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FRANÇOIS DESCOUENS

Abstract: Hall-Littlewood functions indexed by rectangular partitions,
specialized at primitive roots of unity, can be expressed as plethysms. We
propose a combinatorial proof of this formula using Schilling’s bijection be-
tween ribbon tableaux and rigged configurations [13].

Résumé: La spécialisation aux racines de l’unité des fonctions de Hall-
Littlewood indexées par des partitions rectangulaires peut s’exprimer à l’aide
de pléthysmes. On propose une preuve combinatoire de cette formule en
utilisant la bijection de Schilling entre les tableaux de rubans et les config-
urations [13].

1. Introduction

In [7, 8], Lascoux, Leclerc and Thibon proved a formula for Hall-Littlewood
functions, when the parameter is set to a root of unity.

This formula implies a combinatorial interpretation of the plethysms l
(j)
k [hλ]

and l
(j)
k [eλ] where hλ, eλ are respectively products of complete and elemen-

tary symmetric functions, and l
(j)
k the Frobenius characteristics of represen-

tations induced by a transitive cyclic subgroup of Sk.
However, the combinatorial interpretation of the plethysms of Schur func-

tions l
(j)
k [sλ] would be far more interesting. This question led the same au-

thors to introduce a new basis H
(k)
λ (X; q) of symmetric functions, depending

on an integer k ≥ 1 and a parameter q, which interpolate between Schur
functions (k = 1) and Hall-Littlewood functions Q

′

λ(X; q) (for k ≥ l(λ)).
These were conjectured to behave similarly under specialization at root of
unity, and to provide a combinatorial expression of the expansion of the

plethysm l
(j)
k [sλ] in the Schur basis for suitable values of the parameters.

This conjecture has been proved only in two cases: the stable case, which
reduces to the previous result on Hall-Littlewood functions, and k = 2 which
gives the symmetric and antisymmetric squares h2[sλ] and e2[sλ].
The proof given in [1] relies upon the study of diagonal classes of domino
tableaux, i.e. sets of domino tableaux having the same diagonals. Carré
and Leclerc proved that the spin polynomial of such a class has the form

(1 + q)aqb, and from this obtained the specialization H
(2)
λ∪λ(X;−1).

The aim of this note is to provide a similar proof for the stable case, that is,
to show that the result on Hall-Littlewood functions at roots of unity follows
from an explicit formula for the spin polynomials of certain diagonal classes
of ribbon tableaux, which turn out to have a very simple characterization
through Schilling’s bijection [13].
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2. Basic definitions on ribbon tableaux

For a partition λ = (λ1, . . . , λp), we write l(λ) its length, |λ| its weight
and tλ its conjugate. With λ is associated a k-core λ(k) and a k-quotient

λ(k). The k-core is the unique partition obtained by removing successively
k-ribbons from λ, and the k-quotient is a sequence of k partitions derived
from λ (see [3]). A k-ribbon is a connected skew diagram of weight k which
does not contain a 2×2 square. The first (north-west) cell of a k-ribbon is
called the head and the last one (south-east) the tail. A k-ribbon tableau
of shape λ and weight µ is a tiling of the skew diagram λ/λ(k) by labelled
k-ribbons such that the head of a ribbon labelled i must not be on the right
of a ribbon labelled j > i and its tail must not be on the top of a ribbon
labelled j ≥ i. We denote by Tabk(λ, µ) the set of all k-ribbon tableaux of
shape λ and weight µ.

Example: A 3-ribbon tableau of shape (8,7,6,5,1) and weight (3,3,2,1)

2

3

1

4

2

3

1

1

2

In [14], Stanton and White first introduced in the standard case (weight
µ = (1, . . . , 1)) a correspondence between k-ribbon tableaux and k-tuples of
standard Young tableaux. In the following, we will denote this bijection by
sw. This map sends the previous 3-ribbon tableau to the 3-tuple of tableaux:

2( ), ,
2 3

1 32 1 1 4

The spin of a k-ribbon R is defined by sp(R) = h(R)−1
2 where h(R) is the

height of R. The spin of a k-ribbon tableau is the sum of the spins of all
its ribbons, and the cospin is the associated co-statistic into Tabk(λ, µ). We
define spin and cospin polynomials as generating polynomials of Tabk(λ, µ)
with spin or cospin statistics:

G
(k)
λ,µ(q) =

∑

T∈Tabk(λ,µ)

qsp(T ) and G̃
(k)
λ,µ(q) =

∑

T∈Tabk(λ,µ)

qcosp(T ) .

