
The Disrete Fundamental Group ofthe Order Complex of BnShelly SmithAbstratA-theory is a reently developed area of algebrai ombinatoristhat takes onepts from algebrai topology and transfers them to aombinatorial setting. It ontains disrete analogues to ontinuity,homotopy, and fundamental group, de�ned on graphs and simpliialomplexes. We provide a onstrution for a graph arising from theorder omplex of the diret produt of two graded latties. With thisonstrution, we show that the rank of the abelianization of the disretefundamental group of the order omplex of the Boolean lattie, Bn, is2n�3(n2 � 5n + 8) � 1. This result reovers a formula from Bj�ornerand Welker's work on the omputational omplexity of the k-equalproblem, a omputer siene appliation.1 IntrodutionAn early appearane of a disrete homotopy theory an be found in thework of Atkin [1, 2℄ in the early 1970s. A physiist modeling soial networksusing simpliial omplexes, Atkin developed Q-analysis, a disrete topolog-ial theory used to measure the ombinatorial onnetivity of a omplexand identify ombinatorial \holes" in the omplexes. In 1972, Maurer [8℄developed a similar onept of disrete deformation of paths in graphs whileworking on his dissertation, developing a haraterization of basis graphs ofmatroids. In 1983, Malle [7℄ also de�ned a notion of equivalene of graphmaps, as well as disrete fundamental group. These authors were appar-ently unaware of eah other's work, but in fat the onepts they reatedare all equivalent. More reently, Laubenbaher and Kramer [6℄ beameaware of Atkin's work while onduting researh in soial and ommunia-tions networks. With Barelo and Weaver [3℄, they pursued Atkin's ideasin Q-analysis and extended them to inlude graphs and disrete analoguesto higher homotopy groups. They also named their work A-theory in hishonor.Let � = (V;E) and �0 = (V 0; E0) be simple graphs, with no loops orparallel edges. A graph map f : �! �0 is a set map V ! V 0 that preservesadjaeny, that is, if vw 2 E, then either f(v) is adjaent to f(w) in �0,denoted by f(v) ��0 f(w), or f(v) = f(w). Let v 2 V and v0 2 V 0 be1



distinguished verties. A based graph map is a graph map f : (�; v)! (�0; v0)suh that f(v) = v0. The box produt �2�0 of two graphs, � and �0, is thegraph with vertex set V �V 0 and an edge between (v; v0) and (w;w0) if either1. v = w and v0 ��0 w0, or2. v0 = w0 and v �� w.Let Im be the path on m+1 verties, with verties labeled from 0 to m.The boundary, �Im, is the set of verties 0 and m. This path has the samerole as that of the unit interval in lassial homotopy theory.De�nition 1.1. [3℄Let � = (V;E) and �0 = (V 0; E0) be simple graphs with distinguishedverties v0; v1 2 V and v00; v01 2 V 0. Let f and g be based graph maps �! �0suh that f(v0) = g(v0) = v00 and f(v1) = g(v1) = v01. We say that f andg are G-homotopi relative to v00 and v01, denoted by f 'G g rel(v00; v01) ifthere is an integer n and a graph map F : �2In ! �0 that disretely deformsf into g, spei�ally1. F (v; 0) = f(v) 8 v 2 V2. F (v; n) = g(v) 8 v 2 V3. F (v0; j) = v00 0 � j � n4. F (v1; j) = v01 0 � j � n.If v00 = v01, then we write f 'G g rel(v00), or simply f 'G g of the basevertex is lear.While G-homotopy is de�ned for graph maps in general, for the remain-der of this disussion, we will limit our investigation to graph maps de�nedon the disrete interval Im. If a based graph map f : (Im; �Im) ! (�; v)sends �Im to the base vertex v in �, then the image of f is a string loop in�, or simply a loop, based at v. Furthermore, we an \streth" a graph mapf : (Im; �Im) ! (�; v) to de�ne it on a larger disrete interval by sendingverties with labels > m to v. We an view these graph maps as beingde�ned on Z, with only �nitely many images not equal to v, so we may dropthe subsript m.f : (Im; �Im)! (�; v) 'G ~f : (Ip; �Ip)! (�; v); p > mMultipliation of graph maps f and g is equivalent to the onatenationof the loops orresponding to the maps. Furthermore, G-homotopy is an2



