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Abstract: Hall-Littlewood functions indexed by rectangular partitions,
specialized at primitive roots of unity, can be expressed as plethysms. We
propose a combinatorial proof of this formula using Schilling’s bijection be-
tween ribbon tableaux and rigged configurations [13].

Résumé: La spécialisation aux racines de l'unité des fonctions de Hall-
Littlewood indexées par des partitions rectangulaires peut s’exprimer a 1’aide
de pléthysmes. On propose une preuve combinatoire de cette formule en
utilisant la bijection de Schilling entre les tableaux de rubans et les config-
urations [13].

1. INTRODUCTION

In [7, 8], Lascoux, Leclerc and Thibon proved a formula for Hall-Littlewood
functions, when the parameter is set to a root of unity.

This formula implies a combinatorial interpretation of the plethysms I ,(j ) [FoA]

and l,(gj )[e A] where hy, e) are respectively products of complete and elemen-
tary symmetric functions, and l,(gj ) the Frobenius characteristics of represen-
tations induced by a transitive cyclic subgroup of Sg.

However, the combinatorial interpretation of the plethysms of Schur func-

tions l,(j )[s A] would be far more interesting. This question led the same au-

thors to introduce a new basis H g\k) (X; q) of symmetric functions, depending
on an integer £ > 1 and a parameter ¢, which interpolate between Schur
functions (k = 1) and Hall-Littlewood functions Q)\(X;q) (for k > I(\)).
These were conjectured to behave similarly under specialization at root of
unity, and to provide a combinatorial expression of the expansion of the
plethysm l,(f )[S)\] in the Schur basis for suitable values of the parameters.
This conjecture has been proved only in two cases: the stable case, which
reduces to the previous result on Hall-Littlewood functions, and k = 2 which
gives the symmetric and antisymmetric squares ha[sy] and ea[sy].
The proof given in [1] relies upon the study of diagonal classes of domino
tableaux, i.e. sets of domino tableaux having the same diagonals. Carré
and Leclerc proved that the spin polynomial of such a class has the form
(14 ¢)%q", and from this obtained the specialization H )(i))\(X ;—1).
The aim of this note is to provide a similar proof for the stable case, that is,
to show that the result on Hall-Littlewood functions at roots of unity follows
from an explicit formula for the spin polynomials of certain diagonal classes
of ribbon tableaux, which turn out to have a very simple characterization
through Schilling’s bijection [13].
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2. BASIC DEFINITIONS ON RIBBON TABLEAUX

For a partition A = (A1,...,,), we write I(\) its length, |A| its weight
and ) its conjugate. With ) is associated a k-core Ak and a k-quotient
A*) . The k-core is the unique partition obtained by removing successively
k-ribbons from A, and the k-quotient is a sequence of k partitions derived
from A (see [3]). A k-ribbon is a connected skew diagram of weight k& which
does not contain a 2x2 square. The first (north-west) cell of a k-ribbon is
called the head and the last one (south-east) the tail. A k-ribbon tableau
of shape A and weight p is a tiling of the skew diagram A/ by labelled
k-ribbons such that the head of a ribbon labelled ¢ must not be on the right
of a ribbon labelled j > ¢ and its tail must not be on the top of a ribbon
labelled j > i. We denote by T'abi (A, i) the set of all k-ribbon tableaux of
shape A and weight pu.

Example: A 3-ribbon tableau of shape (8,7,6,5,1) and weight (3,3,2,1)

2 3
2 4

R

In [14], Stanton and White first introduced in the standard case (weight
w=(1,...,1)) a correspondence between k-ribbon tableaux and k-tuples of
standard Young tableaux. In the following, we will denote this bijection by
sw. This map sends the previous 3-ribbon tableau to the 3-tuple of tableaux:

2|3
([2[z2] [ilt3 .[1]4])
The spin of a k-ribbon R is defined by sp(R) = % where h(R) is the

height of R. The spin of a k-ribbon tableau is the sum of the spins of all
its ribbons, and the cospin is the associated co-statistic into T'abg (A, p). We
define spin and cospin polynomials as generating polynomials of T'aby(\, p)
with spin or cospin statistics:

k ~(k
Gal= > 0 ad = > r®.
TeTaby (A1) TeTaby (A1)
Example: In Tabs((8,7,6,5,1),(3,3,2,1)), these polynomials are:

3)
G(8,7,6,5,1),

~(3)
G(8,7,6,5,1),(3,3,2,1)

(3,3,2,1)(‘1) =3¢> +17¢% + 33¢* + 31¢° + 18¢°% + 5¢”

(q) =3¢° +17¢* +33¢> + 314> + 18¢ + 5 .

