Enumeration of L-convex polyominoes.
Bijection and area.
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Abstract

We consider the class of L-convex polyominoes, i.e. (convex) polyominoes in which any
two cells can be connected by a path of cells in the polyomino that switches direction between
the vertical and the horizontal at most once - such paths with one change of direction look
like the letter L in one of its four cyclic orientations, hence the name. In this paper we prove
that the number f, of L-convex polyominoes with perimeter 2(n + 2) satisfies the linear
recurrence relation fpyo = 4fn+1 — 2fn, by determining a coding of such polyominoes in
terms of words of a regular language over four letters, thus giving a bijection with the class of
2-compositions (a simple generalization of the ordinary compositions) with sum equal to n.
Moreover we study some combinatorial properties of 2-compositions. In the last section we
determine the area generating function of L-convex polyominoes.

1 L-convex polyominoes: basic definitions

A polyomino is a finite union of elementary cells of the lattice Z x Z, whose interior is connected
(see Fig. 1 (a)). A polyomino is h-convez (resp. v-convex) if every row (resp. column) is connected.
A polyomino is hv-convez, or simply convez, if it is both h-convex and v-convex (see Fig. 1 (b)).
In a polyomino the semi-perimeter is half the length of the border, while the area is the number
of its cells.
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Figure 1: (a) a polyomino; (b) a convex polyomino; (¢) a L-convex polyomino; (d) a stack poly-
omino.

In a polyomino we will define a path as a self-avoiding sequence of unitary steps of four types:
north (0,1), south (0,—-1), east (1,0), and west (—1,0). A path connecting two distinct cells A
and B, starts from the center of A, and ends in the center of B (see Fig. 2 (a)). We say that a
path is monotone if it is constituted only of steps of at most two types (see Fig. 2 (b)). Given a
path w = uy ... ug, each pair of steps u;u;y1 such that u; # u;y1, 0 < i < k, is called a change of
direction.

In [4] the authors observe that a polyomino P is convex if and only if every pair of cells is
connected by a monotone path. Hence, taking into account the minimum number of changes of
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Figure 2: (a) a path between two cells in a polyomino; (b) a monotone path made only of north
and east steps.

direction in their monotone paths, they give a classification of convex polyominoes. In particular,
they call k-conver a convex polyomino such that every pair of cells can be connected by a monotone
path with at most k& changes of direction. For k = 1 we have the L-convex polyominoes i.e. the
class of polyominoes such that each two cells can be connected by a path with at most one change
of direction (see Fig. 1 (¢)). In an L-convex polyomino the horizontal basis (resp. vertical basis)
is the set of rows (resp. columns) having maximal length; by definition, both the horizontal and
the vertical basis are rectangles.

In this paper we will also deal with the well-known class of stack polyominoes [8] [12, p. 76]
[13] (see Fig. 1 (d)).

Let us denote by L, the set of L-convex polyominoes having semi-perimeter n + 2. In [3],
using the ECO method, it was proved that the numbers f,, = |L,| satisfy the recurrence relation:

fn+2 = 4fn+1 - 2fn (TL Z ]-) (1)

with fo=1, f1 =2, fo =7, giving the sequence 1,2,7,24,82,280,956,3264, . . . (sequence A003480
in [11]).

The main results of the paper are the following:

1. we prove that the class of 2-compositions (a natural extension of the ordinary compositions)
is enumerated by the sequence (fn)n>0, and then we obtain several other properties of such
a sequence;

2. we determine a bijection between 2-compositions and L-convex polyominoes, thus giving a
combinatorial explanation that L-convex polyominoes satisfy the recurrence in (1);

3. finally we find the generating function for L-convex polyominoes according to the area.

2 2-compositions

A composition of a natural number n is an ordered partition of n, that is a k-tuple
(21,...,z1) of positive integers such that z1 +---+ 2z =n (see [5]).

We now extend the definition of composition to the 2-dimensional case. For any positive integer
k, a 2-composition of length k is a 2 x k matrix whose entries are nonnegative integers, such
that each column has at least one non null element; the sum of the elements in a 2-composition
M is called the sum of M . Let U, be the class of 2-compositions with sum equal to n and let
un, = |Uy| . For instance

o-{l W) (BB R BB

and u; = 2, uz = 7. In particular Uy contains only the empty 2-composition, with length 0,
and ug=1.

In what follows we will study 2-compositions. Some of their properties are easy to prove and
for brevity they will only be stated.



