COUNTING OCCURRENCES OF 231 IN AN INVOLUTION

Toufik Mansour

Department of Mathematics University of Haifa, 31905 Haifa, Israel toufik@math.haifa.ac.il

Sherry H.F. Yan^{*} and Laura L.M. Yang[†] Center for Combinatorics, LPMC Nankai University, Tianjin 300071, P.R. China *yanhuifang@sina.com, [†]yanglm@hotmail.com

Abstract

We study the generating function for the number of involutions on n letters containing exactly $r \ge 0$ occurrences of 231. It is shown that finding this function for a given ramounts to a routine check of all involutions of length at most 2r + 2.

Nous étudions la fonction génératrice pour le nombre des involutions sur n lettres en comprenent précisément $r \ge 0$ apparitions de 231. Nous démontrons q'il est possible a trouver cette fonction pour un nombre r donné par une vérification de routine des toutes les involutions qui ont leur longueur non plus de 2r + 2.

2000 MATHEMATICS SUBJECT CLASSIFICATION: Primary 05A05, 05A15; Secondary 05C90

1. Introduction

Permutations. Suppose that S_n is the set of permutations of $[n] = \{1, \ldots, n\}$, written in one-line notation. Let $\pi = \pi_1 \pi_2 \ldots \pi_n \in S_n$ and $\tau = \tau_1 \tau_2 \ldots \tau_k \in S_k$ be two permutations. An *occurrence* of τ in π is a subsequence $\pi_{i_1} \pi_{i_2} \ldots \pi_{i_k}$ such that $1 \leq i_1 < i_2 < \cdots < i_k \leq n$ and $\pi_{i_s} < \pi_{i_t}$ if and only if $\tau_s < \tau_t$ for any $1 \leq s, t \leq k$. In such a context, τ is usually called a *pattern*. We denote the number of occurrences of τ in π by $\tau(\pi)$.

Starting with 1985, much attention has been paid to the counting problem of the number $S_r^{\tau}(n)$ of permutations of length n which contain the pattern τ exactly $r \geq 0$ times. Most of the authors consider only the case r = 0, thus studying permutations avoiding a given pattern (see [1, 2, 3, 6, 13, 16, 17, 18, 19, 20]). For the case r > 0 there exist only a few papers, usually restricting themselves to the patterns of length three. Using two simple involutions (reverse and complement) on S_n it is immediate that with respect to being equidistributed, the six patterns of S_3 fall into two classes, namely {123, 321} and {132, 213, 231, 312}. In 1996, Noonan [15] has proved that $S_1^{123}(n) = \frac{3}{n} {2n \choose n-3}$. A general approach to the counting problem was suggested by Noonan and Zeilberger [16]; they gave another proof of Noonan's result, and conjectured that $S_1^{132}(n) = \binom{2n-3}{n-3}$ and

$$S_2^{123}(n) = \frac{59n^2 + 117n + 100}{2n(2n-1)(n+5)} \binom{2n}{n-4}.$$

The first conjecture was proved by Bóna [5] and the second one was proved by Fulmek [10]. A general conjecture of Noonan and Zeilberger states that the sequence $\{S_r^{\tau}(n)\}_{n\geq 0}$ is *P*-recursive in *n* for any *r* and τ . It was proved by Bóna [4] for $\tau = 132$. However, as stated in [4], a challenging question is to describe $S_r^{\tau}(n), \tau \in S_3$, explicitly for any given *r*. In 2002, Mansour and Vainshtein suggested in [14] a new approach to this problem in the case $\tau = 132$, which allows to get an explicit expression for $S_r^{132}(n)$ for any given *r*. More precisely, they presented an algorithm that computes the generating function $\sum_{n\geq 0} S_r^{132}(n)x^n$ for any $r \geq 0$. To get the result for a given *r*, the algorithm performs certain routine checks for each permutation of S_{2r} .

Involutions. An *involution* π is a permutation in S_n such that $\pi = \pi^{-1}$; let \mathcal{I}_n be the set of all the involutions in S_n . We denote $I_{r,n}^{\tau}$ the number of involutions $\pi \in \mathcal{I}_n$ with $\tau(\pi) = r$, and $I_r^{\tau}(x)$ the corresponding generating function, that is, $I_r^{\tau}(x) = \sum_{n \ge 0} I_{r,n}^{\tau} x^n$.

