the num-
ber Sτ

r (n) of permutations of length n which contain the pattern τ exactly r ≥ 0 times.
Most of the authors consider only the case r = 0, thus studying permutations avoiding
a given pattern (see [1, 2, 3, 6, 13, 16, 17, 18, 19, 20]). For the case r > 0 there exist only
a few papers, usually restricting themselves to the patterns of length three. Using two
simple involutions (reverse and complement) on Sn it is immediate that with respect to
being equidistributed, the six patterns of S3 fall into two classes, namely {123, 321} and
{132, 213, 231, 312}. In 1996, Noonan [15] has proved that S123

1 (n) = 3
n

(
2n

n−3

)
. A general
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approach to the counting problem was suggested by Noonan and Zeilberger [16]; they
gave another proof of Noonan’s result, and conjectured that S132

1 (n) =
(
2n−3
n−3

)
and

S123
2 (n) =

59n2 + 117n + 100

2n(2n− 1)(n + 5)

(
2n

n− 4

)
.

The first conjecture was proved by Bóna [5] and the second one was proved by Ful-
mek [10]. A general conjecture of Noonan and Zeilberger states that the sequence
{Sτ

r (n)}n>0 is P -recursive in n for any r and τ . It was proved by Bóna [4] for τ = 132.
However, as stated in [4], a challenging question is to describe Sτ

r (n), τ ∈ S3, explicitly
for any given r. In 2002, Mansour and Vainshtein suggested in [14] a new approach
to this problem in the case τ = 132, which allows to get an explicit expression for
S132

r (n) for any given r. More precisely, they presented an algorithm that computes
the generating function

∑
n>0 S132

r (n)xn for any r > 0. To get the result for a given r,
the algorithm performs certain routine checks for each permutation of S2r.

Involutions. An involution π is a permutation in Sn such that π = π−1; let In

be the set of all the involutions in Sn. We denote Iτ
r,n the number of involutions

π ∈ In with τ(π) = r, and Iτ
r (x) the corresponding generating function, that is,

Iτ
r (x) =

∑
n>0 Iτ

r,nx
n.

Again, most authors considered the case r = 0, namely involutions avoiding a given
pattern τ (see [7, 9, 11, 12] and references therein). For the case r > 0 there exist only
few results. In 2002, Guibert and Mansour [12] gave an explicit expression for I132

1,n ,

namely I132
1,n =

(
n−2

[(n−3)/2]

)
. Egge and Mansour in [8] proved that I231

1,n = (n− 1)2n−6 for
n > 5.

In the present paper we suggest a new approach to this problem in the case of τ = 231,
which allows to get an explicit expression for I231

r,n for any given r. More precisely, we

present an algorithm that computes the generating function I231
r (x) =

∑
n>0 I231

r,n xn for
any r > 0. To get the result for a given r, the algorithm performs certain routine
checks for each element in

⋃2r+2
k=1 Ik. The algorithm has been implemented in C, and

yielded explicit results for 0 6 r 6 7.

2. Preliminary results

For any involution π ∈ In, we can assign a bipartite graph Gπ in the following way
which is similar to [14].

341     342     895     897     695

3     4     1      2     8     6     9     5     7

Figure 1. The graph G341286957
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The vertices in one part of Gπ, denoted V1 are the entries of π, and the vertices of the
second part, denoted V3, are the occurrences of 231 in π. Entry i ∈ V1 is connected
by an edge to occurrence j ∈ V3 if i enters j. For example, let π = 341286957, then π
contains 5 occurrences of 231, and the graph Gπ is presented on Figure 1.

Let G̃ be an arbitrary connected component of Gπ, and let Ṽ be its vertex set. We

denote Ṽ1 = Ṽ
⋂

V1, Ṽ3 = Ṽ
⋂

V3, t1 = |Ṽ1|, t3 = |Ṽ3|. Denote by Gn
π the connected

component of Gπ containing entry n.

For any π ∈ In with πj = n and |V1(G
n
π)| > 1, assume that i1 is the minimal index

such that there exists a subsequence

(πi1 , πi2 , i1, πi3 , i2, . . . , ih, πih+2
, ih+1, . . . , πik , ik−1, πik+1

, ik, ik+1)

where i1 < i2 < i3 < . . . < ik < ik+1 = j. we call this subsequence connected sequence.
For our convenience, we call i1 the initial index. Also, It is obvious that πi1 is the first
entry of the subsequence of π contained in Gn

π.