Example: In Tab3((8, 7, 6, 5, 1), (3, 3, 2, 1)), these polynomials are:

G
(3)
(8,7,6,5,1),(3,3,2,1)(q) = 3q2 + 17q3 + 33q4 + 31q5 + 18q6 + 5q7

G̃
(3)
(8,7,6,5,1),(3,3,2,1)(q) = 3q5 + 17q4 + 33q3 + 31q2 + 18q + 5 .

By definition, the Hall-Littlewood functions Q
′

λ can be written as:

Q
′

λ(X; q) =
∏

i<j

(1 − qRij)
−1sλ(X)

where Rij is the raising operator such that Rij · sλ = sRij ·λ, with

Rij · λ = (λ1, . . . , λi + 1, . . . , λj − 1, . . . , λp) .
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In [9], Lascoux, Leclerc and Thibon showed that Hall-Littlewood functions
can be expressed in terms of ribbon tableaux by:

Q
′

λ(X; q) =
∑

T∈Tabp(pλ)

qsp(T )XT =
∑

µ

G
(k)
pλ,µ(q) mµ .

The following specialization, with n a positive integer and ζ a primitive k-th
root of unity, is proved in [7]:

Q
′

nk(X; ζ) = (−1)(k−1)npk ◦ hn(X) .

We shall give a combinatorial proof of this formula using the bijection be-
tween ribbon tableaux and rigged configurations given in [13].

3. Diagonal classes and rigged configurations

Let T be a k-ribbon tableau in Tabk(λ, µ) and (Λ(1), . . . ,Λ(k)) = sw(T ).

By writing α = −bλ1
k
c and β = b l(λ)

k
c, for all i ∈ {α, . . . , β} we define di as

the word obtained by concatenation of the i-th diagonals of all the tableaux
Λ(j) for j in {1 . . . k} (we recall that the i-th diagonal of a Young tableau
consists of all the cells with coordinates (x, y) such that y − x = i). We call
diagonal vector of T the vector dT = (dα, . . . , dβ). Two k-ribbon tableaux
T and T ′ in Tabk(λ, µ) are said to be equivalent if for all i in {α, . . . , β} the
i-th sorted word in dT and dT ′ are the same. A diagonal class in Tabk(λ, µ)

is the set D
(k)
λ,µ,d of all equivalent ribbon tableaux with diagonal vector d.

The set of all diagonal classes is denoted by ∆
(k)
λ,µ. We also define G

(k)
λ,µ(q, d)

(resp. G̃
(k)
λ,µ(q, d)) as the spin (resp. cospin) polynomials of the diagonal

class D
(k)
λ,µ,d.

Let ν = (ν(1), . . . , ν(p)) be an increasing p-tuple of partitions and J be

such that: for all a in {1, . . . , p − 1}, J (a) is a l(ν(a))-tuple of partitions

(J
(a)
1 , . . . , J

(a)

l(ν(a))
) with l(J

(a)
i ) ≤ ν

(a)
i − ν

(a)
i+1 and each part of J

(a)
i less than

ν
(a+1)
i − ν

(a)
i . A rigged configuration of shape ν, written (ν, J), is defined

by: for all a, top cells of each column of ν (a) which are in the i-th line are

filled with parts of the partition J
(a)
i . For two partitions µ and δ, we define

by RC(µ, δ) the set of all the rigged configurations (ν, J) such that ν (p) = tδ

and |ν(a)| = µ1 + . . . +µa for all a in {1..p} (definition as in [13] rather than
in [4, 5, 6]).

In the following, λ = (λ1, . . . , λp) is a partition with its k-core λ(k) empty

and its k-quotient λ(k) equal to a k-tuple of single rows. We also set
m = max(|Λ(1)|, . . . , |Λ(k)|). In this special case, Schilling gives in [13] a
bijection Ψ between Tabk(λ, µ) and rigged configurations RC(µ, δ), with

δi = |λ
(k)
i |. She also defined a co-statistic on these rigged configurations

which corresponds to cospin under Ψ. Consequently, by enumeration of
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RC(µ, δ), she obtains:

G̃
(k)
λ,µ(q) =

∑

{νµ,δ}

qΦ(ν)
∏

1≤a≤n−1
1≤i≤µ1

[
ν
(a+1)
i −ν

(a)
i+1

ν
(a)
i −ν

(a)
i+1, ν

(a+1)
i −ν

(a)
i

]

(1)

where {νµ,δ} represents the set of all shapes appearing in RC(µ, δ) and

Φ(ν) =
∑

1≤a≤n−1
1≤i≤µ1

ν
(a)
i+1(ν

(a+1)
i − ν

(a)
i ) . (1′)

In the following, we will be mainly interested in the shapes of rigged con-
figurations. We shall therefore propose a simpler but similar algorithm for
finding only the shape of the rigged configuration Ψ(T ) = (νT , JT ) with T
in Tabk(λ, µ). We construct an m× l(µ) matrix M T with the following rule:

MT
i,j = number of cells labelled j in d−i+1 .

Then, we construct a matrix NT where each column NT
·,j is defined by:

NT
·,j =

∑

l≤j

MT
·,l .

The j-th column is then equal to the j-th partition of νT .

Example: For the 3-ribbon tableau corresponding to the following 3-tuple:

1 4 1 21 2 3 3 ,,( )
we construct the matrices MT and NT :

MT =







3 0 0 0
0 2 0 1
0 0 1 0
0 0 1 0







NT =







3 3 3 3
0 2 2 3
0 0 1 1
0 0 1 1







.

The shape of the rigged configuration Ψ(T ) is:

as can be read from NT .

We can remark an additive property of this construction. From a k-tuple of
tableaux Λ, we can construct a k-ribbon tableau Th, which is the Stanton-
White inverse image of the k-tuple of tableaux formed by the h-th element
of each tableau of Λ.

Lemma 1.

NT =
m∑

h=1

NTh .
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Proof: Let MT
i,· be the matrix which has only the i-th line of M T and zero

everywhere else. Thus, by definition of M Ti we have:

MT =
m∑

i=1

MT
i,· =

m∑

i=1

MTi .

Then, we can write for all j:

∑

l≤j

MT
l =

m∑

i=1

∑

l≤j

MTi

l .

Consequently,

NT
j =

m∑

i=1

NTi

j . �

Proposition 1. For a given shape λ and weight µ, there is a bijection Γ

between {νλ,δ} and ∆
(k)
λ,µ compatible with the statistics. Hence, the explicit

expression for the cospin polynomial of a diagonal class is:

G̃
(k)
λ,µ(q, d) = qΦ(ν)

∏

1≤a≤n−1
1≤i≤µ1

[
ν
(a+1)
i −ν

(a)
i+1

ν
(a)
i −ν

(a)
i+1, ν

(a+1)
i −ν

(a)
i

]

(2)

where ν is the shape corresponding to the diagonal class.

Proof: As the k-quotient consists of single rows, each diagonal class D
(k)
λ,µ,d

is stable under permutation of cells which are in the same positions in each
tableau. By construction, this property implies that, for all l ∈ {1 . . . ,m},

MTl = MT ′
l . Then NTl = NT ′

l and NT = NT ′
, so Ψ(T ) and Ψ(T ′) have the

same shape. Consequently, as map Ψ is a bijection, D
(k)
λ,µ,d is embedded into

{νT
λ,µ}. Conversely, let T and T ′ be two tableaux in Tabk(λ, µ) which are

not in the same diagonal class. Thus, there exists j in {1, . . . ,m} such that

ΛT
j 6= ΛT ′

j . This implies that MT
·,j 6= MT ′

·,j and NT 6= NT ′
and consequently

{νT
λ,µ} 6= {νT ′

λ,µ}. Finally, we conclude that

Ψ(D
(k)
λ,µ,d) = {νT

λ,µ} for all diagonal classes.

The expression of cospin polynomials of diagonal classes in terms of q-
supernomial coefficients follows immediately from the properties of Ψ. �

In the following, we consider k-ribbon tableaux of shape λ = (kn)k for some
n ≥ 1. This implies that the image of these tableaux by the Stanton-White
map is a k-tuple of semi-standard Young tableaux with the same single row
partition of length n as shape.

Corollary 1. Diagonal classes with only one element correspond to ribbon

tableaux which are filled with k × k blocks of type:
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i

i

i

i

and the cospin of such a tableau is divisible by k.