Again, most authors considered the case r = 0, namely involutions avoiding a given pattern τ (see [7, 9, 11, 12] and references therein). For the case r > 0 there exist only few results. In 2002, Guibert and Mansour [12] gave an explicit expression for $I_{1,n}^{132}$, namely $I_{1,n}^{132} = \binom{n-2}{\lfloor (n-3)/2 \rfloor}$. Egge and Mansour in [8] proved that $I_{1,n}^{231} = (n-1)2^{n-6}$ for $n \ge 5$.

In the present paper we suggest a new approach to this problem in the case of $\tau = 231$, which allows to get an explicit expression for $I_{r,n}^{231}$ for any given r. More precisely, we present an algorithm that computes the generating function $I_r^{231}(x) = \sum_{n \ge 0} I_{r,n}^{231} x^n$ for any $r \ge 0$. To get the result for a given r, the algorithm performs certain routine checks for each element in $\bigcup_{k=1}^{2r+2} I_k$. The algorithm has been implemented in C, and yielded explicit results for $0 \le r \le 7$.

2. Preliminary results

For any involution $\pi \in \mathcal{I}_n$, we can assign a bipartite graph G_{π} in the following way which is similar to [14].

FIGURE 1. The graph $G_{341286957}$

The vertices in one part of G_{π} , denoted V_1 are the entries of π , and the vertices of the second part, denoted V_3 , are the occurrences of 231 in π . Entry $i \in V_1$ is connected by an edge to occurrence $j \in V_3$ if i enters j. For example, let $\pi = 341286957$, then π contains 5 occurrences of 231, and the graph G_{π} is presented on Figure 1.

Let \widetilde{G} be an arbitrary connected component of G_{π} , and let \widetilde{V} be its vertex set. We denote $\widetilde{V}_1 = \widetilde{V} \bigcap V_1$, $\widetilde{V}_3 = \widetilde{V} \bigcap V_3$, $t_1 = |\widetilde{V}_1|$, $t_3 = |\widetilde{V}_3|$. Denote by G_{π}^n the connected component of G_{π} containing entry n.

For any $\pi \in \mathcal{I}_n$ with $\pi_j = n$ and $|V_1(G_{\pi}^n)| > 1$, assume that i_1 is the minimal index such that there exists a subsequence

$$(\pi_{i_1}, \pi_{i_2}, i_1, \pi_{i_3}, i_2, \dots, i_h, \pi_{i_{h+2}}, i_{h+1}, \dots, \pi_{i_k}, i_{k-1}, \pi_{i_{k+1}}, i_k, i_{k+1})$$

where $i_1 < i_2 < i_3 < \ldots < i_k < i_{k+1} = j$. we call this subsequence *connected sequence*. For our convenience, we call i_1 the *initial index*. Also, It is obvious that π_{i_1} is the first entry of the subsequence of π contained in G_{π}^n .

Definition 2.1. For any $\pi \in \mathcal{I}_n$ and $\pi_i = n$, we define the 231-tail by

$$\chi_{\pi} = \begin{cases} (n, \pi_{j+1}, \dots, \pi_{n-1}, j), & \text{if} \quad |V_1(G_{\pi}^n)| = 1, \\ (\pi_{i_1}, \pi_{i_1+1}, \dots, \pi_n), & \text{if} \quad |V_1(G_{\pi}^n)| > 1, \end{cases}$$

where i_1 is the initial index of π .

For example, the 231-tail of the involution 216483957 is 6483957. Denote l_{π} and c_{π} the length of π and the number of the occurrences of 231 in π .

In fact, for any $\pi \in \mathcal{I}_n$ with $|V_1(G_{\pi}^n)| = 1$, the 231-tail χ_{π} of π can be represented as $\chi_{\pi} = (n, n-1, \ldots, n-s+1, \lambda)$ where the first entry of λ is not n-s. The following lemma holds by the definition of the 231-tail.

Lemma 2.2. Let $\pi \in \mathcal{I}_n$, the permutation of 231-tail of π , χ_{π} , is an involution, and there exists an involution π' such that $\pi = (\pi', \chi_{\pi})$.