Proposition 1 The numbers u, satisfy the recurrence Upis = 4Upy1 — 2u, for n > 1, with
the initial values ug =1, u; =2, us =7.

Proof. Let n > 1. The 2-compositions in U,42 can be all obtained by performing the following
operations on each 2-composition M € Upy1:

1. add a column [1

0] on the left of M;

2. add a column [(1)

] on the left of M;
3. increase by one the first element on the first row of M;
4. increase by one the first element on the second row of M.

By performing the four operations on the 2-compositions of U,41 we obtain a set of 4uy,q1
elements of U, 42. However, some 2-compositions are obtained twice, and they are precisely those
containing no null elements in the first column, that is:

1. those whose first column is [ﬂ ;

2. those whose first column is [z i ﬂ, with z, y >0 and (z,y) # (0,0).

Since the number of elements in each class is clearly given by wu, it follows that up42 =
441 — 2uy, . Finally the initial values have been already determined in the initial examples. O

We have then the remarkable fact that the number of the L-convex polyominoes with semi-
perimeter n+2 is equal to the number of the 2-compositions of n. In Section 3 we will determine
a simple bijection between these two classes.

Let up be the number of the elements of U, having length k. The first terms of wu, are
presented in the table (a) of Fig. 3.

Proposition 2 The numbers u, satisfy the recurrence relations
Upt2,h+1 = 2Unt1,k+1 T 2Ung1,k — Unk+1 — Un,k

Upt1,h+1 = Unh+1 +2Upn g+ Up— 1,6+ ...+ Uk -

In particular the infinite lower triangular matriz [un kln k>0 is a Riordan matriz with spectrum
2
=5
See [10] for the theory of Riordan matrices.
Proposition 3 The numbers u, have the Pisot property:
Wy~ Unga upg =21 (0> 1) 2)
(which reassembles the well-known Cassini’s identity for Fibonacci numbers [7]).

Since every 2-composition can be viewed as the concatenation of its columns, it follows that
the set U of all 2-compositions is the language A* on the infinite alphabet

A = {a, ao1, a, a11, ag, ...},
where the letter a;; corresponds to the column [;] . Then the generating series of U is

1
1—210—zo1 —T20 — T11 — ZTo2 — -+~

u($10, 201,220, X115 %02, - - )



n/k|0 1 2 3 4 5 6 n/k| 0 1 2 3 4 5 6
0 |1 0 1

1 10 2 1 1 1

2 10 3 4 2 2 3 2

3 |10 4 12 8 3 4 8 8 4

4 |10 5 25 36 16 4 8 20 26 20 8

5 |0 6 44 102 96 32 5 |16 48 76 76 48 16

6 |0 7 70 231 344 240 64 6 |32 112 208 252 208 112 32

Figure 3: (a) Table of the numbers wuy,; (b) table of the numbers vy .

(see [9]). In particular, for x;; = 27y we obtain the generating series

1

n, k
u(z,y) = Upk TY = —————, 3
() n%() k 1—zh(z)y ®)
where 5
-z
h(z) = n+2)z" = ——.
@ =Y+ = 5

This also proves the second part of Proposition 2. From (3) it follows the identity wu(z,y) =
1+ zy h(z) u(z,y) which implies the recurrence

n

Uni1 k41 = Z(l + 2)up—ik -
i=0

Finally, expanding (3) we can obtain the following explicit formula (for n, k > 1):

k .
_ E\(n+k—7—1\, ik
“"’“‘]ZO(J)( % — 1 )( 1)7 2877

For y =1 in (3), we reobtain the generating series u(z) for the numbers wu,. We also
retrieve that u(z) is the quasi-inversion of the series zh(z) as pointed out in [2], in a completely
different study. Moreover, since u(z) = 1+ zh(z), it follows that

n

Up4+1 = Z(k + 2)un,k .
k=0

Another interesting statistic can be obtained in the following way. For any n > 1, the projection
(here the term is used in the sense of the discrete tomography [6]) of the 2-composition

Mz[ml o ... ... .CL'k:|EUn
U1 Y2 cee eee Yk

is the 2-composition
1+ T2+ ...+ T
M) = .
(M) [yl +y2+---+yk]

Clearly (M) is still an element of U,,. Moreover, for any M € U, let us define
[M] ={Q € Un : m(Q) = m(M)}.

ol = L6 o] b A

One can easily observe that for any n > 0, there are n+1 distinct classes [M]in U,,. For 0 < k < n,
n—k
k

For instance:

let v, 1, be the number of elements of U,, whose projection is equal to ] . The first terms of

Un,k are presented in the table in Fig. 3 (b) (sequence A059576 in [11]).