By definition, the Hall-Littlewood functions Ql)\ can be written as:
Q\(X;5q) =[]0 = qRij) 'sa(X)
1<J
where R;; is the raising operator such that R;; - sy = s Rij-Xs with
Rij - A= (A1,...;+1, .0 —1,...,),) .
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In [9], Lascoux, Leclerc and Thibon showed that Hall-Littlewood functions
can be expressed in terms of ribbon tableaux by:

QX = Y DX =3"6W () my .
I

TeTabp(pA)

The following specialization, with n a positive integer and ( a primitive k-th
root of unity, is proved in [7]:

Q(X:¢) = (1) *mpp 0 by (X)

We shall give a combinatorial proof of this formula using the bijection be-
tween ribbon tableaux and rigged configurations given in [13].

3. DIAGONAL CLASSES AND RIGGED CONFIGURATIONS

Let T be a k-ribbon tableau in Taby(\, 1) and (AW, ..., A®)) = sw(T).
By writing @ = —[4L] and 8 = L%J, for all i € {a,...,3} we define d; as
the word obtained by concatenation of the i-th diagonals of all the tableaux
AU) for j in {1...k} (we recall that the i-th diagonal of a Young tableau
consists of all the cells with coordinates (x,y) such that y —x = 7). We call
diagonal vector of T the vector dr = (dq,...,dg). Two k-ribbon tableaux
T and T" in Taby (A, 1) are said to be equivalent if for all 7 in {c«, ..., 3} the
i-th sorted word in dp and dp are the same. A diagonal class in T'aby (A, i)

is the set D;ki 4 of all equivalent ribbon tableaux with diagonal vector d.

The set of all diagonal classes is denoted by Ag\k). We also define Gg\ki(q, d)

M
(resp. ég\kl(q,d)) as the spin (resp. cospin) polynomials of the diagonal

class Dg\kL d

Let v = (vW,...,v®) be an increasing p-tuple of partitions and J be
such that: for all @ in {1,...,p — 1}, J@ is a I(v(®)-tuple of partitions
(Jla), e ,Jl(au)(a))) with l(JZ-(a)) < I/Z-(a) - Vi(i)l and each part of Ji(a) less than
Vz-(a—H) — Vi(a). A rigged configuration of shape v, written (v, J), is defined
by: for all a, top cells of each column of v(®) which are in the i-th line are
filled with parts of the partition Ji(a). For two partitions u and d, we define
by RC(y,0) the set of all the rigged configurations (v, .J) such that v®) =*§
and || = g + ...+ g for all @ in {1..p} (definition as in [13] rather than
in [4, 5, 6]).

In the following, A = (A1,..., ) is a partition with its k-core A(;) empty
and its k-quotient \*) equal to a k-tuple of single rows. We also set
m = max(JAM]|,...,|[A®)]). In this special case, Schilling gives in [13] a
bijection WU between Taby(\, ) and rigged configurations RC(u,0), with
0; = \)\Z(.k)\. She also defined a co-statistic on these rigged configurations
which corresponds to cospin under W. Consequently, by enumeration of
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RC(u, ), she obtains:

p(at) @)

~(k) oy ® i
=3 T o ] o

1<a<n—1
s} 1Zi<u

where {v, s} represents the set of all shapes appearing in RC(u,d) and

ow)= > v )

1<a<n-—1
1<i<pq

In the following, we will be mainly interested in the shapes of rigged con-
figurations. We shall therefore propose a simpler but similar algorithm for
finding only the shape of the rigged configuration ¥(7') = (vp, Jp) with T
in Taby (X, 11). We construct an m x I(u) matrix M7 with the following rule:

MZTJ = number of cells labelled j in d_;;1 .

Then, we construct a matrix N7 where each column N,j;- is defined by:

N =Y "M%

I<j

The j-th column is then equal to the j-th partition of vp.

Ezample: For the 3-ribbon tableau corresponding to the following 3-tuple:

GBBEEE 12 )

we construct the matrices ML and N7 :

1\4\ :

3 000 3 3 3 3
r 0201 r |02 23
M™ = 0 010 N = 0 01 1
0010 0011
The shape of the rigged configuration W(T) is:

as can be read from N7T.

We can remark an additive property of this construction. From a k-tuple of
tableaux A, we can construct a k-ribbon tableau T}, which is the Stanton-
White inverse image of the k-tuple of tableaux formed by the h-th element
of each tableau of A.

Lemma 1.

m
NT:EZNE.
h=1



RIBBON TABLEAUX, CONFIGURATIONS AND HALL-LITTLEWOOD FUNCTIONS 5

Proof: Let MZT be the matrix which has only the i-th line of M7T and zero
everywhere else. Thus, by definition of M7T# we have:

m m

M7= "MI=> "M

i=1 =1

Then, we can write for all 5:

> M :iZMlTi .