Lemma 2.3. Let $\pi \in I_n$ with $\chi_{\pi} = (n, n - 1, \dots, n - s + 1, \lambda)$, where λ is nonempty, such that $c_{\chi_{\pi}} = r$, then $l_{\chi_{\pi}} \leq 2r + 2$. Furthermore, The equality holds if and only if $\chi_{\pi} = (2r + 2, 2r + 1, \dots, r + 3, r + 1, r + 2, r, r - 1, \dots, 1)$.

Proof. If l_{π} is maximal, then the first entry of χ_{π} is l_{π} . Using Lemma 2.2 we get the last entry of χ_{π} is 1. By induction we can assume that $\chi_{\pi} = (n, n - 1, \dots, n - s + 1, \mu, s, s - 1, \dots, 1)$ where the first entry of μ is not n - s and μ is nonempty. On the other hand $c_{\pi} = r$, so $s \leq r$. Hence

$$\chi_{\pi} = (2r+2, 2r+1, \dots, r+3, r+1, r+2, r, r-1, \dots, 1).$$

Lemma 2.4. For any $\pi \in \mathcal{I}_n$ with $|V_1(G_{\pi}^n)| > 1$, the subsequence of π contained in the connected component G_{π}^n is just the 231-tail χ_{π} of π .

Proof. According to the definition of the 231-tail, it is sufficient to prove that the bipartite graph corresponding to χ_{π} is connected. Assume $\pi_j = n$ and i_1 is the initial index. Suppose that the connected sequence is

$$(\pi_{i_1}, \pi_{i_2}, i_1, \pi_{i_3}, i_2, \dots, i_h, \pi_{i_{h+2}}, i_{h+1}, \dots, \pi_{i_k}, i_{k-1}, \pi_{i_{k+1}}, i_k, i_{k+1})$$

where $i_1 < i_2 < i_3 < \ldots < i_k < i_{k+1} = j$. It is obvious that the vertices

$$\pi_{i_1}, \pi_{i_2}, i_1, \pi_{i_3}, i_2, \dots, i_h, \pi_{i_{h+2}}, i_{h+1}, \dots, \pi_{i_k}, i_{k-1}, \pi_j, i_k, j_{k-1}, \dots, j_$$

are all contained in the connected component G_{π}^n .

For $i_h < m < i_{h+1}$, if $i_h < \pi_m < \pi_{i_{h+1}}$, then $\pi_m \pi_{i_{h+1}} i_h$ forms a pattern of 231 in π ; if $\pi_m > \pi_{i_h} \pi_m i_h$ is a subsequence of the pattern 231 in π ; if $\pi_m < i_h$, then $m \pi_{i_h} \pi_m$ is a subsequence of the pattern of 231 in π . In these cases, we know that π_m is contained in G_{π}^n .

For j < m < n, if $\pi_m < \pi_{i_k}$, then $\pi_{i_k} n \pi_m$ forms a pattern of 231 in π ; if $\pi_m > \pi_{i_k}$, then $\pi_{i_k} \pi_m j$ forms a pattern of 231 in π . In these cases, we know that π_m is contained in G^n_{π} .

Studying occurrences of 132 in a permutation which leads to consideration of 231 in a permutation, Mansour and Vainshtein have proved that the relation $t_1 \leq 2t_3 + 1$ in [14]. It is clear that the set of involutions is a subset of permutations. So we have

Lemma 2.5. (see [14, Lemma 2.1]) For any connected component G of G_{π} , one has $t_1 \leq 2t_3 + 1$.

Remark 2.6. For any $\pi \in I_n$ with $c_{\chi_{\pi}} = r$ (r > 0), if $|V_1(G_{\pi}^n)| = 1$, then $l_{\chi_{\pi}} \leq 2r + 2$; otherwise $l_{\chi_{\pi}} \leq 2r + 1$.

3. Main Theorem and explicit results

Denote by K_t the subset of $\bigcup_{k \leq 2t+2} \mathcal{I}_k$ whose elements can be expressed as $(k, k - 1, \ldots, k - s + 1, \lambda)$ where λ is nonempty, and by H_t be the subset of $\bigcup_{k \leq 2t+1} \mathcal{I}_k$ such that the corresponding bipartite graph of each element is connected. It is obvious that $K_t \cap H_t = \emptyset$. Then the main result of this paper can be formulated as follows.

