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Abstract. In this paper, a new structure for polyominoid graph is proposed.
This structure is shown to be generated with some rules. A uniform proba-
bilistic election algorithm in polyominoids is developed and studied. Indeed,
the election process is considered as a distributed elimination algorithm in a
polyominoid, which removes all active vertices one after the other, till there

remains one single vertex: the leader.
The elimination algorithm is analyzed as a Markovian random process in

continuous time. Our algorithm is totally fair in that all vertices have the same
probability of being elected.
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1. Introduction

We consider distributed networks of processors [23]. They are presented as a con-
nected graphs where vertices represent processors, and two vertices are connected
by an edge if the corresponding processors have a direct communication link. The
networks are asynchronous: processors cannot access a global clock and a message
sent from a processor to a neighbor arrives within some finite but unpredictable time
(asynchronous message passing). Labels are attached to vertices and sometimes to
edges. The aim of an election problem is to choose exactly one element in the set
of processors. Thus, starting from a configuration where all processors are in the
same state, we must obtain a configuration where exactly one processor is in the
state “leader” and all other processors are in the state “lost”. The leader can be
used subsequently to make decisions or to centralize some information. The election
problem is well known and many solutions are available [1, 14, 15, 17, 20, 23]. It
was first proposed by Le Lann [14].

The networks studied in this paper are anonymous and have a polyominoid topol-
ogy. A polyominoid combines the tree and polyominos-structure (see Figure 1).
Polyominoes have a long history, going back to the beginning of the 20th century,
but they were popularized in the present era by Golomb [11, 12] and Gardner [9, 10]
in the Scientific American columns, “Mathematical Games”. They were also stud-
ied by mathematicians [2, 3, 5, 6], because they constitute combinatoric objects
having interesting properties. They have been the subject of intensive studies by
physicists, thanks to their appropriateness for modeling several physical phenomena
and are known under the name of animals in statistical physics (see [24] for more
details). In computer science, their study has been motivated in different areas such
as the VLSI circuit designs (see [16]) and image processing ([4]).

The main motivation behind this study is to introduce a uniform probabilistic
distributed election algorithm over polyominoids. This algorithm is totally fair,
i.e. it gives a same chance of being elected to all vertices of a polyominoid. The
algorithm removes vertices of the polyominoid once their random lifetime delay
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has been expired (the remaining graph should remain polyominoid). The analysis
of the algorithm reveals the surprising fact that, wherever the vertex is placed in
the polyominoid, it has the same probability of surviving as the others. The only
investigation in this direction, known to the authors, is that of trees [19] .

Our distributed algorithm may be viewed as a randomized extension of a variant
of [15], where random delays are introduced.

We consider cellular local computations which allow to modify the state (or
label) of a vertex at each step. The new label depends on the previous one and
those of its neighbors. The novelty of our approach is the use of random delays for
relabeling. These delays are exponential random variables defined independently
for active vertices. The parameter of the random variable for a vertex is equal to
the attributed value assigned to the vertex. The process of relabeling continues
until no more transformation is possible, i.e. a final configuration is reached. In
this configuration, there is only one L−labeled vertex, considered as elected.

The paper is organized as follows. In Section 2, we introduce the preliminaries
and basic notation. Polyominoids are introduced in this section as particular undi-
rected graphs. We provide a set of rules generating the class of all polyominoids.
The election algorithm is described in Section 3. The main result in Section 4 is
the uniformity of the election on the set of vertices. Due to the space limitation we
have to omit simple proofs. For more details, the reader is referred to [13].

2. Preliminaries and Notation

There are many definitions for polyominos and grid-like graphs in the literature,
see [21, 18]. Traditionally, a polyomino is the set of cells situated in the interior of
an orthogonal polygon drawn on a grid. We define polyominoids as finite graphs
whose nodes are points from Z × Z, where Z denotes the set of integers, possibly
linked by the neighborhood relationship, defined in the sequel.