1<j i=1 1<)

Consequently,
m
T _ T
N; = E Ny O
i=1

Proposition 1. For a given shape A\ and weight u, there is a bijection T’
between {vys} and Ag\ki compatible with the statistics. Hence, the explicit
expression for the cospin polynomial of a diagonal class is:

YD _ @

~(k d(v P
G&,L(%d) =q ( ) H |:1/.(a)—1/(a) V'(a+1?—iy'(a) (2)

1<a<n-—1 v i+
1<i<pq

where v is the shape corresponding to the diagonal class.

Proof: As the k-quotient consists of single rows, each diagonal class Dg\kl d
is stable under permutation of cells which are in the same positions in each
tableau. By construction, this property implies that, for all [ € {1...,m},
MTi = MT/. Then N7t = N7 and N7 = N7’ so W(T) and ¥(1") have the
same shape. Consequently, as map ¥ is a bijection, Dg\ki 4 s embedded into
{1/{7#}. Conversely, let T and 7" be two tableaux in Tabg(A, 1) which are
not in the same diagonal class. Thus, there exists j in {1,...,m} such that
A]T =+ A]T,. This implies that Mj; #* MY;, and N7 £ NT" and consequently
{I/;’ ot F {V:{'H} Finally, we conclude that

\II(Dg\kZL 2= {VAT .} for all diagonal classes.
The expression of cospin polynomials of diagonal classes in terms of ¢-
supernomial coefficients follows immediately from the properties of V. [

In the following, we consider k-ribbon tableaux of shape A = (kn)* for some
n > 1. This implies that the image of these tableaux by the Stanton-White
map is a k-tuple of semi-standard Young tableaux with the same single row
partition of length n as shape.

Corollary 1. Diagonal classes with only one element correspond to ribbon
tableauz which are filled with k x k blocks of type:
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and the cospin of such a tableau is divisible by k.

Proof: A diagonal class Dg\kz 4 has an unique element if and only if there
is an unique way to fill M) according to the vector d. This implies that,
for all 7 in {1,...,k}, all letters of d; are the same. With this property, all
the T;’s are the k x k blocks of the statement. For filling identically each
position of d;, the weight 1 must be of the form = (k-s1,...,k-sp). Then,
we construct the matrices M7 and N7 as :

k0 ... ... ... 0
E0 0
0k 0 ... ... 0
MY = 01;: 0 0
0 0 k
0 0 K
kok k
Pk ;
0 k k& k
Al /~c k
0 0 k
0 0k

where k occurs s; times in the i-th column of the matrix M. Then the
i-th partition in the shape vy 7y is the rectangle ksit-tsi This is why each
term in the expression (1’) is zero or a multiple of k. O

Proposition 2. For such a shape A, k-th primitive roots of unity are roots
of cospin polynomaials for all diagonal classes with strictly more than one
element.
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Proof: Let T be a tableau in a diagonal class D( ) d andv = (v, ..., v®)

be the shape of W(T'), which is the same for all tableaux in this diagonal
class. Let A = sw(T) and h be the last position such that the diagonal
vector dj, has at least two different elements. Then the (h + 1)-th parti-

tion in vy is a rectangle of width £ and height s < r. The last part of

v = (VYL), yl(h)) is equal to a with a < h and the following coefficient

appears:
Vl(h+1) _"(i)

] = et
Vl(h)_yl(i)l’ Vl(h+1)_yl(h) a—0, k—a| -

Consequently, by a known property of the g-binomial [ “ ,’j_ a] , all k-th prim-

itive roots of unity annihilate the diagonal class polynomials. []

Theorem 1. We have the specialization:
Qi (X:¢) = (=) p 0 hy (X)
Proof: We use functions H and H as defined in [9]:

HP(Xq) = > ¢"@XT and HY(X;9)= Y ¢ DxT.
TeTaby (knk) TeTaby (knk)

Let ¢ be a k-th primitive root of unity. When g is set to ¢ ~1in the expression
of H, by Proposition 2 one is left with

FI(IZ) (X, C—l) — (C—l)COSP(T)XT
ixc) -

where T' ranges now over k-ribbon tableaux as described in Corollary 1
By definition, these tableaux have maximum spin because they are only
constructed with vertical ribbons, so their cospin is zero. Then, if we set
Ap = sw(T) we have

AYOGE = S x-S X
k times k times
where S ranges over all semi-standard Young tableaux with shape a single
row of length n. We obtain
= (k _
A (X:¢7Y) = prohn(X) .

Using relation between H and H given in [9], we have

k(k—D)n ~ _ _n
=2 AW (X ¢ = (1) * D 0 (X)L O

H®(X;¢0) =¢

Remark: In the case where A = (k“¥) there is a similar bijection between
k-ribbon tableaux of shape A and evaluation p (see [13]) that allows to prove
with the same method the following specialisation:

HP(X5¢) = (1) Vpoen(X) .
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