Theorem 3.1. For any $r \ge 1$,

$$I_r^{231}(x) = \frac{x}{1-x} I_r^{231}(x) + \sum_{\mu \in K_r \cup H_r} x^{l_\mu} I_{r-c_\mu}^{231}(x).$$
(*)

Proof. Denote by $F_r^{\mu}(x)$ the generating function for the number of involutions $\pi \in \mathcal{I}_n$ such that χ_{π} is just order-isomorphic to μ . We discuss three cases to find $F_r^{\mu}(x)$:

• If π is an involution in \mathcal{I}_n with $\chi_{\pi} = (n, n-1, \dots, n-s+1)$, then $l_{\mu} = s$ and $\mu = (s, s-1, \dots, 1)$, so we have

$$F_r^{\mu}(x) = x^s I_r^{231}(x).$$

• If π is an involution in \mathcal{I}_n with $\chi_{\pi} = (n, n - 1, \dots, n - s + 1, \lambda)$ where λ is nonempty, then $\mu \in K_r$ by Lemma 2.3, thus we have

$$F_r^{\mu}(x) = x^{l_{\mu}} I_{r-c_{\mu}}^{231}(x).$$

• If π is an involution in \mathcal{I}_n with $\chi_{\pi} = (\pi_{i_1}, \pi_{i_1+1}, \dots, \pi_n)$ where i_1 is the initial index of π , then Lemma 2.5 and Lemma 2.4 yield $\mu \in H_r$ and

$$F_r^{\mu}(x) = x^{l_{\mu}} I_{r-c_{\mu}}^{231}(x).$$

Hence, summing over all $\mu \in \{(s, s - 1, s - 2, \dots, 2, 1) | s \ge 1\} \cup K_r \cup H_r$ we get the desired result.

Theorem 3.1, Lemma 2.3, and Lemma 2.5 provide a finite algorithm for finding $I_r^{231}(x)$ for any given r > 0, since we only have to consider all involutions in I_k , where $k \leq 2r+2$, and to perform certain routine operations with all 231-tails found so far.

Remark 3.2. In fact, according to the Lemma 2.3, it is sufficient to check all involutions in I_k , where $k \leq 2r + 1$. As a consequence, Formula (*) can be reduced as follows:

$$I_r^{231}(x) = \frac{x}{1-x} I_r^{231}(x) + x^{2r+2} I_0^{231}(x) + \sum_{\mu \in K_r^* \cup H_r} x^{l_\mu} I_{r-c_\mu}^{231}(x) + \sum_{\mu \in K_r^* \cup H_r}$$

where K_r^* is the set of all involutions of the form $(n, n - 1, ..., n - s + 1, \lambda)$ of in I_k where $k \leq 2t + 1$ and λ is nonempty.

Let us start from the case r = 0. Observe that (*) remains valid for r = 0, provided the left hand side is replaced by $I_0^{231}(x) - 1$; subtracting 1 here accounts for the empty permutation. Note that when r = 0, $K_0 \cup H_0$ is empty. Hence we get $I_0^{231}(x) - 1 = \frac{x}{1-x}I_0^{231}(x)$, equivalently

$$I_0^{231}(x) = \frac{1-x}{1-2x},\tag{**}$$

which is the result of Simion and Schmidt (see [17, Proposition 6]).

Let now r = 1. Observe that $K_1 \cup H_1 = \{4231\}$. Therefore, (*) amounts to

$$I_1^{231}(x) = \frac{x}{1-x}I_1(x) + x^4 I_0^{231}(x),$$

and we get the following result from Formula (**).

Corollary 3.3. (see Egge and Mansour [8, Theorem 4.3]) The generating function $I_1^{231}(x)$ for the number of involutions containing exactly one occurrence of the pattern 231 is given by

$$I_1^{231}(x) = \frac{x^4(1-x)^2}{(1-2x)^2};$$
$$I_{1,n}^{231} = (n-1)2^{n-6}.$$

equivalently, for $n \geq 5$,

Let r = 2. Exhaustive search adds four new elements to the previous list; these are 653421, 52431, 53241, and 3412, therefore we get