equivalene relation on the set of based graph maps from the disrete intervalI to �. Barelo, Kramer, Laubenbaher, and Weaver [3℄ showed that theseequivalene lasses, with multipliation, form a group, denoted by AG1 (�; v),and referred to simply as the A1-group of �. As in lassial topology, if �is onneted, the disrete fundamental group AG1 (�; v) is independent of thehoie of base vertex.
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Figure 1: A G-homotopy from f to g.Figure 1 shows an example of two G-homotopi graph maps; the imageof f is the 4-yle �, and the image of g is the single vertex v0. The vertiesof the graph (grid) I42I2 are labeled with the image of a G-homotopy fromf to g, where g has been strethed so that it is also de�ned on I4. TheG-homotopy F is itself a graph map whih must preserve adjaeny, thuseah edge in the grid orresponds to an edge or a single vertex in �.Furthermore, is is straightforward to show that any based graph mapfrom the disrete interval to the 4-yle is G-homotopi to the onstant mapg, so the A1 group of the 4-yle, and similarly the 3-yle, is trivial. Bareloet al. [3℄ also showed that AG1 (�; v) ' �1(�; v)=N , where �1(�; v) is the las-sial fundamental group of � when onsidered as a 1-dimensional simpliialomplex and N is the normal subgroup generated by 3-and 4-yles. Thus,omputing the A1 group of a graph is equivalent to attahing 2-ells to the3- and 4-yles of the graph and omputing the lassial fundamental group3



of the resulting topologial spae.2 Construting the Graph for the Boolean LattieThere is an equivalent de�nition of disrete homotopy for simpliial om-plexes that we will use in order to ompute the disrete fundamental groupof the order omplex of Bn, the Boolean lattie. This de�nition inludes agraded version of the disrete fundamental group, related to the dimensionof the intersetion of simplies in a simpliial omplex. This omplete de�-nition an be found in [3℄, however, here we will only be onerned with thehighest of these groups. In general, to ompute the disrete fundamentalgroup of a simpliial omplex �, we �rst onstrut a graph �(�) and thenwe ompute AG1 (�(�)).The simpliial omplex we will onsider here is the order omplex ofBn. The i-faes of �(Bn) orrespond to the i-hains of Bn. When we on-strut the graph, �((�(Bn)), or simply �(Bn), assoiated with the highestof the disrete fundamental groups, the verties of the graph orrespond tothe maximal faes of �(Bn). These maximal faes are the maximal hainsin Bn after the 0̂ and 1̂ are removed, or equivalently, permutations in Sn.Two verties in �(Bn) are adjaent if the two hains in Bn di�er in pre-isely one element. In this ase, the assoiated permutations in Sn di�erby multipliation on the right by a simple transposition (i; i + 1), for some1 � i � n� 1.
Figure 2: The 1-skeleton of the permutahedron P3.We note that �(Bn) is the 1-skeleton of the permutahedron Pn�1 [11℄,and we see the graph for n = 4 in Figure 2. We an see that if we attah2-ells to the 4-yles in �(B4), we are left with 6-yles. Thus, in orderto ompute the rank AG1 (�(Bn))ab, the abelianization of the A1-group, weare looking for a way to de�ne and ount equivalene lasses of based graph4



maps de�ned on the disrete interval whose images are 6-yles in �(Bn).Unfortunately, it is not easy to see a relationship just by looking at thepermutahedron.The breakthrough that allows us to understand the G-homotopy rela-tion on �(Bn) is the simple observation that Bn is isomorphi to the diretprodut Bn�1 � B1. We will use this observation to de�ne a method foronstruting �(Bn) that will make it easier for us to ompute the rank ofAG1 (�(Bn))ab. The graph �(Bn) is not isomorphi to �(Bn�1)2�(B1) be-ause a maximal hain in Bn orresponds to a shu�e of the edges of amaximal hain in Bn�1 with the single edge from B1. These edges an beshu�ed in more than one way, so the produt of the graphs for the smallerlatties will not have enough verties.To solve this problem, we introdue the shu�e graph. The verties ofthe shu�e graph �n�1;1shuffle orrespond to shu�es of a maximal hain in Bn�1with the single edge from B1. Two verties are adjaent if the shu�es di�erby a swith of two onseutive edges, one from Bn�1 and the other from B1.We note that �(B1) is a single vertex and �n�1;1shuffle is a path on n verties.We use this shu�e graph in the onstrution of another graph, e�(Bn):e�(Bn) = �(Bn�1)2�(B1)2�n�1;1shu�e
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Figure 3: The intermediate graph e�(B4).5



