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Abstract

In [FP2] a natural order on Dyck paths of any fixed length inducing a distributive lattice
structure is defined. We transfer this order on noncrossing partitions along a well-known bijection
[S], thus showing that noncrossing partitions can be endowed with a distributive lattice structure
having some combinatorial relevance. Finally we prove that our lattices are isomorphic to the
posets of 312-avoiding permutations with the order induced by the strong Bruhat order of the
symmetric group.

1 Introduction

Every paper dealing with Catalan numbers contains a sentence somehow like the following: “In
[S2] Stanley gives 66 different combinatorial interpretations of Catalan numbers”. Indeed, exercise
6.19 is maybe the best source of information on the Catalan family, at least from a purely enumerative
point of view. A further step should be to consider some interesting order structures on the objects
of the Catalan family and try to compare them. What we would like to do in the present paper is a
first instance of this program.

We start by considering noncrossing partitions. They can be endowed with the refinement order,
so to obtain the well-known noncrossing partition lattices, first studied by Kreweras [Kre], which
have been proved very useful in several, different contexts. These lattices possess many interesting
properties, however they are not distributive (actually not even modular). Is there the possibility of
defining some interesting distributive lattice structure on noncrossing partitions? We claim that the
answer is affirmative by explicitly finding an order on noncrossing partitions which is isomorphic to
at least two combinatorially meaningful distributive lattices.

We first consider Dyck paths and define an order on them as follows: given two Dyck paths
P, Q of the same length, we say that P ≤ Q when P entirely lies below Q (possibly coinciding
with Q in some points). It is possible to show [FP2] that the set of Dyck paths of any given length
endowed with this order is a distributive lattice. These Dyck lattices are not so well known; they have
been studied first in [FP2] (following some general ideas of Narayana [N]), and in [CJ] the authors
show their importance in the study of some matters related with Temperley-Lieb algebras. Our idea
is to transport such a structure on noncrossing partitions along a famous bijection (see [S]). We
have called Bruhat noncrossing partition lattices the distributive lattices of noncrossing partitions
arising in this way; section 3 is devoted to the study of some properties of these lattices. Moreover,

∗This work was partially supported by MIUR project: Linguaggi formali e automi: metodi, modelli e applicazioni.
†Dipartimento di Sistemi e Informatica, viale Morgagni 65, 50134 Firenze, Italy barcucci@dsi.unifi.it

bernini@dsi.unifi.it poneti@dsi.unifi.it
‡Dipartimento di Scienze Matematiche ed Informatiche, Pian dei Mantellini, 44, 53100, Siena, Italy

ferrari@math.unifi.it

1



4 3 2 1

1 | 2 | 3 | 4

21 | 3 | 4 2 | 3 | 412 | 31 | 4 1 | 32 | 4 1 | 3 | 42 1 | 2 | 43

21 | 433 | 421 31 | 42321 | 4 2 | 431 1 | 43232 | 41

Figure 1: Π(4).

Bruhat noncrossing partition lattices turn out to be isomorphic to an even more interesting class
of lattices. It is not difficult to explicitly find a trivial bijection between noncrossing partitions and
312-avoiding permutations. More precisely, we show that such a bijection is an order-isomorphism
between the Bruhat lattice of noncrossing partitions of an n set and the class Sn(312) of 312-avoiding
permutations of an n set endowed with the (strong) Bruhat order. As a byproduct, we have that
Sn(312) is a distributive sublattice of the symmetric group of order n with the Bruhat order. These
results are contained in section 4, where we also find a criterion to determine the meet and the join
of two 312-avoiding permutations in Sn(312). To the best of our knowledge, the only paper dealing
with this kind of matters is [P], where the author determines the Bruhat posets (arising from Weyl
groups) which are lattices. However, the language and the aims of [P] are totally different from the
ones of our approach. It would be interesting to compare our results with those of Proctor. However,
it seems to us that our result is the first one concerning the order structure induced by the Bruhat
order on a class of pattern-avoiding permutations.

The final part of this introduction is devoted to the explanation of the main notations we use
through the paper and to the presentation of the basics of some general theories we refer to in the
next pages.