Corollary 3.4. The generating function $I_2^{231}(x)$ is given by

$$I_2^{231}(x) = \frac{x^4(1-x)^2}{(1-2x)^3} \left(1 - 3x^2 - 2x^3 + x^4 - x^5\right);$$

equivalently, for $n \ge 9$,

$$I_{2,n}^{231} = (n^2 + 137n - 234)2^{n-11}$$

Let r = 3, 4, 5, 6, 7; exhaustive search in \mathcal{I}_8 , \mathcal{I}_{10} , \mathcal{I}_{12} , \mathcal{I}_{14} , and \mathcal{I}_{16} reveals 13, 24, 41, 69, and 103 elements, respectively, and we get

Corollary 3.5. Let $3 \leq r \leq 7$, then

$$I_r^{231}(x) = \frac{(1-x)^2}{(1-2x)^{r+1}}Q_r(x),$$

where

As an easy consequence of Theorem 3.1 we get the following result.

Corollary 3.6. For any $r \ge 1$ there exist a polynomial $P_{5r-1}(x)$ of degree 5r - 1 with integer coefficients such that

$$I_r^{231}(x) = \frac{(1-x)^2}{(1-2x)^{r+1}} P_{5r-1}(x).$$

Proof. Immediately, by the above cases we have the corollary holds for $1 \le r \le 7$. Let us assume by induction that the corollary holds for $1, 2, \ldots, r - 1$; for r the equation (*) give

$$I_r^{231}(x) = \frac{(1-x)^2}{(1-2x)^{r+1}} \sum_{\rho \in K_r \cup H_r} x^{l_\rho} \frac{(1-2x)^r}{1-x} I_{r-c_\rho}^{231}(x).$$

By the induction assumption and $I_0^{231}(x) = \frac{1-x}{1-2x}$ we have that $x^{l_{\rho}} \frac{(1-2x)^r}{1-x} I_{r-c_{\rho}}(x)$ is a polynomial with integer coefficients of degree a. So Lemma 2.3 and 2.5 yields

$$a = \max\{b_j | j = 1, \dots, r\},\$$

where $b_j = 2j + 2 + r - (r - j + 1) + 1 + 5(r - j) - 1 = 5r - 2j + 1$, which means a = 5r - 1, as claimed.

4. Further results

Another direction would be to match the approach of this paper with the previous results on restricted 231-avoiding involutions. Let $\Phi_r(x;k)$ be the generating function for the number of involutions in \mathcal{I}_n containing r occurrences of 231 and avoiding the pattern $12 \dots k \in \mathfrak{S}_k$.

We denote by e_{λ} the length of the longest increasing subsequence of any involution λ . For example, let $\lambda = 3412$, then $e_{\lambda} = 2$. We denote by $K_t(k) \cup H_t(k)$ the set of all involutions $\lambda \in K_t \cup H_t$ such that $e_{\lambda} \leq k - 1$.

Theorem 4.1. For any $r \ge 1$ and $k \ge 3$,

$$\Phi_r(x;k) = \frac{x}{1-x} \Phi_r(x;k-1) + \sum_{\mu \in K_r(k) \cup H_r(k)} x^{l_\mu} \Phi_{r-c_\mu}^{231}(x;k-e_\mu).$$

Besides, $\Phi_r(x;1) = \Phi_r(x;2) = 0$, and $\Phi_0(x;1) = 1$ and $\Phi_0(x;2) = \frac{1}{1-x}$.

Similar to the case of $I_r^{231}(x)$, the statement of the above theorem remains valid for r = 0, provided the left hand side is replaced by $\Phi_r(x;k) - 1$. This allows to recover known explicit expressions for $\Phi_r(x;k)$ for r = 0, 1, as follows.

Corollary 4.2. (see Egge and Mansour [8]) For all $k \ge 1$,

$$\Phi_0(x;k) = \sum_{j=0}^{k-1} \left(\frac{x}{1-x}\right)^j;$$

$$\Phi_1(x;k) = x^4 \sum_{j=0}^{k-3} (j+1) \left(\frac{x}{1-x}\right)^j.$$

The final direction would be to match the approach of this note with the previous results on restricted 231-avoiding even or odd involutions. We say π an even (resp; odd) involution if the number of inversion in π , namely $21(\pi)$ is even (resp; odd). We denote by $K_r^+ \cup H_r^+$ the set of all the even involutions $\lambda \in K_r \cup H_r$ and denote by $K_r^- \cup H_r^-$ the set of all the odd involutions $\lambda \in K_r \cup H_r$.

