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Abstract. We consider a partial order on permutations avoiding a set of patterns. The

partial order is induced from the weak order of the symmetric group. Some sets of patterns

are shown to give well-known posets, including the Tamari lattice, the Boolean lattice, J(2×n),

the integer interval lattice, and the lattice of shifted shapes. In the case of a single pattern,

we characterize those patterns which give a lattice.

Résumé. Nous considérons un ordre partiel sur des permutations évitant un ensemble des
motifs. L’ordre partiel est induit de l’ordre faible du groupe symétrique. Quelques ensembles
des motifs sont montres à donner les posets bien connus, y compris le trellis de Tamari, le
trellis de Boole, J(2 × n), et quelques autres trellis. Dans le cas d’un motif simple, nous
caractérisons ces motifs qui donnent un trellis.

1. Introduction

As a partially ordered set, the weak order on a finite Coxeter group is a lattice. In some
interesting cases this property is retained when passing to an induced subposet. For example,
one can obtain the one-skeleta of generalized associahedra of Fomin and Zelevinski [5], and the
Cambrian lattices of Reading [9] as subposets of the weak order. In type A, some of these
subposets can be described using pattern avoidance. The Tamari lattice, the one-skeleton of
the associahedron, is isomorphic to the weak order on 312 avoiding permutations. The Boolean
lattice is isomorphic to the weak order on 312 and 231 avoiding permutations. See [9] for these
results and some corresponding type B results.

These results lead to two natural questions. For which sets of patterns T is the weak order
on permutations avoiding T a lattice? Also, can any other well-known families of lattices be
obtained as the weak order on pattern avoiding permutations?

This paper is organized as follows. Section 2 contains some preliminaries about pattern
avoidance, lattices, and the weak order. In section 3, we show that J(2 × n)∪ 1̂, the integer
interval lattice, and the lattice of shifted shapes can be obtained as the weak order on pattern
avoiding permutations. We also give two unnamed lattices which may be of independent interest.
In section 4 we outline the proof of the following theorem:

Theorem 1.1. Sn(τ) is a lattice for all n if and only if

τ has exactly one descent, which is of magnitude one or two, or
τ has exactly one ascent, which is of magnitude one or two.

In section 5 we give some related results and a conjecture.
1
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2. Preliminaries

A permutation π = π(1)π(2) · · ·π(n) ∈ Sn in the symmetric group on n elements is said to
contain a pattern τ if there is a subsequence of π in the same relative order as τ . Otherwise,
π is said to avoid τ . For example, the permutation π = 1423 contains the pattern 132 twice,
as 142 and 143. The permutation 2134 avoids 132. For a set of patterns T , we will use Sn(T )
to denote the permutations of length n which avoid all of the patterns in T . For simplicity of
notation, we omit the set brackets for a single pattern. There has been much recent interest in
enumerative problems in pattern avoidance. For an overview, see [15].

A descent in a permutation π occurs in position i if π(i) > π(i + 1). The magnitude of a
descent is π(i + 1) − π(i). Ascents and their magnitudes are defined similarly. An inversion in
a permutation π is a pair (i, j) such that i < j and π(j) > π(i).

The weak order on permutations is as follows. For π, σ ∈ Sn, we say that σ covers π if there
is an adjacent transposition (i, i+1) such that π(i, i+1) = σ, and σ has more inversions than π.
The weak order is the transitive closure of this relation. Alternatively, we could describe this as
π ≤ σ ⇐⇒ π and σ can be written as products of adjacent transpositions, with the product for
π appearing as a prefix of the product for σ. We will let Sn(T ) denote the set Sn(T ) together
with its order relation induced from the weak order. See [2] for more information on the weak
order of Coxeter groups.

321

312

132

123

213

231

Figure 1. The weak order on S3

A lattice L is a partially ordered set with the following property:
For all x, y ∈ L, the set {z ∈ L|z ≥ x, z ≥ y} has a unique minimal element, called the join

of x and y and denoted x ∨ y, and the set {z ∈ L|z ≤ x, z ≤ y} has a unique maximal element,
called the meet of x and y and denoted x ∧ y.

For background information on lattices, see [1] or Chapter 3 of [11].
The lattice property of the weak order on Sn was demonstrated in [7] and [16]. There is a

well-known characterization of the weak order which is useful for constructing meets and joins.