Definition 2.1. For any π ∈ In and πj = n, we define the 231-tail by

χπ =

{
(n, πj+1, . . . , πn−1, j), if |V1(G

n
π)| = 1,

(πi1 , πi1+1, . . . , πn), if |V1(G
n
π)| > 1,

where i1 is the initial index of π.

For example, the 231-tail of the involution 216483957 is 6483957. Denote lπ and cπ the
length of π and the number of the occurrences of 231 in π.

In fact, for any π ∈ In with |V1(G
n
π)| = 1, the 231-tail χπ of π can be represented as

χπ = (n, n− 1, . . . , n− s + 1, λ) where the first entry of λ is not n− s. The following
lemma holds by the definition of the 231-tail.

Lemma 2.2. Let π ∈ In, the permutation of 231-tail of π, χπ, is an involution, and
there exists an involution π′ such that π = (π′, χπ).

Lemma 2.3. Let π ∈ In with χπ = (n, n− 1, . . . , n− s + 1, λ), where λ is nonempty,
such that cχπ = r, then lχπ ≤ 2r + 2. Furthermore, The equality holds if and only if
χπ = (2r + 2, 2r + 1, . . . , r + 3, r + 1, r + 2, r, r − 1, . . . , 1).

Proof. If lπ is maximal, then the first entry of χπ is lπ. Using Lemma 2.2 we get the
last entry of χπ is 1. By induction we can assume that χπ = (n, n − 1, . . . , n − s +
1, µ, s, s− 1, . . . , 1) where the first entry of µ is not n− s and µ is nonempty. On the
other hand cπ = r, so s ≤ r. Hence

χπ = (2r + 2, 2r + 1, . . . , r + 3, r + 1, r + 2, r, r − 1, . . . , 1).

¤
Lemma 2.4. For any π ∈ In with |V1(G

n
π)| > 1, the subsequence of π contained in the

connected component Gn
π is just the 231-tail χπ of π.

Proof. According to the definition of the 231-tail, it is sufficient to prove that the
bipartite graph corresponding to χπ is connected. Assume πj = n and i1 is the initial
index. Suppose that the connected sequence is

(πi1 , πi2 , i1, πi3 , i2, . . . , ih, πih+2
, ih+1, . . . , πik , ik−1, πik+1

, ik, ik+1)
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where i1 < i2 < i3 < . . . < ik < ik+1 = j. It is obvious that the vertices

πi1 , πi2 , i1, πi3 , i2, . . . , ih, πih+2
, ih+1, . . . , πik , ik−1, πj, ik, j

are all contained in the connected component Gn
π.

For ih < m < ih+1, if ih < πm < πih+1
, then πmπih+1

ih forms a pattern of 231 in π; if
πm > πih+1

, then πihπmih is a subsequence of the pattern 231 in π; if πm < ih, then
mπihπm is a subsequence of the pattern of 231 in π. In these cases, we know that πm

is contained in Gn
π.

For j < m < n, if πm < πik , then πiknπm forms a pattern of 231 in π; if πm > πik , then
πikπmj forms a pattern of 231 in π. In these cases, we know that πm is contained in
Gn

π. ¤

Studying occurrences of 132 in a permutation which leads to consideration of 231 in
a permutation, Mansour and Vainshtein have proved that the relation t1 ≤ 2t3 + 1 in
[14]. It is clear that the set of involutions is a subset of permutations. So we have

Lemma 2.5. (see [14, Lemma 2.1]) For any connected component G̃ of Gπ, one has
t1 ≤ 2t3 + 1.

Remark 2.6. For any π ∈ In with cχπ = r (r > 0), if |V1(G
n
π)| = 1, then lχπ ≤ 2r + 2;

otherwise lχπ ≤ 2r + 1.

3. Main Theorem and explicit results

Denote by Kt the subset of
⋃

k62t+2 Ik whose elements can be expressed as (k, k −
1, . . . , k − s + 1, λ) where λ is nonempty, and by Ht be the subset of

⋃
k62t+1 Ik such

that the corresponding bipartite graph of each element is connected. It is obvious that
Kt ∩Ht = ∅. Then the main result of this paper can be formulated as follows.