The verties in e�(Bn), the box produt of three graphs, are orderedtriples. The �rst oordinate is a permutation in Sn�1 orresponding to amaximal hain in Bn�1. The seond oordinate is the element n, orre-sponding to the single edge in B1. The third oordinate is an integer i,0 � i � n � 1, and it uniquely de�nes the shu�e of the two hains by in-diating how many edges of the hain from Bn�1 are below the edge fromB1 in the resulting hain. Two verties in e�(Bn) are adjaent if either thehains in Bn�1 are the same and the shu�es are adjaent in �n�1;1shuffle, or thehains di�er in one element and the shu�es are the same.The graph e�(Bn) now has the right number of verties, but there are toomany edges beause some edges are inident to pairs of hains in Bn thatdi�er in more than one element. This problem, however, is easily solved byremoving a well-de�ned set of edges from e�(Bn) to obtain the desired graph�(Bn) [9℄; we an use �(B4) to illustrate the following properties of �(Bn).
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(12) (23) (34)Figure 4: The �nal graph �(B4).1. Verties. We label the verties with permutations in Sn, written insingle line notation.2. Edges. Eah edge orresponds to a simple transposition. The graphis bipartite and (n� 1)-regular, with eah vertex inident to preiselyone edge for eah of the n� 1 simple transpositions in Sn.6



3. Bipartite. The graph is bipartite, with verties partitioned into evenand odd permutations, thus all yles in the graph are of even length.4. Cyles. The set of transpositions labeling the edges of a yle orre-spond to a representation of the identity in Sn. Eah 4-yle in thegraph orrespond to a pair of disjoint transpositions suh as (12) and(34). Eah 6-yle orresponds to a pair of onseutive simple trans-positions, suh as (12) and (23). All other yles of length � 8 anbe expressed as the onatenation of 4- and 6-yles. Therefore, wean limit our investigation to 6-yles whih are not the onatenationof 4-yles. We want to ount the G-homotopy equivalene lasses of6-yles in Bn, whih form a basis for AG1 (�(Bn))ab.5. Levels. The may view the graph as having n levels; eah level wasinitially a opy of �(Bn�1) before we removed edges from e�(Bn) . Allverties in a single level resulted from the use of the same shu�e,so all permutations in level i have the element n as entry i whenthe permutations are written in single line notation. We an lassifyeah edge in the graph as horizontal if it is inident to two vertieswithin the same level of �(Bn), or vertial if it is inident to vertiesin onseutive levels of the graph. We note that all vertial edgesbetween two onseutive levels orrespond to the same transposition.We an similarly de�ne horizontal and vertial 6-yles. All verties ina horizontal yle are in the same level. A vertial 6-yle ontains twoverties in eah of three onseutive levels. We identify eah vertial6-yle with the middle of the three levels. For example, 1243-2143-2413-4213-4123-1423 is a vertial 6-yle at level 2 in �(B4), and itsedges orrespond to the transpositions (12) and (23).3 Equivalene ClassesIn this setion, we desribe how to distinguish between di�erentG-homotopyequivalene lasses so that we may ount them. The proof of both Lemma3.1 and Theorem 3.2 rely heavily on heking many possible ases of thelabelings of G-homotopy grids, the preise details of whih we will not gointo here, but we give a brief outline of eah proof to apture the avor ofthe argument. The omplete details of the proofs are ontained in [9℄.Let C1 and C2 be two distint 6-yles in �(Bn), and suppose that theedges of C1 are assoiated with the transpositions (i� 1; i) and (i; i+1) forsome i, 2 � i � n � 1. If C1 'G C2, then, as in our example in Figure 1,7