The set (and the lattice) of partitions of [n] = {1, 2, . . . , n} will be denoted by Π(n). If π ∈ Π(n),
we will always use the notation π = B1|B2| . . . |Bk, where the Bi’s are the blocks of π, the elements
inside each block are in decreasing order and max Bi < maxBj , for i < j. Given π, ρ ∈ Π(n), define
π ≤ ρ when every block of π is contained into some block of ρ. The many properties of this classical
order can be found in several textbooks, such as [S1, A]. Here we only mention that Π(n) endowed
with this refinement order is a lattice which is neither distributive nor modular. Nevertheless, it
possesses a rank function: the rank of π = B1|B2| . . . |Bk is n − k. The Whitney numbers of the
partition lattices are the well-known Stirling numbers of the second kind. The Hasse diagram of
Π(4) is shown in Figure 1.

We will often deal with Dyck paths and, depending on the context, we will find convenient to
describe them in several different ways. Therefore a Dyck path will be alternatively described as a
particular lattice path in the discrete plane N×N (and denoted by capital letters like P,Q, R, . . .)
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or as a function f : N −→ N satisfying certain properties (and denoted by lowercase letters like
f, g, h, . . .) or else as a particular word of the two-letter alphabet {U,D} (and denoted by Greek
letters such as ω(U,D), ψ(U,D), . . .). We leave to the reader the details of the descriptions of Dyck
paths we have sketched in the previous sentence.

In section 4 we make use of the concept of (generalized) pattern-avoiding permutation. Let
π = π1π2 · · ·πn and σ = σ1σ2 · · ·σk be two permutations of [n] and [k], respectively, with k ≤ n.
The permutation π avoids the pattern σ if there exist no indexes i1 < i2 < · · · < ik such that
πi1πi2 . . . πik

is in the same relative order as σ1σ2 . . . σk. The permutation π is called σ-avoiding and
the subset of σ-avoiding permutations of Sn is denoted Sn(σ). A huge amount of papers can be
found dealing with pattern avoidance, see for instance [SS, F, Kra]. In [BS] the authors introduced
generalized patterns for the study of Mahonian statistics on permutations. A generalized pattern is
a permutation σ ∈ Sk equipped with a dash between two of its elements (e.g. 1− 32 and 23− 1 are
generalized patterns of length 3) and a permutation π contains a generalized pattern when adjacent
elements in the generalized pattern correspond to adjacent elements in π. Classes of generalized
pattern avoiding permutations has been widely studied in recent years (see [BS, BFP, C, CM], to
cite a very few).

2 Noncrossing partitions and Dyck paths

A partition of 1, 2, . . . , n is noncrossing when, given four elements, 1 ≤ a < b < c < d ≤ n, such
that a, c are in the same block and b, d are in the same block, then the two blocks coincide. The set
of all noncrossing partitions of an n-set will be denoted NC(n). We refer the reader to the fairly
complete survey [S] and to the references therein for the plentiful applications of this notion.
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Figure 2: The noncrossing partition 2|654|8731|9 ∈ NC(9).

The refinement order can be restricted to noncrossing partitions: what we obtain is again a
lattice, which is usually referred to as the noncrossing partition lattice. Among the main features of
these lattices we recall here that they are not distributive and the lattice operations are different
from those of the partition lattices (the join of two noncrossing partitions needs not be noncrossing
within the full partition lattice).

Noncrossing partitions are enumerated by Catalan numbers, so, as it often happens, it is possible
to find a bijection with Dyck paths. The nice bijection we are going to describe can also be found,
for instance, in [D, S]. Fix a Dyck path and label its up steps by enumerating them from left to right
(so that the k-th up step is labelled k). Next assign to each down step the same label of the up step
it is matched with. Now consider the partition whose blocks are constituted by the labels of each
sequence of consecutive down steps. Such a partition is easily seen to be noncrossing. In Figure 3
we have illustrated this bijection on a concrete example; the bold labels next to the down steps are
the elements of the corresponding noncrossing partition, whereas the up steps are simply labelled in
increasing order.

Now denote with Dn the set of Dyck paths of length 2n. It is possible to define a natural order
on Dn by setting f ≤ g whenever f(n) ≤ g(n), for every n ∈ N. This means that f ≤ g when f “lies
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Figure 3: The Dyck path associated with 2|654|8731|9.

weakly” below g. The set Dn, endowed with such an order, turns out to be a distributive lattice,
which has been studied in some detail in [FP2] under the name of Dyck lattice (of order n). We
point out that Dyck lattices have also been considered in [CJ], where the authors speak of geometric
inclusion of paths.

Our idea is to transfer the order structure of Dyck lattices along the above described bijection.
In this way we define a new order on noncrossing partitions. The distributive lattices so obtained will
be called Bruhat noncrossing partition lattices. The reason of this name, which is at present rather
obscure, will become clear in the last section. Our main goal is to give a satisfactory description of
such lattices.