Let $I_r^+(x)$ (resp; $I_r^-(x)$) be the generating function for the number of even (resp; odd) involutions in \mathcal{I}_n containing r occurrences of 231. Our new approach allows to get an explicit expression for $I_r^+(x)$ (or $I_r^-(x)$) for any given $r \ge 0$.

Theorem 4.3. For all $r \ge 1$,

$$I_{r}^{+}(x) = \frac{x + x^{4}}{1 - x^{4}}I_{r}^{+}(x) + \frac{x^{2} + x^{3}}{1 - x^{4}}I_{r}^{-}(x) + \sum_{\mu \in K_{r}^{+} \cup H_{r}^{+}} x^{l_{\mu}}I_{r-c_{\mu}}^{+}(x) + \sum_{\mu \in K_{r}^{-} \cup H_{r}^{-}} x^{l_{\mu}}I_{r-c_{\mu}}^{-}(x);$$

$$I_r^{-}(x) = \frac{x + x^4}{1 - x^4} I_r^{-}(x) + \frac{x^2 + x^3}{1 - x^4} I_r^{+}(x) + \sum_{\mu \in K_r^+ \cup H_r^+} x^{l_{\mu}} I_{r-c_{\mu}}^{-}(x) + \sum_{\mu \in K_r^- \cup H_r^-} x^{l_{\mu}} I_{r-c_{\mu}}^{+}(x).$$

In particular, we have

$$I_0^+(x) - 1 = \frac{x + x^4}{1 - x^4} I_0^+(x) + \frac{x^2 + x^3}{1 - x^4} I_0^-(x)$$

and

$$I_0^{-}(x) = \frac{x + x^4}{1 - x^4} I_0^{-}(x) + \frac{x^2 + x^3}{1 - x^4} I_0^{+}(x).$$

Proof. Here we only prove the result of $I_r^+(x)$ for any $r \ge 1$. By the same method, we can obtain the formula for $I_r^-(x)$. Denote by $F_r^{\mu}(x)$ the generating function for the number of even involutions in $\pi \in I_n$ such that χ_{π} is order-isomorphic to μ .

To find $F_r^{\mu}(x)$, we recall four four cases. If $\mu = (s, s - 1, ..., 1)$ and μ is even (that is, $21(\mu) = \frac{(s-1)s}{2} = 2k$ for some positive integer k), then in this case we have

$$F_r^{\mu}(x) = x^s I_r^+(x).$$

If $\mu = (s, s - 1, ..., 1)$ and μ is odd (that is, $21(\mu) = \frac{(s-1)s}{2} = 2k - 1$ for some positive integer k), then in this case we have

$$F_r^{\mu}(x) = x^s I_r^{-}(x).$$

If $\mu \in K_r^+ \cup H_r^+$, then

$$F_{r}^{\mu}(x) = x^{l_{\mu}} I_{r-c_{\mu}}^{+}(x)$$

If $\mu \in K_r^- \cup H_r^-$, then

$$F_r^{\mu}(x) = x^{l_{\mu}} I_{r-c_{\mu}}^{-}(x).$$

Hence, if summing over all $\mu \in K_r \cup H_r \cup \{(s, s - 1, s - 2, \dots, 2, 1) | s \ge 1\}$ then we get the desired result. When r = 0, subtracting 1 here accounts for the empty permutation.

As an example of the above theorem for r = 0, 1, 2, we get

Corollary 4.4.

$$I_r^+(x) = \frac{E_r(x)}{(1-2x)^{r+1}(1-x+2x^2)^{r+1}}, \quad I_r^-(x) = \frac{O_r(x)}{(1-2x)^{r+1}(1-x+2x^2)^{r+1}};$$

where

$$\begin{split} E_0(x) &= 1 - 2x + 2x^2 - 2x^3; \\ E_1(x) &= 2x^6(1 - 2x + 2x^2 - 2x^3); \\ E_2(x) &= x^4(1 - 5x + 11x^2 - 15x^3 + 10x^4 + 5x^5 - 11x^6 - 5x^7 + 47x^8 - 94x^9 + 86x^{10} - 62x^{11} + 16x^{12}); \\ O_0(x) &= x^2; \\ O_1(x) &= x^4(1 - 4x + 8x^2 - 12x^3 + 13x^4 - 8x^5 + 4x^6); \\ O_2(x) &= x^6(2 - 6x + 6x^2 - 2x^3 - 9x^4 + 4x^5 + 20x^6 - 36x^7 + 53x^8 - 24x^9 + 8x^{10}). \end{split}$$

Again, as an easy consequence of Theorem 4.3 we get the following result.