Throughout this paper, the vertices are points from Z = Z × Z. We use usual
terms such as “up”, “down”, “right” and “left” on Z×Z. The edges are links between
pairs of points, i.e. sets of pairs of points of one of the forms {(x, y), (x + 1, y)}
or {(x, y), (x, y + 1)}, for some x ∈ Z, y ∈ Z. Two vertices v = (x, y) and v′ =
(x′, y′) of Z are neighbors if either x = x′ and |y − y′| = 1 or else y = y′ and
|x − x′| = 1. We refer to each element of an edge e as its end. Let T be the set
of all these edges and set U= (Z , T ). A cell is a subgraph of U, induced by a set
{(x, y), (x+1, y), (x+1, y+1), (x, y +1)} of four pairwise neighbor vertices. A path

is a finite alternated sequence σ = v0, e1, . . . , ek, vk of k + 1 vertices and k different
edges (k ≥ 0), such that each edge ei has one end in vi−1 and the other one in vi.
We should note that a path may pass several times through a vertex but cannot
borrow an edge more than once. The length of a path σ as above is k. For the sake
of briefness in a path, we may drop edges, identifying σ by the sequence of vertices
v0, v1, . . . , vk. If so, any pair of two successive terms vi and vi+1 should constitute
a unique set. A cycle is a path of length k ≥ 4 for which the first vertex v0 and the
last one vk coincide. U is bipartite i.e. all its cycles are of even length.

Given a cycle γ, one can easily define its inside vertices, see [22]. A vertex (x, y)
is said to be inside a cycle γ = (x0, y0), . . . , (xk, yk), with (x0, y0) = (xk , yk), if
card({i | y = yi and y 6= yi+1 and x ≤ xi}) is odd (in the addition i+ 1 modulo k).
According to this definition, the vertices of γ are inside γ.

A polyominoid is a partial subgraph P= (V, E) of U subject to the following
conditions

(i) V is finite,
(ii) P is connected and



Figure 1. An example of polyominoid

(iii) P does not contain any hole, i.e. for all cycle γ in P, the vertices inside
γ are contained in V and if two neighbor vertices are inside γ, then the
linking edge is in E.

It is easy to see that the last property is equivalent to the tilability of P=(V, E),
i.e. the set of vertices inside γ and their linking edges constitute a subgraph of a
grid. The size of P= (V, E) is the cardinal of V .

A polyominoid Q= (V ′, E′) is called a subpolyominoid of a polyominoid P =
(V, E) if V ′ ⊆ V , E′ ⊆ E and E′ = E ∩ {{u, v} | u ∈ V ′, v ∈ V ′}.

The class of polyominoids can be defined on U by induction in a distributive
fashion as follows. The construction is totally distributive in that the application
of rewriting rules requires only the knowledge of the neighboring areas in a bull
of radius 2. Thus, the set of polyominoids can be generated by a context-free-like
grammar. We define the set P of partial subgraphs of U by the following inductive
rules:

(a) For any (x, y) ∈ Z , P=({(x, y)}, ∅) is in P .
(b) Let P=(V, E) ∈ P . Consider two neighbor vertices v and v′ such that v ∈ V

and v′ 6∈ V . Then, Q=(V ∪ {v′}, E ∪ {{v, v′}}) is in P .
(c) Let P=(V, E) ∈ P . Suppose V contains 4 neighbor vertices v1 = (x, y), v2 =

(x + 1, y), v3 = (x + 1, y + 1), v4 = (x, y + 1), situated on a cell in U, such
that three edges of the cell on them are in E and the fourth one, say e, is
not. Then, Q=(V, E ∪ {e}) is in P .

At this stage, it is not obvious that P is the class of all polyominoids on U. The
following proposition shows the equivalence of the two definitions.

Proposition 1. A partial subgraph P=(V, G) of U is a polyominoid iff it belongs
to P.

3. A Uniform Election Algorithm on Polyominoids

The asynchronous election algorithm, presented in this section, is designed for
anonymous networks having a topology of polyominoid. Each vertex only knows
the directions of the edges joining it to its neighbors, and knows neither the size
of polyominoid nor its own coordinates in the plan. The solution in the general
case consists in the computation of a spanning tree, and then election is started
for every node. In our study, using the properties of polyominoids, we construct a
distributed algorithm which chooses uniformly a vertex as the leader.