Theorem 3.1. For any r > 1,

I231
r (x) =

x

1− x
I231
r (x) +

∑
µ∈Kr∪Hr

xlµI231
r−cµ

(x). (∗)

Proof. Denote by F µ
r (x) the generating function for the number of involutions π ∈ In

such that χπ is just order-isomorphic to µ. We discuss three cases to find F µ
r (x):

• If π is an involution in In with χπ = (n, n− 1, . . . , n− s + 1), then lµ = s and
µ = (s, s− 1, . . . , 1), so we have

F µ
r (x) = xsI231

r (x).

• If π is an involution in In with χπ = (n, n − 1, . . . , n − s + 1, λ) where λ is
nonempty, then µ ∈ Kr by Lemma 2.3, thus we have

F µ
r (x) = xlµI231

r−cµ
(x).

• If π is an involution in In with χπ = (πi1 , πi1+1, . . . , πn) where i1 is the initial
index of π, then Lemma 2.5 and Lemma 2.4 yield µ ∈ Hr and

F µ
r (x) = xlµI231

r−cµ
(x).
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Hence, summing over all µ ∈ {(s, s − 1, s − 2, . . . , 2, 1)|s > 1} ∪ Kr ∪ Hr we get the
desired result. ¤

Theorem 3.1, Lemma 2.3, and Lemma 2.5 provide a finite algorithm for finding I231
r (x)

for any given r > 0, since we only have to consider all involutions in Ik, where k 6 2r+2,
and to perform certain routine operations with all 231-tails found so far.

Remark 3.2. In fact, according to the Lemma 2.3, it is sufficient to check all invo-
lutions in Ik, where k ≤ 2r + 1. As a consequence, Formula (∗) can be reduced as
follows:

I231
r (x) =

x

1− x
I231
r (x) + x2r+2I231

0 (x) +
∑

µ∈K∗
r∪Hr

xlµI231
r−cµ

(x),

where K∗
r is the set of all involutions of the form (n, n − 1, . . . , n − s + 1, λ) of in Ik

where k ≤ 2t + 1 and λ is nonempty.

Let us start from the case r = 0. Observe that (∗) remains valid for r = 0, provided
the left hand side is replaced by I231

0 (x)− 1; subtracting 1 here accounts for the empty
permutation. Note that when r = 0, K0 ∪ H0 is empty. Hence we get I231

0 (x) − 1 =
x

1−x
I231
0 (x), equivalently

I231
0 (x) =

1− x

1− 2x
, (∗∗)

which is the result of Simion and Schmidt (see [17, Proposition 6]).

Let now r = 1. Observe that K1 ∪H1 = {4231}. Therefore, (∗) amounts to

I231
1 (x) =

x

1− x
I1(x) + x4I231

0 (x),

and we get the following result from Formula (∗∗).
Corollary 3.3. (see Egge and Mansour [8, Theorem 4.3]) The generating function
I231
1 (x) for the number of involutions containing exactly one occurrence of the pattern

231 is given by

I231
1 (x) =

x4(1− x)2

(1− 2x)2
;

equivalently, for n ≥ 5,
I231
1,n = (n− 1)2n−6.

Let r = 2. Exhaustive search adds four new elements to the previous list; these are
653421, 52431, 53241, and 3412, therefore we get

Corollary 3.4. The generating function I231
2 (x) is given by

I231
2 (x) =

x4(1− x)2

(1− 2x)3

(
1− 3x2 − 2x3 + x4 − x5

)
;

equivalently, for n > 9,

I231
2,n = (n2 + 137n− 234)2n−11.