Lemma 1. For σ ∈ Sn, let I(σ) = {(i, j)| i < j, σ(j) < σ(i)} be the inversion set of σ. Then
π ≤ σ ⇔ I(π) ⊆ I(σ).

Let π, σ ∈ Sn. We will construct the join π ∨ σ. First, insert the letter 1. To insert the
letter j, insert it immediately to the left of the largest i such that (i, j) ∈ I(σ)∪ I(π). If no such
i exists, insert j on the right. This gives the unique minimal permutation ω with I(π) ⊆ I(ω)
and I(σ) ⊆ I(ω). Since Sn also has a unique minimal element, it is a lattice by the following
lemma. This is [11], Proposition 3.3.1.
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Lemma 2. Let P be a finite poset with a unique minimal element. If the join of every pair
of elements in P exists, then P is a lattice.

To consider induced subposets of the weak order, we will use the following easy consequence
of Lemma 2.

Lemma 3. Let L be a lattice and P an induced subposet. If the following two conditions
hold, then P is a lattice:

1) For all v ∈ L \ P , the set {v′ ∈ P | v′ < v} has a unique maximal element, or is the
empty set.

2) P has a unique maximal element and a unique minimal element.

We will make use of the following notation. If π ∈ Sm and σ ∈ Sn, then π ⊕ σ denotes
the permutation in Sm+n, where π acts on the first m letters, and σ acts on the last n letters.
Similarly, π	σ denotes the permutation in Sm+n, where π acts on the last m letters, and σ acts
on the first n letters.

3. Examples of Lattices of Pattern-Avoiding Permutations

To find examples, we tested all sets of patterns including any number of patterns of length
three and at most one pattern of length four. Here we give all the resulting lattices, except for
the n element chain. In each example, only one representative set of patterns is given.

1. The Tamari Lattice

The Tamari lattice was defined in [14] in terms of legal bracketings. See also [9]. It can be
realized as the weak order on 132 avoiding permutations. This can be seen by using Stanley’s
representation of the Tamari lattice given in ([12], exercise 6.23), and Krattenthaler’s bijection
[8].

2. The Boolean Lattice

The Boolean lattice is isomorphic to the weak order on {132, 213} avoiding permutations.
See [9].

3. The Lattice of Shifted Shapes

A shifted shape is a finite set Q of pairs (i, j), i < j, with the following property: If (i, j) ∈ Q,
then (k, j) ∈ Q ∀ k < i, and (i, l) ∈ Q ∀ l < j.

Shifted shapes can be thought of as diagrams fitting on top of a staircase (see figure 2).
The partial order on shifted shapes with j ≤ n ∀ (i, j) ∈ Q is inclusion of sets. See [6] and the
references given there.

The lattice of shifted shapes can be realized as Sn({132, 312}). A bijection between permu-
tations avoiding 132 and 312 and shifted shapes is given mapping a permutation to its inversion
set. The condition σ avoids 132 is equivalent to the first condition for a shifted shape. The
condition σ avoids 312 is equivalent to the second.

4. The Integer Interval Lattice

Taking all closed intervals contained in [1, n] with integer endpoints and ordering them by
inclusion gives a lattice. This lattice is isomorphic to Sn({231, 312, 2143}). Figure 3 shows this
lattice for n = 5. Permutations avoiding this set of patterns are determined by the pairs (i, i+1)
in their inversion sets. Also, for σ ∈ Sn({231, 312, 2143}), (i, i + 1), (k, k + 1) ∈ I(σ) implies
(j, j + 1) ∈ I(σ) for all i < j < k.

5. J(2 × n)∪ 1̂
The lattice of order ideals of the poset 2×n appears often in combinatorics. See [3] and [11].

This lattice (with an extra maximal element) is isomorphic to Sn({132, 312, 2314}). This can
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Figure 2. Sn({132, 312}), the shifted shape lattice
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12354 12435 13245 21345

12345

Figure 3. Sn({231, 312, 2143}), the integer interval lattice

be easily shown by constructing Sn({132, 312, 2314}) from Sn−1({132, 312, 2314}). The same

process constructs J(2 × n)∪ 1̂ from J(2 × (n − 1))∪ 1̂. See figure 4.
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Figure 4. Sn({132, 312, 2314}) ∼= J(2 × n) ∪ 1̂

6. A “leaf with ridges” lattice.
The lattice Sn({132, 213, 3421}) is graded, and may have some other interesting properties.