Proposition 4 The generating series for the numbers vy is

1—z—xy+2%y
o(@,y) = D vk syt = 5 -
nF30 1 -2z — 2zy + 22%y

In particular

1—=z 2k—1(g — x2)*
"= "=—————~ (k>1).
;}Un,ol' 1—2{5’ ;ﬂun,kx (1_2$)k+1 ( et )

Moreover the numbers v, satisfy the recurrence

Un42,k+1 = 2Unt1,k+1 + 2Uny1,k — 2Unk

and (for (n,k) # (0,0) )

min(k,n—k)

=S )

3 A bijection between U, and L,

In this section we will present a bijection between L-convex polyominoes with semi-perimeter
equal to n + 2 and 2-compositions with sum n. In order to do this, we need first to represent
L-convex polyominoes in terms of 2-colored stacks. A stack polyomino is 2-colored when its rows
are colored black or white and satisfy the following priority conditions:

1. if a row is white then all the other rows of the same length above it (if any) have the same
color;

2. the rows having maximal length are colored white.

Starting from an L-convex polyomino, we give the black color to the rows placed below the hori-
zontal basis, and then vertically translate them above the basis respecting condition 1. (see Fig.
4 (b)). We observe that by the definition of L-convexity, the obtained polyomino is actually a
2-colored stack polyomino. Conversely, to each 2-colored stack polyomino there corresponds a

unique L-convex polyomino.

ﬁ ?
SR L

s

Figure 4: (a) an L-convex polyomino; (b) the corresponding 2-colored stack polyomino; (c¢) the
paths p and v; for simplicity we represent the north, east and west steps by means of 2-colored
arrows.
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The boundary of a 2-colored stack polyomino is uniquely determined by two non-intersecting
(except at the end points) lattice paths p and v (see Fig. 4 (c¢)):

1. p runs from the leftmost point having minimal ordinate to the rightmost point having max-
imal ordinate in the polyomino, and uses 2-colored north and east unitary steps, that are
black (resp. white) when it meets a black (resp. white) cell;



2. v runs from the rightmost point having minimal ordinate to the rightmost point having
maximal ordinate in the polyomino, and uses 2-colored north and west unitary steps, that
are black (resp. white) when it meets a black (resp. white) cell.

By definition, both p and v start with a white north step, and u ends with an east step.

Now we give a coding of 2-colored stacks in terms of words of a regular language over the
alphabet {a,b,c,d}. The word representation of the polyomino is obtained by following the two
paths, u and v, level by level from the bottom to the top of the polyomino. At each level one can
meet:

1. a pair of north steps, one in u, and the other in »; in this case we write a (resp. d) if the
steps are white (resp. black);

2. a sequence of east steps in p, and, on the same horizontal line, a sequence of west steps in
v; in this case we write a b for each east step, and a c¢ for each west step. By convention, we
assume that, at the same level, we read east steps before west steps.

Using such a coding we have that any L-convex polyomino having semi-perimeter n + 2 can be
represented as a word in the alphabet {a, b, ¢, d}, having the same length. The language of all such
words will be referred to as K. For example, the word corresponding to the polyomino in Fig. 4
(a) is aabceddabdcaabdab. The number of rows (resp. columns) of the polyomino is given by the
number of a plus the number of d (resp. the number of b plus the number of ¢) in the corresponding
word of K.

The words of K are characterized by the property that they begin with an a and end with a
b, and contain neither the factor ad nor the factor cb. These simple observations lead us to state
that K is a regular language, whose regular expression is:

a(a+b+cta+bdt +ctdt)b. (4)

Notice that using the same coding we can represent stack polyominoes in terms of words on
the alphabet {a, b, c}, beginning with an a and ending with a b, and not containing the factor cb.
A coding of L-convex polyominoes in terms of a regular language has been also considered in [1]
in order to investigate about ordering properties of polyominoes.