3.1. The Distributed Election. We now describe the algorithm through a graph
relabeling system. Labels (or states) are attached to vertices. Our distributed
algorithm is based on a rewriting system, introduced by Litovsky, Métivier and
Zielonka [15].



We suppose that initially every vertex has the same label and we look for a
noetherian graph rewriting system such that when, after some number of rewriting
steps, we get an irreducible labeled graph the there is a special label that is attached
to exactly one vertex; this vertex is considered as elected.

In this paper, we use a graph rewriting system enriched by random delays (a
rule may be applied if its delay has expired). The graph rewriting system applied
here uses forbidden contexts (a rule may be applied if it does not occur in a given
forbidden context).

Let P= (V, E) be a polyominoid and let v a vertex of V . We introduce the set
L of labels {N, A, B, L} where N encodes the neutral state, A encodes the active
state, B encodes the lost state and lastly L encodes the elected state. Initially,
every vertex is of weight w = 1 and is N−labeled.

Given a polyominoid P= (V, E), the algorithm works on P as follows. Any
N−labeled vertex v decides locally if it is active or not, according to the following
rules :

R0 : If the degree of vertex v is null (deg(v) = 0), then the single vertex which
constitutes the polyominoid is the elected vertex. This vertex is considered
as an active vertex.

R1 : If the degree of vertex v is 1 (deg(v) = 1), then the vertex v becomes active

and it generates its lifetime delay which is an exponentially r.v. (random
variable) having its weight as the parameter. Whenever its lifetime has
expired, it is removed with its unique incident edge. At this time, the vertex
adjacent to the removed one in P, collects the weight of this removed vertex,
adding it to its weight.

R2 : If deg(v) = 2, then whenever v is a upper-left most vertex or lower-left
most of cell, then it becomes active and when its lifetime has expired, it
is removed with its incident edges and its right neighbor recuperates its
weight.

More precisely, let {(x, y), (x + 1, y), (x, y + 1), (x + 1, y + 1)} be a cell,
if the degree of (x, y) is 2 then (x, y) is active and once its lifetime has
expired its neighbor (x + 1, y) picks up its weight. In the same way and by
the horizontal symmetry, if deg((x, y + 1)) = 2 then (x, y + 1) is active and
its neighbor (x + 1, y + 1) collects its weight.

R3 : If deg(v) = 3, then if v belongs to two cells and no edge on its left side is
found, i.e. v has only one horizontal edge, then v becomes active and when
its lifetime has expired then its right neighbor recuperates its weight.

So, let {(x, y), (x+1, y), (x, y+1), (x+1, y+1)} and {(x, y), (x+1, y), (x, y−
1), (x−1, y−1)} two cells, if degree (x, y) is 3 then (x, y) becomes active and
its neighbor (x + 1, y) recuperates its weight once its lifetime has expired.

In the sequel, we need the following definition. A vertex which belongs to a
maximal cycle in P is called peripheral vertex.

Lemma 1. Let v be an active vertex of degree 2 or 3 in a polyominoid P. Then v

is peripheral.

Proof. Let P= (V, E) be a polyominoid and (x, y) ∈ V an active vertex of degree 2
or 3. By definition, v is situated in a cell, i.e. inside a cycle. Let γ be a maximal
cycle having v inside it. If v is on γ, then the proof is complete. Otherwise, there
will be a nearest vertex u = (x′, y) on γ such that x′ < x. But P is a polyominoid
and any cycle γ does not contain a hole, i.e, the edges of the segment [(x′, y), (x, y)]
are in E. This cannot hold, since, v does not admit any edge on its left side.

�



The election algorithm proposed here removes an active vertex once its lifetime
has expired. To continue the process, we have to show that the residual graph is
still a polyominoid.

Proposition 2. Let P = (V, E) be a polyominoid of size ≥ 2 and let v be an active
vertex in P. The graph P′= (V \ {v}, E \ {{v, u}, u ∈ V }) is a polyominoid.