It has
(

n

2

)

+ 1 elements. When its Hasse diagram is drawn as in figure 5, it looks somewhat like
a leaf with a series of ridges rising out of it.
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652341

623451
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123456
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651234

654123

654312

653412

634512
645123

345612 456123 561234

Figure 5. Sn({132, 213, 3421})
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7. A lattice with Fibonacci-many elements.
The lattice Sn({231, 312, 1432}) is also graded. It has Fn+2 − 1 elements, where Fn denotes

the nth Fibonacci number. Its Hasse diagram is drawn in figure 6 to highlight how the nth
lattice in the sequence can be constructed from the (n− 2)nd and (n− 1)st. To see this, remove
the gray edges.

54321

43215

32145

21345

21354

12354

32154

1325421435

12435 13245

12345

Figure 6. Sn({231, 312, 1432})

4. Proof Outline of Theorem 1.1

Let τ be a pattern of length k. We show the result in four steps. First, we show that if τ

has at least two descents and at least two ascents, then Sn(τ) is not a lattice for n ≥ k. To do
this, we find the subposet in figure 6, where the edges are covering relations. Then taking the
induced subposet in Sk(τ), shown in figure 7, we find that σ and σ′ do not have a join in Sk(τ).
We can find an isomorphic subposet in Sn for all n ≥ k.

µ µ’

τ

σ σ'

Figure 7. Subposet of Sk

Second, we show that if τ has at least two ascents and a descent of magnitude greater than
2, (or vice versa), then Sn(τ) is not a lattice for n ≥ k + 1. We find similar subposets as in
figures 6 and 7, except here the edges are intervals which are chains.

Third, if τ satisfies the conditions of the theorem, we will show that π ∈ Sn \ Sn(τ) implies
that the set {π′ ≤ π | π′ ∈ Sn(τ)} has a maximal element.

Finally we invoke lemma 3 to complete the proof.
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µ µ’

σ σ'

Figure 8. Subposet of Sk(τ)

5. Related Results

First let us note that there is an analogous result about meet and join semi-lattices.

Theorem 5.1. Sn(τ) is a meet semi-lattice if and only if τ has at most one descent, which
is of magnitude one or two.

Sn(τ) is a join semi-lattice if and only if τ has at most one ascent, which is of magnitude
one or two.

This implies that the only τ for which Sn(τ) is a semi-lattice but not a lattice are the strictly
increasing and strictly decreasing patterns.

Theorem 1.1 does not generalize immediately to larger sets of patterns. In particular, it is
not true that Sn({τ1, τ2}) is a lattice if both Sn(τ1) and Sn(τ2) are. For example, Stembridge’s
posets package for Maple [13] confirms that S5({2431, 3124}) is not a lattice. Moreover, it is not
necessary for both Sn(τ1) and Sn(τ2) to be lattices in order for Sn({τ1, τ2}) to be a lattice. For
example, consider Sn({2134, 2143}), which is one case of the following theorem:

Theorem 5.2. Let T = {21 ⊕ τ | τ ∈ Sk−2}. Then Sn(T ) is a lattice for all n.

Proof: Observe that Sn(T ) is the set of permutations such that for each descent π(i) >

π(i + 1), we have |{j | j > i, π(j) > π(i)}| < k − 2. So if π ∈ Sn \ Sn(T ), then there is a unique
minimal element π′ less than π (in terms of the order on Sn), with π′ ∈ Sn(T ). π′ is obtained by
changing all descents which violate the condition above to ascents. Since 12 . . . n ∈ Sn(T ) and
n(n − 1) . . . 21 ∈ Sn(T ), Sn(T ) is a lattice by lemma 3. �

It is probably unfeasable to characterize all sets of patterns T such that Sn(T ) is a lattice
for all sufficiently large n. However, the following corollary of the proof for Theorem 1.1 might
be easier to generalize.

Corollary 5.1. If τ is a pattern of length k, the following are equivalent:
1) Sn(τ) is a lattice for all n.
2) Sk+1(τ) is a lattice.

Conjecture 1. There exists an M depending only on the length of the patterns τi such
that the following are equivalent:

1) Sn(τ1, τ2, . . . , τr) is a lattice for all n ≥ M .
2) SM (τ1, τ2, . . . , τr) is a lattice.

The Erdös-Szekeres Theorem [4] would suggest an M that is roughly the product of the
length of the patterns τi.
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