3 The Bruhat noncrossing partition lattice

In the rest of the paper it is tacitly assumed that noncrossing partitions are endowed with the
Bruhat order.

Given two noncrossing partitions π, ρ we look for some condition to recognize if π ≺ ρ or not.
The following theorem gives a precise answer to this problem.

Theorem 3.1 (Characterization of coverings) Given two noncrossing partitions π, ρ ∈ NC(n), we
have π ≺ ρ if and only if ρ is obtained from π by moving the minimum of some block B of π into
the block B̃ containing the element β = max B + 1 and either

1. keeping β inside B̃, if β = max B̃, or

2. adding a new block B = {β}, if β 6= max B̃.

Proof. Suppose that Pπ, Pρ are the Dyck paths associated with π, ρ, respectively. The fact that
Pπ ≺ Pρ in Dn means that Pρ is obtained from Pπ by replacing a valley with a peak. In the context
of noncrossing partitions this amounts to moving the minimum a of a block, since the down step of
a valley is the last step of a descent. The element a is moved into the block containing the element
corresponding to the down step matched with the up step of the valley. It follows directly from the
above bijection that such a down step has label equal to β = max B + 1, where B is the block
containing a in π. The following figure illustrates these facts.
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a a βββββ a a
βββββ

Now, what happens with the element β? There are essentially two different cases. If the up step
of the valley in Pπ is followed by another up step, then β is not the maximum of its block in π,
and it is easy to check that in ρ it becomes a singleton block (since in Pρ the corresponding step is
preceded and followed by up steps).

a a βββββ

ββββ−−−−1111β−1

a a
βββββ

ββββ−−−−1111β−1

If the up step of the valley is followed by a down step, then β is the maximum of its block in π,
and it remains in the same block also in ρ, as illustrated in the next figure.

a a βββββ

ββββ−−−−1111β−1

a a
βββββ

ββββ−−−−1111β−1

¥

Example. Given the partition 2|54|631 ∈ NC(6), there are precisely two partitions covering it,
which are 3|54|621 (2 is moved and 3 is not the maximum of its block) and 2|5|6431 (4 is moved and
6 is the maximum of its block).

It is interesting to observe that the two “instructions” 1. and 2. in the previous theorem have a
striking analogy with the definition of a filler point given in [DS]. Indeed, a filler point is produced
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whenever a valley preceded by an up step is changed into a peak in the associated Dyck path. Thus
a filler point in a noncrossing partition corresponds to a down step preceded by a long ascent in
the associated Dyck path (where a long ascent is a sequence of two or more consecutive up steps).
Therefore, the number of noncrossing partitions of an n-set having k filler points coincides with the
number Tn,k of Dyck paths of length 2n having k long ascents, namely (see [Sl]):

Tn,k =
1

n + 1

(
n + 1

k

) n−2k∑

j=0

(
k + j − 1

k − 1

)(
n + 1− k

n− 2k − j

)
.

Our next result is a criterion to compare two given noncrossing partitions. In order to properly
state it, we need to introduce a technical definition. Consider a noncrossing partition π ∈ NC(n).
We define the max-vector of π to be the vector max(π) = (µ1, . . . , µn) such that µi is the maximum
of the first i elements of π. So, for instance, if π = 2|31|54, then max(π) = (2, 3, 3, 5, 5). We invite
the reader to check that the max-vector uniquely determines its associated noncrossing partition.
This fact will be very important in the sequel.

Theorem 3.2 (Characterization of the Bruhat order of NC) Let π, ρ ∈ NC(n). Then π ≤ ρ if and
only if max(π) ≤ max(ρ) in the coordinatewise order.

Proof. Let ω1 = ω1(U,D) and ω2 = ω2(U,D) be the two Dyck paths corresponding to π and
ρ, respectively. Then it is clear that ω1 ≤ ω2 if and only if every prefix of ω1 contains at least as
many D’s as the corresponding prefix of ω2. This can be translated on partitions using max-vectors.
Indeed, if max(π) = (µ1, . . . , µn) and max(ρ) = (ν1, . . . , νn), consider the two vectors (µ1, . . . , µn)
and (ν1, . . . , νn), where µi = µi + i and νi = νi + i. Then, it is not difficult to observe that µi and
νi encode the position of the i-th D in the corresponding Dyck path. From the hypotheses, we have
that the i-th D of ω1 occurs before the i-th D of ω2, and so µi ≤ νi. Since this holds for every i ≤ n,
the thesis follows. ¥

Example. Let π = 2|43|51|6, ρ = 43|52|61 ∈ NC(6). We easily find max(π) = (2, 4, 4, 5, 5, 6) and
max(ρ) = (4, 4, 5, 5, 6, 6). It is immediate to see that max(π) ≤ max(ρ), whence π ≤ ρ.