Proof: A diagonal class D
(k)
λ,µ,d has an unique element if and only if there

is an unique way to fill λ(k) according to the vector d. This implies that,
for all i in {1, . . . , k}, all letters of di are the same. With this property, all
the Ti’s are the k × k blocks of the statement. For filling identically each
position of di, the weight µ must be of the form µ = (k ·s1, . . . , k ·sp). Then,

we construct the matrices MT and NT as :

MT =






















k 0 . . . . . . . . . 0
...

...
...

k 0 . . . . . . . . . 0
0 k 0 . . . . . . 0
...

...
...

...
0 k 0 . . . . . . 0
...

...
0 . . . . . . . . . 0 k
...

...
...

0 . . . . . . . . . 0 k






















NT =






















k k . . . . . . . . . k
...

...
...

k k . . . . . . . . . k
0 k k . . . . . . k
...

...
...

...
0 k k . . . . . . k
...

...
0 . . . . . . . . . 0 k
...

...
...

0 . . . . . . . . . 0 k






















where k occurs si times in the i-th column of the matrix M T . Then the
i-th partition in the shape νΨ(T ) is the rectangle ks1+...+si . This is why each
term in the expression (1’) is zero or a multiple of k. �

Proposition 2. For such a shape λ, k-th primitive roots of unity are roots

of cospin polynomials for all diagonal classes with strictly more than one

element.
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Proof: Let T be a tableau in a diagonal class D
(k)
λ,µ,d and ν = (ν(1), . . . , ν(p))

be the shape of Ψ(T ), which is the same for all tableaux in this diagonal
class. Let Λ = sw(T ) and h be the last position such that the diagonal
vector dh has at least two different elements. Then the (h + 1)-th parti-
tion in νT is a rectangle of width k and height s ≤ r. The last part of

ν(h) = (ν
(h)
1 , . . . , ν

(h)
l ) is equal to a with a < h and the following coefficient

appears:
[

ν
(h+1)
l −ν

(h)
l+1

ν
(h)
l

−ν
(h)
l+1, ν

(h+1)
l

−ν
(h)
l

]

=
[

k
a−0, k−a

]

.

Consequently, by a known property of the q-binomial
[

k
a, k−a

]

, all k-th prim-

itive roots of unity annihilate the diagonal class polynomials. �

Theorem 1. We have the specialization:

Q
′

nk(X; ζ) = (−1)(k−1)npk ◦ hn(X) .

Proof: We use functions H and H̃ as defined in [9]:

H
(k)

nk (X; q) =
∑

T∈Tabk(knk)

qsp(T )XT and H̃
(k)

nk (X; q) =
∑

T∈Tabk(knk)

qcosp(T )XT .

Let ζ be a k-th primitive root of unity. When q is set to ζ−1 in the expression
of H̃, by Proposition 2 one is left with

H̃
(k)

nk (X; ζ−1) =
∑

T

(ζ−1)
cosp(T )

XT

where T ranges now over k-ribbon tableaux as described in Corollary 1.
By definition, these tableaux have maximum spin because they are only
constructed with vertical ribbons, so their cospin is zero. Then, if we set
ΛT = sw(T ) we have

H̃
(k)

nk (X; ζ−1) =
∑

T

XΛ
(1)
T . . . XΛ

(1)
T

︸ ︷︷ ︸

k times

=
∑

S

XS . . . XS
︸ ︷︷ ︸

k times

where S ranges over all semi-standard Young tableaux with shape a single
row of length n. We obtain

H̃
(k)

nk (X; ζ−1) = pk ◦ hn(X) .

Using relation between H and H̃ given in [9], we have

H
(k)

nk (X; ζ) = ζ
k(k−1)n

2 H̃
(k)

nk (X; ζ−1) = (−1)(k−1)npk ◦ hn(X) . �

Remark: In the case where λ = (kc·k) there is a similar bijection between
k-ribbon tableaux of shape λ and evaluation µ (see [13]) that allows to prove
with the same method the following specialisation:

H
(k)
λ (X; ζ) = (−1)(k−1)cpk ◦ ec(X) .
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[1] C. Carré, B. Leclerc, Splitting the square of a Schur function into its symmetric

and antisymmetric parts, Journal of Algebraic Combinatorics 4 (1995), 201–231.
[2] J. Désarménien, B. Leclerc, J.-Y. Thibon, Hall-Littlewood functions and

Kotska-Foulkes polynomials in representation theory, Séminaire Lotharingien de
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