Let 1;; be the number of L-convex polyominoes with ¢ +1 rows and j+1 columns, as
shown in the table of Fig.5. From (4), removing the first and the last letter, we can obtain the
generating function for these numbers, as described in [9], after setting a =d =z and b=c=y:

- 1
Uz,y)= ) Lija'y’ = 1 Ty Ty Ty
0,20 R T Ry G | )

that is (1—2)(1—y)
_ — o)1~y
l(w’y)_l—m—2y+x2+y2' ®)

Hence, it follows that the numbers I;; satisfy the recurrence

livajre = 21 e + 2liva o = lijrz — liva,j -

Letting z = y in (5) we reobtain the generating function f(z) = I(z,z) of K i.e. the generating
function of L-convex polyominoes according to the semi-perimeter.

To conclude our bijection, we now give a representation of the words of K of length n + 2 in
terms of 2-compositions of U,,. First we observe that each word of X can be uniquely factorized
into the factors:

cha, bd, d, h,j >0, rs>1.

Let w be the word of K corresponding to a polyomino P € L,, from which we have removed
the first and the last symbol; we use the following coding:

h h+]. k 0 r 18 r
ca—)[ E bd™ — ka1 (h,k > 0), c'd® — s (r,s > 1),



1 1 2 3 4 5 6
1 1 1 1 1 1
5 11 19 29 41 55

11 42 110 235 441 756
19 110 402 1135 2709 5740
29 235 1135 4070 11982 30618
41 441 2709 11982 42510 128534
55 756 5740 30618 128534 452900
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Figure 5: Table of the numbers [; ; of L-convex polyominoes with ¢4 1 rows and j+1 columns.

thus obtaining a 2-composition. For instance, the word aabecddabdcaabdab (corresponding to the

polyomino in Fig. 4 (a)) is translated into the 2-composition
0 2101
2 00 2 0|

The reader can easily observe that using the above coding is also easy to pass from a 2-
composition to a word of I, and then to an L-convex polyomino, which completes the bijection.

Fig. 6 shows the bijection between Lo and Us.

10 =

aaab aabb abbb abab acab abdb acdb

F R - - R R H R

Figure 6: The bijection between Ly and Us.

Using the previously defined bijection, one natural question is how to interpret in terms of
L-convex polyominoes the various properties determined in Section 2.

For instance, let us now consider the statistic in the table (b), Fig. 3. In terms of the word
representation of a 2-composition M, the two entries of 7(M) are given by the number of a plus
the number of ¢, and by the number of b plus the number of d, respectively.

A

2011110
acabcdaacdbb 0110011

C

Figure 7: A polyomino P, the corresponding 2-composition M, with projection m(M) = (%); the
two entries of (M) are given by the lengths of the paths AB and C'D minus one, respectively.

It is also possible to read the previous statistic in terms of L-convex polyominoes. Let P be
an L-convex polyomino, and M (P) (briefly, M) the corresponding 2-composition. Let us consider
the following discrete points on P (see Fig. 7):

i) A is rightmost point having maximal ordinate of the vertical basis;
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Figure 8: Generation of L-convex polyominoes.

ii) B is the rightmost point having minimal ordinate of the horizontal basis;
iii) C is the rightmost point having minimal ordinate of the vertical basis;

iv) D is the leftmost point having minimal ordinate of the horizontal basis.

Now, the element in the first row of w(M) is given by the number of steps in the path connecting
A to B, minus one. Analogously, the element in the second row of (M) is the number of steps in
the path connecting C' to D, minus one.

It would be also worth studying the interpretation of some parameters defined on a 2-composition
(for instance the length of the composition), with respect to the correspondent L-convex polyomino
through the bijection we have described above. On the other side, it would be interesting to inves-
tigate how some parameters defined on L-convex polyominoes (for example, the number of rows
and columns, the area) can be interpreted on the corresponding 2-compositions.

4 Enumeration according to the area

In this section we determine the generating function of L-convex polyominoes according to
the area, solving a problem posed in [3]. In order to do this, we first observe that every L-convex
polyomino can be obtained with a sequence of the following operations starting from the polyomino
formed by one cell:

1. add a new row of maximal length;
2. add a new cell on the left of a row of maximal length;
3. add a new cell on the right of a row of maximal length.

(See Fig. (8) for an example.) In this way, however, every polyomino with exactly one row
of maximal length with a cell protruding on the left and a cell protruding on the right can be
obtained two times applying operations 2. and 3. first in this order and then in the inverse order.