Remark. Observe that, if π ≺ ρ, then max(π) and max(ρ) differ precisely in one position.

It is known [FP2] that Dyck lattices possess a rank function (simply because they are distributive
lattices) which is essentially given by the area bounded by a Dyck path and the x-axis. More precisely,
if A(P ) is the area of a Dyck path P of length n, then the rank of P inside its Dyck lattice is given
by r(P ) = A(P )−n

2 . Our next goal is to translate the parameter “area under Dyck paths” into a
parameter on noncrossing partitions, in order to define a rank on the Bruhat noncrossing partition
lattices.

Our first result is a formula for the area of Dyck paths in terms of its peaks and valleys. Since we
have not found such a formula in the literature, we also propose a proof for the reader’s convenience.

Lemma 3.1 Let P be a Dyck path. Let pi and vj denote the height of the i-th peak and the j-th
valley of P , respectively. Then

A(P ) =
∑

i

(p2
i − v2

i ). (1)
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Figure 4: How P ′ is obtained from P .

Proof. We proceed by induction on the number of peaks. If a Dyck path P has only one peak,
then it is the maximum of its Dyck lattice, and the formula immediately follows. Now suppose that
P has k + 1 peaks. Consider the path P ′ obtained by P by removing the last peak, i.e. coinciding
with P up to the k-th peak and then ending with a sequence of down steps (see Figure 4).

It is now easy to see that
A(P ) = A(P ′) + p2

k+1 − v2
k,

whence, thanks to the induction hypothesis:

A(P ) =
∑

i

(p2
i − v2

i ). ¥

Now we are ready to find a formula to express the rank of a partition in the Bruhat noncrossing
partition lattice. The proof of the next theorem is left to the reader.

Theorem 3.3 NC(n) is a distributive lattice, and therefore it is ranked. More precisely, if π =
B1| . . . |Bk ∈ NC(n), then its rank is given by:

rn(π) =
A(π)− n

2
, (2)

where

A(π) =
k∑

i=1


|Bi|


2bi − 2

i−1∑

j=1

|Bj | − |Bi|




 (3)

(here bi = max Bi).

4 Relationship with the strong Bruhat order on permuta-
tions

The last formula given for the rank of a noncrossing partition inside its Bruhat lattice is not
as easy to understand as the rank function for Dyck paths. In order to find a better way to express
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this parameter, we make use of the concept of (generalized) pattern avoiding permutation. What
we obtain is yet another description of Bruhat noncrossing partition lattices which provides some
important information on the (strong) Bruhat order of the symmetric groups.

Proposition 4.1 Removing the bars in noncrossing partitions defines a bijection between NC(n)
and the set Sn(312) of 312-avoiding permutations of [n], for any n ∈ N.

Proof. First observe that, for any n ∈ N, Sn(312) = Sn(31 − 2), since it is known that these
two finite sets are both enumerated by Catalan numbers and obviously Sn(312) ⊆ Sn(31− 2). Now,
if a pattern 31-2 appears in a noncrossing partition, then, denoting by b < c < a the three elements
corresponding to such a pattern, a and b must belong to the same block, and the maximum d of the
block containing c must be larger than a (since the maximum of a block in a noncrossing partition is
larger than every element preceding it). Thus, the four elements a, b, c, d would constitute a crossing,
against the hypothesis. ¥

Remark. In the rest of this section we will make an extensive use of the above described canon-
ical bijection. In particular, we will freely switch from a noncrossing partition to its associated
312-avoiding permutation without stating it explicitly. Moreover, we will always use the same Greek
letters (π, ρ, σ, . . .) to denote both a noncrossing partition and its associated 312-avoiding permu-
tation. Finally, observe that each maximum of a block of a noncrossing partition corresponds to a
left-to-right maximum in the corresponding permutation, that is an element which is greater than
every other element on its left.

Observe that the composition of the bijection between Dyck paths and noncrossing partitions
with the above one between noncrossing partitions and 312-avoiding permutations is precisely the
bijection considered in [BK] and in [F]. More specifically, in [BK] the authors show that the area
of a Dyck path corresponds to the inversion number of the associated permutation. Since the rank
function of the strong Bruhat order on permutations is precisely the inversion number, we are led
to conjecture a close relation between our noncrossing partition lattices and the subposets induced
by the Bruhat order on 312-avoiding permutations.