Proof. Let P, v and P′ be as above. To show the proposition, we have to prove
that P′ is a connected graph without holes.

• If deg(v) = 1, then the suppression of v and its incident edge in P introduces
neither a disconnection nor a hole.

• If deg(v) = 2 then let v, v1, v2, v3 be four rectangular vertices of a poly-
ominoid P such that v is the removable vertex. Consider a vertex u ∈
V \{v, v1, v2, v3}. Then, if the vertex u is accessible to a vertex vi, 1 ≤ i ≤ 3.

through a path which passes by v, then when v is removed, u remains ac-
cessible to vi by another path which borrows the vertices vj 6=i, j = 1, 2, 3.
Therefore, by Lemma 1, v is a peripheral vertex and on the other hand its
removal generates no hole.

• If deg(v) = 3 then the proof is similar to the previous case.

�

3.2. Standard Spanning Tree. Let P=(V, E) be a polyominoid. The graph
T = (V, F ) which traces the weight transmissions in the algorithm is described
as follows:

• if e = {(x, y), (x + 1, y)} is an edge in E then e belongs to F , i.e. each
horizontal edge in E belongs to F :

e = {(x, y), (x + 1, y)} ∈ E =⇒ e ∈ F

• if e = {(x, y), (x, y + 1)} belongs to E and e is not a left side edge of a cell
in P then e is belong to F , i.e. each vertical edge, who is not a left edge of
a cell, belongs to F :

e = {(x, y), (x, y + 1)} ∈ E =⇒ e ∈ F iff {(x, y), (x + 1, y), (x + 1, y +
1), (x, y + 1)} is not a cell in P.

Proposition 3. The graph T = (V, F ) described above is a spanning tree of the
polyominoid P.

Proof. We can prove this proposition by the inductive construction on P, see [13]
for more details. �

Remark. The spanning tree resulting from these rules is unique.

Definition. The spanning tree T = (V, F ) is called the standard spanning tree of
the polyominoid P.

Example 1. Figure 2 gives the standard spanning tree of the polyominoid given
in Fig.1.

Proposition 4. Let P = (V, E) be a polyominoid and T = (V, F ) be its standard
spanning tree. Then, the vertex v ∈ V is active in P iff it is a leaf in T .

Proposition 5. Let P be a polyominoid of size ≥ 2, suppose that v is an active
vertex in P and let T be the standard spanning tree of P. Then, let P′ denote the
residual polyominoid once v and its incident edges have been removed and T ′ be the
standard spanning tree of P′. Then, T ′ can be obtained from T by the elimination
of the leaf v and its incident edge.



Figure 2. Standard spanning tree of the polyominoid given in Fig. 1.

Proof. Let P be a polyominoid of size ≥ 2, and T its standard spanning tree.
Clearly, the residual tree T ′, after the suppression of a leaf v and its incident edge
in T , is a spanning tree of the polyominoid P′ resulting from P once v and its
incident edges are removed. Now, it remains to prove that T ′ is the standard
spanning tree of P′:

• Obviously, the horizontal edges of P′ are in T ′.
• The residual vertical edges of P′, which are not situated on the left-hand

side of a cell in P′, satisfy the same condition in P and hence, are in T .
Therefore, they are in the standard spanning tree of P′.

�

Putting together the results of this section, we conclude with the following scheme
of distributed probabilistic algorithm.

while P is not reduced to a unique vertex
do

• any vertex which active or becomes active (rules R0 − R3)
generates its lifetime according to its weight,

• once the lifetime of an active vertex has expired, it is removed
with incident edges and its neighbor in the standard spanning
tree collects its weight.

od

4. Analysis of the Algorithm

The election algorithm in a polyominoid is viewed as an election algorithm in its
standard spanning tree: as seen in Proposition 4, each active vertex in a polyominoid
is a leaf in its standard spanning tree and the weights of the two vertices are equal.