Corollary 4.5. For any $r \ge 0$, there exists two polynomials $P_{m_r}(x)$ and $P_{n_r}(x)$ of degree m_r and n_r with integer coefficients such that

$$I_r^+(x) = \frac{P_{m_r}(x)}{(1-2x)^{r+1}(1-x+2x^2)^{r+1}}, \quad I_r^-(x) = \frac{P_{n_r}(x)}{(1-2x)^{r+1}(1-x+2x^2)^{r+1}},$$

where $m_r, n_r \leq \frac{r(r+9)}{2}$.

It can be proved by induction on r as the proof of Corollary 3.6. Here we delete its proof.

As a remark we can derive another results from Theorem 4.3. For example, the generating function for the number of even or odd involution containing exactly r occurrences of the pattern 231 and avoiding $12 \dots k$ (or avoiding $k \dots 21$).

References

- N. Alon and E. Friedgut, On the number of permutations avoiding a given pattern, J. Combin. Theory Ser. A 89 (2000)133–140.
- [2] M.D. Atkinson, Restricted permutations, Discrete Math. 195 (1999) 27–38.
- [3] M. Bóna, Exact enumeration of 1342-avoiding permutations: a close link with labeled trees and planar maps, J. Combin. Theory Ser. A 80 (1997) 257–272.
- [4] M. Bóna, The number of permutations with exactly r 132-subsequences is P-recursive in the size! Adv. Appl. Math. 18 (1997) 510–522.
- [5] M. Bóna, Permutations with one or two 132-subsequences, Discrete Math. 181 (1998) 267– 274.
- [6] T. Chow and J. West, Forbidden subsequences and Chebyshev polynomials, *Discrete Math.* 204 (1999) 119–128.
- [7] E.S. Egge, Restricted 3412-avoiding involutions: Continued fractions, Chebyshev polynomials and enumerations, *Adv. in Appl. Math.*, to appear.
- [8] E. Egge and T. Mansour, 231-Avoiding involutions and Fibonacci numbers, Australasian Journal of Combinatorics, to appear.
- [9] E.S. Egge and T. Mansour, Involutions restricted by 3412, Continued fractions, and Chebyshev polynomials, preprint.
- [10] M. Fulmek, Enumeration of permutations containing a presribed number of occurrences of a pattern of length three, *Adv. Appl. Math.* **30** (2003) 607–632.
- [11] O. Guibert, Combinatoire des permutations à motifs exclus en liaison avec mots, cartes planaires et tableaux de Young, *PHD-thesis, University Bordeaux 1, France* (1995).
- [12] O. Guibert and T. Mansour, Restricted 132-involutions, Séminaire Lotharingien de Combinatoire 48 (2002), Article B48a (23pp.).
- [13] T. Mansour and A. Vainshtein, Restricted permutations, continued fractions, and Chebyshev polynomials, *Electron. J. Combin.* 7 (2000) #R17.
- [14] T. Mansour and A. Vainshtein, Counting occurences of 132 in a permutation, Adv. Appl. Math. 28 (2002) 185–195.
- [15] J. Noonan, The number of permutations containing exactly one increasing subsequence of length three, *Discrete Math.* 152 (1996) 307–313.
- [16] J. Noonan and D. Zeilberger, The enumeration of permutations with a prescribed number of "forbidden" patterns, Adv. Appl. Math. 17 (1996) 381–407.
- [17] R. Simion, F.W. Schmidt, Restricted Permutations, Europ. J. of Combin. 6 (1985) 383–406.
- [18] Z. Stankova, Forbidden subsequences, Discrete Math. 132 (1994) 291–316.
- [19] Z. Stankova, Classification of forbidden subsequences of length 4, European J. Combin. 17 (1996) 501–517.
- [20] J. West, Generating trees and the Catalan and Schröder numbers, Discrete Math. 146 (1995) 247–262.