Theorem 4.1 Let (Sn(312);≤) be the poset obtained by transferring the structure of the Bruhat
noncrossing partition lattice NC(n) along the previous bijection. This is precisely the subposet in-
duced on Sn(312) by the strong Bruhat order of the symmetric group Sn. Therefore Sn(312) is a
distributive sublattice of Sn endowed with the strong Bruhat order.

Proof. What we have to show is that the Hasse diagram of the Bruhat noncrossing partition
lattice is isomorphic to that of Sn(312) with the induced strong Bruhat order. To do this, it is enough
to prove that the sets of elements covering a noncrossing partition and its associated 312-avoiding
permutation coincide, via the bar-removing bijection.

Let π, ρ be noncrossing partitions, and suppose that π ≺ ρ in the Bruhat noncrossing partition
lattice. This means that ρ is obtained by π using one of the two rules described in Theorem 3.1. In
both cases, ρ is obtained from π by interchanging the minimum a of a block B with β = max B + 1.
On permutations this means that the inversion number of ρ is larger than that of π (since a < β).
Now to conclude that π ≺ ρ in Sn(312) it remains only to show that the above transposition does
not generate other inversions, or, equivalently, that all the entries between a and β in π are either
smaller than a or larger than β. Indeed, β − 1 is the maximum of B, so it appears before a in π.
Hence, if there is an element x such that a < x < β and x is between a and β in π, then we would
have a pattern 312, which is excluded. Therefore we have shown that, if π ≺ ρ in NC(n), then also
π ≺ ρ in Sn(312).

8



To conclude the proof we will show that, if π ≺ ρ in Sn(312), then necessarily ρ is obtained by
π as in Theorem 3.1. From the hypothesis it follows that ρ differs from π by a transposition of a pair
of elements a and β. Suppose that a < β and so a appears before β in π. If a was not a minimum in
the noncrossing partition associated with π, then there would be an entry x < a appearing after a,
and so in ρ the elements β, x, a would show a pattern 312. Therefore a must be the minimum of its
block B in the noncrossing partition π. Now set b = maxB. We claim that β = b + 1. Indeed, if it is
not, then β − 1 could not appear between a and β in π (since otherwise ρ would contain too many
inversions). Clearly β − 1 can not appear before b too, since every entry before b must be smaller
than b. Thus β − 1 lies necessarily on the right of β in π. But in this case the permutation ρ would
contain a pattern 312 in the entries β, a, β−1, a contradiction. Therefore β = b+1, and the theorem
is finally proved. ¥

At this stage it is worth mentioning the following, remarkable corollary.

Corollary 4.1 For any n ∈ N, the Dyck lattice Dn is isomorphic to the lattice Sn(312) with the
strong Bruhat order.

Our next goal is to find a synthetic description of the meet and join operations in the Bruhat
lattices of 312-avoiding permutations.

Let π = π1 · · ·πn, ρ = ρ1 · · · ρn ∈ Sn(312). Define the permutation π ∨ ρ = σ1 · · ·σn by setting
σi equal to the largest element among those smaller than or equal to max{π1, . . . , πi, ρ1, . . . , ρi} not
yet appeared in some previous positions. Analogously, the permutation π∧ρ = τ1 · · · τn is defined by
setting τi equal to the smallest element among those larger than or equal to min{π1, . . . , πi, ρ1, . . . , ρi}
not yet appeared in some previous positions. For instance, given π = 32657481, ρ = 24378651 we
get π ∨ ρ = 34678521 and π ∧ ρ = 23457681. In the following proposition we show that the above
defined operations actually coincide with the join and meet operations in Sn(312).

Proposition 4.2 For any π, ρ ∈ Sn(312), the permutations π∨ ρ and π∧ ρ are respectively the join
and the meet of π and ρ in the Bruhat lattice Sn(312).

Proof. Let max(π) and max(ρ) be the max-vectors of the noncrossing partitions associated with
π and ρ, respectively. The join of the two Dyck paths associated with π and ρ corresponds to the
Dyck path determined by the coordinatewise join of max(π) and max(ρ), say max(π) ∨ max(ρ),
which is then the max-vector of the join of π and ρ in Sn(312). There is a unique 312-avoiding
permutation associated with max(π) ∨max(ρ), which can be obtained as follows: the i-th entry of
the permutation is the largest element among those smaller than or equal to the i-th component of
the max-vector not yet appeared in the permutation. This corresponds precisely to our definition of
π ∨ ρ. The argument for the meet is completely analogous, and so the proof is complete. ¥
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