Given P=(V, E) a polyominoid. Initially, all vertices have the same weight 1 :
w(v) = 1, ∀v ∈ V . According to the rules seen in section 4, when an active vertex
vanishes, its successor collects its weight, adding it to its current weight. At the
time t when a vertex v becomes active in a residual polyominoid P′, its weight is
the number of vanished vertices on its side. The lifetime delay L(v) for v is a r.v.
(random variable) having an exponential distribution of parameter λ(v) = w(v) :

Pr
(

L(v) > t
)

= e−λ(v)t, ∀t ≥ 0.

We say that the death of the active vertex v happens according to a Markovian
process with the parameter λ(v) equal to its weight w(v). This property is equivalent
to the one that the death probability of v in the time interval [t, t+h] is λ(v)h+o(h),
as h → 0 at any time t, and this independent of what is going on elsewhere and



of what happened in the past, the assumption which is in agreement with the
distributivity of the algorithm. The random process is a variant of pure death
processes which are, in turn, special instances of continuous-time-Markov processes
(see [7], Chapter XVII).

Theorem 1. The strategy described below leads to a totally fair randomized elec-
tion: in a polyominoid all vertices have the same probability of being elected.

The proof of this theorem is complicated and is given in the following section,
after some preliminary results have been proved.

Uniformity of the Election. The randomized election can mathematically be
modeled by a continuous-time Markov process as follows. The initial state of the
process is P (the whole polyominoid). The set of states EP is the set of all subpoly-
ominoids Q= (U, F ) of P= (V, E) satisfying: whenever two diagonal vertices (i.e.
of the form (x, y) and (x + 1, y − 1) or (x, y) and (x + 1, y + 1)) are in Q, then the
right vertex (x + 1, y), on the cell containing the vertices, is in U , provided that it
is in V .

The following proposition shows that EP is the set of all subpolyominoids of P
which can be reached from P by a sequence of active-removal vertices (recall that
when an active vertex is removed all incident edges are removed as well).

Proposition 6. A subpolyominoid Q of a polyominoid P can be reached with a
positive probability iff Q is in EP.

Proof. Let Q be a subpolyominoid of P reachable from P with a positive probability
and prove that Q ∈ EP. According to the process transition definition, Q must be
obtained from P by k−sequence of active-removal vertices ( 0 ≤ k < n). For k = 0,
the proposition obviously holds. Let it be true for k and prove it for k + 1. So, let
Q be obtained from some polyominoid R of P by removing an active vertex v and
its incident edges. R is in EP by induction and since, a right most vertex of degree
≥ 2 cannot be active, the resulting subpolyominoid Q will satisfy the condition of
being in EP.

Let now Q= (U, F ) be in EP. we prove by a decreasing induction over m = |U |
that P can be reached by n−m transitions with a positive probability. For m = n,
Q is equal to P and therefore Q ∈ EP. Suppose that m < n, we have to show
that there is a vertex v ∈ V \U , such that its addition to U and the addition of all
edges with one endpoint v and the other vertex in U , yields a new polyominoid R
belonging to EP. Since m < n there is a vertex u ∈ V \U . Consider a path from u
to a vertex s ∈ U , let v to be the last vertex of the path which does not belong to
U . Then, v has a neighbor vertices in U .

• If v has no other neighbor vertex in U , then clearly, v is an active vertex in
R (its degree is 1 in R). Moreover, R is in EP.

• Otherwise, v has two or three neighbor vertices in U . In this case, let (x, y)
be the coordinates of the vertex v. According to this assumption, Q is in EP,
there are no neighbor vertices in U , (x, y+1) and (x−1, y) or (x−1, y) and
(x, y − 1) such that v is a vertex on the right side of a cell in R containing
the vertices. Consequently, v is a vertex on the left side of one or two cells
in R. However, v is an active vertex in R. Moreover, R ∈ EP.

�

Let Q be the state of the system at instant t. According to the distributive
random structure of the algorithm, any active vertex v of Q has a lifetime expo-
nentially distributed with a parameter equal to its weight. This is equivalent to the
fact that in the time interval [t, t + ∆t], v may disappear with all incident edges



with probability w(v)∆t+ o(h), as h → 0, and this independent of what is going on
elsewhere and what happened in the past.