Let r = 3, 4, 5, 6, 7; exhaustive search in I8, I10, I12, I14, and I16 reveals 13, 24, 41, 69,
and 103 elements, respectively, and we get
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Corollary 3.5. Let 3 6 r 6 7, then

I231
r (x) =

(1− x)2

(1− 2x)r+1
Qr(x),

where

Q3(x) = x5(4− 14x + 8x2 + 11x3 − 6x4 − 2x5 + 2x6 + 5x7 − 2x8 + x9);

Q4(x) = x6(6− 32x + 49x2 + 7x3 − 73x4 + 40x5 + 30x6 − 37x7 + 2x8 + 4x10

−9x11 + 3x12 − x13);

Q5(x) = x6(8− 58x + 146x2 − 120x3 − 40x4 − 24x5 + 290x6 − 184x7 − 197x8

+228x9 + 30x10 − 132x11 + 62x12 + 13x14 − 16x15 + 14x16 − 4x17 + x18);

Q6(x) = x6(4− 31x + 80x2 − 56x3 + 4x4 − 384x5 + 1097x6 − 830x7 − 483x8

+660x9 + 685x10 − 1091x11 − 59x12 + 722x13 − 195x14 − 338x15

+285x16 − 92x17 + 20x18 − 45x19 + 35x20 − 20x21 + 5x22 − x23);

Q7(x) = x7(17− 199x + 969x2 − 2502x3 + 3642x4 − 3274x5 + 3324x6 − 4714x7

+1874x8 + 6326x9 − 8262x10 − 231x11 + 5474x12 − 637x13 − 4022x14

+1933x15 + 1340x16 − 1129x17 − 518x18 + 982x19 − 498x20 + 166x21

−92x22 + 105x23 − 62x24 + 27x25 − 6x26 + x27).

As an easy consequence of Theorem 3.1 we get the following result.

Corollary 3.6. For any r ≥ 1 there exist a polynomial P5r−1(x) of degree 5r − 1 with
integer coefficients such that

I231
r (x) =

(1− x)2

(1− 2x)r+1
P5r−1(x).

Proof. Immediately, by the above cases we have the corollary holds for 1 ≤ r ≤ 7. Let
us assume by induction that the corollary holds for 1, 2, . . . , r − 1; for r the equation
(∗) give

I231
r (x) =

(1− x)2

(1− 2x)r+1

∑
ρ∈Kr∪Hr

xlρ
(1− 2x)r

1− x
I231
r−cρ

(x).

By the induction assumption and I231
0 (x) = 1−x

1−2x
we have that xlρ (1−2x)r

1−x
Ir−cρ(x) is a

polynomial with integer coefficients of degree a. So Lemma 2.3 and 2.5 yields

a = max{bj|j = 1, . . . , r},
where bj = 2j + 2 + r − (r − j + 1) + 1 + 5(r − j) − 1 = 5r − 2j + 1, which means
a = 5r − 1, as claimed. ¤

4. Further results

Another direction would be to match the approach of this paper with the previous
results on restricted 231-avoiding involutions. Let Φr(x; k) be the generating function
for the number of involutions in In containing r occurrences of 231 and avoiding the
pattern 12 . . . k ∈ Sk.
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We denote by eλ the length of the longest increasing subsequence of any involution λ.
For example, let λ = 3412, then eλ = 2. We denote by Kt(k) ∪ Ht(k) the set of all
involutions λ ∈ Kt ∪Ht such that eλ ≤ k − 1.

Theorem 4.1. For any r > 1 and k > 3,

Φr(x; k) =
x

1− x
Φr(x; k − 1) +

∑

µ∈Kr(k)∪Hr(k)

xlµΦ231
r−cµ

(x; k − eµ).

Besides, Φr(x; 1) = Φr(x; 2) = 0, and Φ0(x; 1) = 1 and Φ0(x; 2) = 1
1−x

.

Similar to the case of I231
r (x), the statement of the above theorem remains valid for

r = 0, provided the left hand side is replaced by Φr(x; k) − 1. This allows to recover
known explicit expressions for Φr(x; k) for r = 0, 1, as follows.

Corollary 4.2. (see Egge and Mansour [8]) For all k ≥ 1,

Φ0(x; k) =
k−1∑
j=0

(
x

1−x

)j
;

Φ1(x; k) = x4
k−3∑
j=0

(j + 1)
(

x
1−x

)j
.

The final direction would be to match the approach of this note with the previous
results on restricted 231-avoiding even or odd involutions. We say π an even (resp;
odd) involution if the number of inversion in π, namely 21(π) is even (resp; odd). We
denote by K+

r ∪ H+
r the set of all the even involutions λ ∈ Kr ∪Hr and denote by

K−
r ∪H−

r the set of all the odd involutions λ ∈ Kr ∪Hr.