we must be able to onstrut a G-homotopy grid so that the image of the�rst row of the grid is C1 and the image of the last row is C2. Reall thata G-homotopy is itself a graph map and must preserve adjaeny. Whenwe onsider the various hanges that we an make from row to row in thegrid that will preserve adjaeny, we �nd that they will also preserve theparity of the number edges in eah row that are assoiated with (i � 1; i)and (i; i + 1). In partiular, the last row must also ontain an odd numberof edges assoiated with eah of (i�1; i) and (i; i+1), and onsequently theedges of C2 are also assoiated with this same pair of simple transpositions.This leads us to our initial desription of equivalene lasses of 6-yles.Lemma 3.1. Let C1 and C2 be two distint 6-yles in �(Bn). If C1 'G C2,then they are assoiated with the same pair of transpositions, (i � 1; i) and(i; i + 1), for some i, 2 � i � n� 1.Assoiation with the same pair of transpositions is a neessary onditionfor G-homotopy of 6-yles, but it turns out not to be suÆient. In orderto guarantee that two 6-yles, C1 and C2, are G-homotopi, they mustalso di�er by a sequene of simple transpositions, �1�2:::�k, where eah �jis disjoint from (i � 1; i) and (i; i + 1). That is, if we multiply eah ofthe six permutations in C1 by the same sequene �1�2 � � � �k, the result ispreisely the six permutations in C2. To indiate this relationship, we writeC2 = C1�1�2 � � � �k.Theorem 3.2. Let C1 and C2 be two distint 6-yles in �(Bn). ThenC1 'G C2 i� there exists an integer k � 1 suh that C2 = C1�1 : : : �kwhere C1 and C2 are both assoiated with (i� 1; i) and (i; i+1) for some i,2 � i � n � 1, and the �j are simple transpositions in Sn that are disjointfrom (i� 1; i) and (i; i+ 1).Proof sketh. The �rst part of the proof is onstrutive: assuming C2 =C1�1 : : : �k, we onstrut a G-homotopy from C1 to C2 whose image is asequene of 6-yles onneted by 4-yles. Figure 5 is the image of a suha G-homotopy from C1 to C2 = C1�1�2�3.In the seond part of the proof we assume C1 'G C2, whih means thereis a path P suh that C1PC�12 P�1 'G �, where � is a permutation inC1. The edges of P orrespond to simple transpositions, and the produtof these transpositions is a permutation in Sn. Therefore we must be ableto onstrut another valid G-homotopy grid, this time with the �rst roworresponding to C1PC�12 P�1 and the last row orresponding to the singlevertex �. By again performing a hek of all possible ases, we an show that8
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(i−1, i) (i, i+1)Figure 5: A G-homotopy from C1 to C2.this permutation an be written using only transpositions that are disjointfrom the pair (i� 1; i) and (i; i + 1) assoiated to C1 and C2.Theorem 3.2 stems from the de�nition of a G-homotopy from C1 to C2,and the limitations on the types of hanges we are able to make from rowto row of the G-homotopy grid. We an ombine this theorem with our newunderstanding of the struture of �(Bn) to make the following observationsabout equivalene lasses:1. Horizontal and vertial 6-yles are in di�erent equivalenelasses. All permutations in a single horizontal 6-yle have the ele-ment n in the same position when they are written in single-line nota-tion beause they result from the use of the same shu�e. In a vertial6-yle, the element n will be in di�erent positions in the permutations,depending on whih of three onseutive levels eah permutation is in.Consequently a horizontal 6-yle annot be G-homotopi to a vertial6-yles, so we may ount horizontal and vertial equivalene lassesseparately.2. Counting Horizontal Equivalene Classes. We an ount the hor-izontal equivalene lasses in level n, whih remains a opy of �(Bn�1)even after we removed edges in the onstrution of �(Bn). We an showthat a horizontal 6-yle in another level of �(Bn) is G-homotopi tothe onatenation of a 6-yle in level n with vertial 4- and 6-yles,9