Let L, ;; be the set of all L-convex polyominoes with semi-perimeter n +2 and i+ 1 rows
of maximal length j 4+ 1 and let

anij(g) = Y, ¢*™

PELy i ;



where a(P) is the area (i.e. the number of cells) of P. It follows that

ani1,i41,(0) = @ anij(g) (6)
n+1

Ani2,0,42(0) = Y (k + 1)(2qan11,k,j4+1(9) — Pank,;(9))- (7)
k=0

Consider now the generating series

e z
az,g q;T E Qnp z,] , q,x y E Qp z,]

n>0 n,i>0

Let us consider L-convex polyomino whose maximal rows have length j + 1. It may be reduced
to an L-convex polyomino having a single row with that length. Otherwise, if it has several such
rows, by removing one of them we can obtain a new L-convex polyomino of the same type. Fig. 9
depicts this decomposition.

<><>%

- 1
Figure 9: The decomposition of L-convex polyominoes whose maximal rows have length j + 1

It follows that

bj(g; 7)
aj(gz,y) = m (8)
where b;(q;x) = ao,;(g; ) .
From equation (7) it follows
Rabjr2(g7) = 2q [Ra(0y + Va1 (g 2,9) ly=1 — ¢ [0y + 1)a;(g; 2, y) Jy=1 9)

where R, is the operator defined by R, f(z) = (f(z) — f(0))/2z and 6, = y(f—y . From equation
(8) it follows that

J+1 b
Buas G52, = AL

Since bo,j+2(q) = ao,0,j+2(q) = 0 and by j12(q) = a1,0,j+2(¢) = 0 for every j, equation (9)
becomes
2qx

bj+2(q;£b') = (1 _ qj+2$)2

i+ (2) = = ey b6 2) (10)

Finally we need the initial values. For j = 0 there is only the L-convex polyomino [] and hence
bo(g;x) = q. For j =1 we have all the following polyominoes

s bptbp . Hpsds

2 2,2
bi(ga) =2 3 i g — ¢z(l+2gz —2q %)
h,k>0 (1 —g2)

and then




Recurrence (10), with the given initial values, completely determines the sequence b;(g;x) and
easily allow to find that

¢ tal f(g; @)
(1—qz)2(1 — g%x)?--- (1 — ¢Ix)?

for suitable polynomials f;(g; ). Substituting the expression of b;(g;z) given by (11) in (10), it
follows that the polynomials f;(g;) satisfy the recurrence

fiva(g;2) =2fjp1(g2) — 1 — ¢ 2) fi(g; @) (12)

with the initial conditions fo(g;z) =1 and fi(¢;z) = 1+ 2qx — ¢*x?. This completely defines
the polynomials fx(g; ).
Then we have that

bj(g;x) = (11)

¢ al fi(g; x)
1—gz)*(1 - g*z)?--- (1 - ¢2)*(1 — g/ tlay)

aj(g;x,y) = (

and finally

K1,k k£ (.

» ¢ 2" fi (g @)

a(g;z,y,2) = an,i i (@)x"y'2? = (13)
o) = 2, a8 =) e e - (- (= )

From this series we can deduce several other generating series. First of all for, ¢ =1, equation
(12) becomes

five(2) = 2fj11(L2) — (1 - 2)? f;(1;2)
with fo(1;2) =1 and fi(1;2) = 1+22 — 2. Then the generating series for these polynomials is
1—(1—x)%t
1—2t+ (1 —xz)2t2°

f(].;SL',t) = (14)

Hence, for ¢ =1 the series (13) becomes

. zz _ (1-2)*(1 - xz)
f (17;6’ (1- 37)2) S (1—zy)(1 — 22 4 22 — 2x2 + 2222)

In particular, for y = z = 1, we obtain another time the generating series

(1-=)?

aliz,1L1) = - 2o

for the number of L-convex polyominoes according to semi-perimeter.

Finally, let a, be the number of all L-convex polyominoes with area n. The first terms of
this sequence are: 1, 1, 2, 6, 15, 35, 76, 156, 310, 590, 1098, 1984, 3515, 6094, 10398, 17434, 28837,
47038, 75820. This sequence is not in the Encyclopedia of Integer Sequences [11]. From (13) follows
the main proposition:

Proposition 5 The generating series of the sequence a, is

) B £ (g; 1
alg) =Y anq" =1+ (1—g2(1 —qg)z---k((lq—)q'“)z(1 —at)

n>0 k>0

This series is very similar to the generating series [13]

k+1
q+

S Ve P DY e O RS (=G Tk

n>0 k>0

for the numbers s, that count stacks with area n (sequence A001523 in [11]). They only differ
for the presence of the polynomials fx(q;1). It could be interesting a deeper investigation about
the (combinatorial and formal) structure of such polynomials.
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