Let I+
r (x) (resp; I−r (x)) be the generating function for the number of even (resp; odd)

involutions in In containing r occurrences of 231. Our new approach allows to get an
explicit expression for I+

r (x) (or I−r (x)) for any given r > 0.

Theorem 4.3. For all r > 1,

I+
r (x) =

x + x4

1− x4
I+
r (x) +

x2 + x3

1− x4
I−r (x) +

∑

µ∈K+
r ∪H+

r

xlµI+
r−cµ

(x) +
∑

µ∈K−
r ∪H−

r

xlµI−r−cµ
(x);

I−r (x) =
x + x4

1− x4
I−r (x) +

x2 + x3

1− x4
I+
r (x) +

∑

µ∈K+
r ∪H+

r

xlµI−r−cµ
(x) +

∑

µ∈K−
r ∪H−

r

xlµI+
r−cµ

(x).

In particular, we have

I+
0 (x)− 1 =

x + x4

1− x4
I+
0 (x) +

x2 + x3

1− x4
I−0 (x)

and

I−0 (x) =
x + x4

1− x4
I−0 (x) +

x2 + x3

1− x4
I+
0 (x).
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Proof. Here we only prove the result of I+
r (x) for any r ≥ 1. By the same method,

we can obtain the formula for I−r (x). Denote by F µ
r (x) the generating function for the

number of even involutions in π ∈ In such that χπ is order-isomorphic to µ.

To find F µ
r (x), we recall four four cases. If µ = (s, s− 1, . . . , 1) and µ is even (that is,

21(µ) = (s−1)s
2

= 2k for some positive integer k), then in this case we have

F µ
r (x) = xsI+

r (x).

If µ = (s, s− 1, . . . , 1) and µ is odd (that is, 21(µ) = (s−1)s
2

= 2k − 1 for some positive
integer k), then in this case we have

F µ
r (x) = xsI−r (x).

If µ ∈ K+
r ∪H+

r , then

F µ
r (x) = xlµI+

r−cµ
(x).

If µ ∈ K−
r ∪H−

r , then

F µ
r (x) = xlµI−r−cµ

(x).

Hence, if summing over all µ ∈ Kr ∪ Hr ∪ {(s, s − 1, s − 2, . . . , 2, 1)|s ≥ 1} then
we get the desired result. When r = 0, subtracting 1 here accounts for the empty
permutation. ¤

As an example of the above theorem for r = 0, 1, 2, we get

Corollary 4.4.

I+
r (x) =

Er(x)

(1− 2x)r+1(1− x + 2x2)r+1
, I−r (x) =

Or(x)

(1− 2x)r+1(1− x + 2x2)r+1
;

where

E0(x) = 1− 2x + 2x2 − 2x3;

E1(x) = 2x6(1− 2x + 2x2 − 2x3);

E2(x) = x4(1− 5x + 11x2 − 15x3 + 10x4 + 5x5 − 11x6 − 5x7 + 47x8 − 94x9 + 86x10 −
62x11 + 16x12);

O0(x) = x2;

O1(x) = x4(1− 4x + 8x2 − 12x3 + 13x4 − 8x5 + 4x6);

O2(x) = x6(2− 6x + 6x2 − 2x3 − 9x4 + 4x5 + 20x6 − 36x7 + 53x8 − 24x9 + 8x10).

Again, as an easy consequence of Theorem 4.3 we get the following result.

Corollary 4.5. For any r > 0, there exists two polynomials Pmr(x) and Pnr(x) of
degree mr and nr with integer coefficients such that

I+
r (x) =

Pmr(x)

(1− 2x)r+1(1− x + 2x2)r+1
, I−r (x) =

Pnr(x)

(1− 2x)r+1(1− x + 2x2)r+1
,

where mr, nr ≤ r(r+9)
2

.
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It can be proved by induction on r as the proof of Corollary 3.6. Here we delete its
proof.

As a remark we can derive another results from Theorem 4.3. For example, the generat-
ing function for the number of even or odd involution containing exactly r occurrences
of the pattern 231 and avoiding 12 . . . k (or avoiding k . . . 21).
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[3] M. Bóna, Exact enumeration of 1342-avoiding permutations: a close link with labeled trees

and planar maps, J. Combin. Theory Ser. A 80 (1997) 257–272.
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