and will therefore be ontained in the produt of a horizontal equiva-lene lass ounted at level n with vertial equivalene lasses desribedbelow.3. Vertial 6-yles at di�erent levels of �Bn are in di�erentequivalene lasses. This is a diret onsequene of Lemma 3.1and the observation we made in Setion 2 that a vertial 6-yle atlevel i, 2 � i � n � 1 is assoiated with transpositions (i � 1; i) and(i; i+ 1).4. There are �n�1i ��i2� equivalene lasses at level i of �Bn , 2 � i �n�1. We an ount the number of vertial equivalene lasses at leveli by using the order of the subgroup of Sn generated by transpositionsdisjoint from (i�1; i) and (i; i+1) to determine the number of 6-ylesin eah equivalene lass.Using standard tehniques [10℄ to ount the equivalene lasses desribedabove gives us a total of 2n�3(n2 � 5n+8)� 1 lasses. Eah yle of length� 8 is ontained in the produt of one or more of these lasses, thus theolletion of equivalene lasses forms a basis for AG1 (�(Bn))ab.4 Related QuestionsIn the beginning of Setion 2, we noted that omputing the A1 group of�(Bn) is equivalent to attahing 2-ells to the 4-yles of the graph andomputing the lassial fundamental group of the resulting 2-dimensionaltopologial spae. Eri Babson noted in 2001 that attahing 2-ells to the4-yles in �(Bn) results in a topologial spae that is homotopy equivalentto the omplement (in Rn) of the 3-equal hyperplane arrangement. The k-equal hyperplane arrangements have been extensively studied, and it turnsout that these two problems are in fat related (for more details see [4℄).Our omputation of the rank of AG1 (�(Bn))ab reovers a formula of Bj�ornerand Welker [5℄ for the dimensions of the homology groups of the 3-equalarrangements.The de�nition of the shu�e graph �n�1;1shuffle an be generalized to a graph�k;lshuffle and used to onstrut the graph assoiated with the �(L1�L2), theorder omplex of the diret produt of �nite ranked latties of rank k and l,respetively. The arguments in the omputation of the rank of AG1 (�(Bn))abdepended heavily on the struture of Sn in determining what hanges are10



permissible from row to row in a valid G-homotopy grid. Nevertheless, usingthe onstrution desribed in Setion 2 to build �(�(L)) from smaller graphsmay prove useful in obtaining results for latties other than Bn.Referenes[1℄ R. Atkin, An Algebra for Patterns on a Complex, I, Int. J. Man-MahineStudies, 6 (1974), 285-307.[2℄ R. Atkin, An Algebra for Patterns on a Complex, II, Int. J. Man-Mahine Studies, (1976), 448-483.[3℄ H. Barelo, X. Kramer, R. Laubenbaher, and C. Weaver, Foundationsof a Connetivity Theory for Simpliial Complexes, Adv. Appl. Math.,26 (2001), 97-128.[4℄ H. Barelo and R. Laubenbaher, Perspetives on A-Homotopy and itsAppliations, to appear in Journal of Disrete Mathematis, 2004.[5℄ A. Bj�orner and V. Welker, The Homology of \k-Equal" Manifolds andRelated Partition Latties, Adv. Math., 110 (1995), 277-313.[6℄ X. Kramer and R. Laubenbaher, Combinatorial Homotopy of Sim-pliial Complexes and Complex Information Networks, Appliations ofComputational Algebrai Geometry (D. Cox and B. Sturmfels, eds.),Pro. Sympos. in Appl. Math., Amerian Mathematial Soiety, vol.53, Providene, RI, 1998.[7℄ G. Malle, A Homotopy Theory for Graphs, Glasnik Matematiki, 18(1983), 3-25.[8℄ S. Maurer, Matroid Basis Graphs. I, J. Combin. Theory (B), 14 (1973),216-240.[9℄ S. Smith, A Disrete Homotopy Theory for Graphs, with Appliationsto Order Complexes of Latties, Ph.D. thesis, Arizona State University,http://faulty.gvsu.edu/smithshe, 2004.[10℄ H. Wilf, Generatingfuntionality, Aademi Press, In., San Diego, CA,1994.[11℄ G. Zeigler, Letures on Polytopes, Springer-Verlag, New York, 1995.11