One can easily show that the probability of passing from Q to R is obtained by
the removal of active vertex v and its incident edges is given by:

P(Q,R) =
w(v)

∑

u active in Q w(u)
(1)

provided that Q is not reduced to a vertex. The absorbing states (see [7]) are poly-
ominoids reduced to a vertex (the elected vertex).

A mathematical description of probability of being in state Q at time t can be
given as the solution of a system of differential equations. The following proposition
can be proved without any difficulty by a straightforward adaptation of the proof
given in [7], Chapter XVII, Section 5.

Proposition 7. Let Q be in EP and let PQ(t) denote the probability that the state
of the election at time t is Q. We have:

(i)
dPP(t)

dt
= −w(P)PP(t),

(ii) for all subpolyominoid Q6=P of size at least 2 and in EP,

dPQ(t)

dt
= −w(Q)(t)PQ(t) +

∑

v

w(v)PR(t),

with R = Q ∪ ({v}, {{v, u}, u adjacent to v in T}), (recall that T is
standard spanning tree of P)

where the summation is extended to all vertices v adjacent to Q in T

which do not belong to Q, and

(iii)
dP({v},∅)(t)

dt
=

∑

u adjacent to v in P

w(u)P({v,u},{{v,u}})(t),

with the initial condition PP(0) = 1.

This proposition characterizes in principle the distribution probability of states
at a given time t. In particular, it should enable us to compute the absorption
probabilities [7]. However, no explicit solution is known to the authors.

Propositions 3-5 allow to confirm that any sequence of transitions over EP can
be simulated, with the same probability, by a sequence of transitions over the set
of factor trees in the standard spanning tree of P (recall that a factor of a tree is
a tree obtained by a sequence of leaf removals). Thus, the study of the process is
translated into that of the election over a tree, proposed and analyzed in [19]. In
this model, initially all vertices have the same weight 1. Each leaf has a lifetime
which is an exponentially distributed random variable with a parameter equal to
the weight of the leaf. Once the lifetime of the leaf has expired, it is removed with
the incident edge and its weight is recuperated by its father. The process continuous
on until the tree is reduced to one vertex, which is considered as the elected vertex.
Therefore, the probability of being elected for a vertex v in a polyominoid P is the
same as in the standard spanning tree T and this has been shown to be 1

n
, where n

is the size of P.

We enumerate here intermediate results and give the outline of the proof. In the
sequel, we suppose that T is the spanning tree of polyominoid P of size n. Leaves
of P are removed following the random process described above until T is reduced



to a unique vertex. We have to prove the uniformity of the chance for all vertices
of T .

We first introduce a slight modification of the leaf-removal model over T . We
translate the model into a variant on directed trees. For a given vertex v, the unique
rooted tree at v can be defined. These rooted trees can be used in a natural way to
compute the absorption probabilities.

We consider forests of rooted trees. Let F be a forest of rooted trees, we introduce
a death process on F as follows. Each leaf v has an exponentially distributed lifetime
with a parameter equal to its weight; initially, all vertices of F are of weight 1. At
any time interval [t, t + ∆t], if the lifetime of a leaf has expired, the leaf is removed
with its unique incident edge. If the vanishing leaf has a father, then its father picks
up its weight, adding it to its weight. The leaf-removal process goes on the reduced
forest until the forest totally disappears.

For a given forest F , let L(F ) be the vanishing time; it is a positive-real-valued
r.v..

The following proposition is surprising. It asserts that L(F ) depends only on the
size of the forest and not on its structure.

Proposition 8. Let F be a forest of size n then the distribution function GF (t) of
the r.v. L(F ) is given by:

GF (t) = Pr(L(F ) ≤ t) = (1 − e−t)n, ∀t ≥ 0.

Proof. By induction on n. If F is reduced to a vertex, then the proposition holds
(the lifetime for a single vertex is an exponentially distributed r.v. with parameter
1). Suppose that the proposition holds for forests of size less than n and let us
prove it for a forest F of size n (n ≥ 2).

(i) Suppose that F consists of forests F1, F2, · · · , Fk with k ≥ 2. Let n =
n1 + n2 + · · · + nk, where ni is the size of Fi, 1 ≤ i ≤ k. In this case,
L(Fi), 1 ≤ i ≤ k, are mutually independent r.v. and hence by the induction
hypothesis:

Pr(L(F ) ≤ t) =
∏k

i=1 Pr(L(Fi) ≤ t)

=
∏k

i=1(1 − e−t)ni

= (1 − e−t)n.

(ii) Otherwise, suppose that F has size n and consists of a unique root r and
rooted trees A1, A2, · · · , Ak. Now, let F ′ be the forest consisting of A1,

A2, · · · , Ak (alternatively, let F ′ = A1 ∪ · · · ∪Ak). F ′ has size n− 1 and, by
the induction hypothesis, (1−e−t)n−1 is the distribution function of L(F ′).
But, L(F ) is the sum of two independent r.v. L(F ′) and the lifetime of r.
The last one is an exponential r.v. of parameter n (weight of r). Thus,
L(F ) has the distribution function (see [8], p. 142. Theorem 2) given by:

GF (t) =
∫ t

0
GF ′(t − x)d(1 − e−nx)

=
∫ t

0
GF ′(t − x)ne−nxdx,

where GF ′(t − x) = (1 − et−x)n−1.



Hence:
GF (t) =

∫ t

0
n[1 − e−(t−x)]n−1e−nxdx

=
∫ t

0 n[e−x − e−t]n−1e−xdx

= [−(e−x − e−t)n]x=t
x=0

= (1 − e−t)n.

The proposition follows. �

Given two forests F1 and F2, we say F1 beats F2, if L(F1) ≥ L(F2). The next
result easily follows from the above lemma.

Corollary 1. Let F1 and F2 be two forests of sizes n1 and n2 respectively. The
probability that F1 beats F2 is n1

n1+n2

.

Lemma 2. Consider a vertex v in T with the adjacent vertices v1, . . . , vk. Let F

consist of two trees A and B obtained by the suppression of edge {v, v1} rooted at
v and v1 respectively. Then, the probability that v is removed before the whole tree
factor on the side of v1 (i.e. undirected B) in the election process over T is the
same as the probability of v1 beating v in F .

Proof. The events whose probabilities are to be calculated can be represented as
sequences of leaves being removed:

• σ = 〈l1, . . . , lk〉, where li, 1 ≤ i ≤ k are leaves or vertices which become
leaves in T (or in F respectively) after the removal of some previous vertices
in the sequence,

• lk = v and
• v1 does not figure in σ.

On the one hand, it is easy to see that any sequence satisfying the above conditions
in T does it in F and vice versa. On the other hand, the probability of such σ

according to (1) is:

P (σ) =
∏

1≤i≤k

qi,

with

qi =
λ(li)

λ(Ti)
,

where Ti is the residual tree (arborescence respectively) just before the li removal.
In each step of the leaf removal along σ, T and F have the same set of leaves and,
hence, the involved quantities on T are the same as the corresponding ones on F .
The lemma follows. �

Proposition 9. Let q(v) denote the probability of being elected in T for a vertex v.
We have q(v) = 1

n
.

Proof. For n = 1 or n = 2 the proposition is obvious. Otherwise, let v1, . . . , vk be
the adjacent vertices to v. Let, on the other hand, A1, . . . , Ak be disjoint tree rooted
at v1, . . . , vk of sizes n1, . . . , nk respectively. Clearly, v fails iff it vanishes before one
of the factors situated on the vi side for 1 ≤ i ≤ k. These last events are pairwise
disjoint and therefore, according to the previous lemma, the failure probability of
v is the sum of the probabilities of v being beaten by one of its neighbors vi in the
forest consisting of the tree rooted at v and vi respectively. Hence, according to
Corollary 1, we have:

1 − q(v) =

k
∑

i=1

ni

n
.

Since,
∑k

i=1 ni = n − 1, the proposition follows. �



Proof of Theorem 1. Straightforward by the similarity of the election process over
P and over its standard spanning tree T and the previous proposition. �
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