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Abstract. An algorithm is provided in order to decide whether a bipartite

graph is Cohen-Macaulay. It works by appropriately deleting vertices from the

given graph and by applying known properties on the obtained subgraphs.

1. Introduction

The Cohen-Macaulay property of a graph (CM for short) is worth investigating,

since it comes from an algebraic concept and the combinatorial meaning is not so

evident. In fact it is difficult to recognize a CM graph just by looking at it. So, it

is interesting to find necessary and sufficient conditions for a graph in order to be

Cohen Macaulay and it would be very useful to find a decision procedure.

Cohen-Macaulay graphs are investigated in several works, see for example [6], where

one can find constructions of CM graphs and properties about bipartite CM graphs.

The latter ones are characterized in [4]. It is also known that a chordal graph is

CM if and only if it is unmixed (see [5]) and that the complement of a d-tree is

CM (see [2]). Actually there is no decision procedure for CM graphs. In this paper

we show an algorithm for checking Cohen-Macauly property of a bipartite graph.

Such algorithm uses some results about CM graphs in [6] and it is based on the

decision procedure for bipartite graphs and vertex covers in [1].

2. Cohen-Macaulay Graphs

Here we will introduce the concept of Cohen-Macaulay graph and all definitions

and properties, that we will use as tools for studying such graphs.
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DEFINITION 2.1. The ascending chain condition, commonly abbreviated ”A.C.C.,”

for a partially ordered set X requires that all increasing sequences in X become sta-

tionary.

DEFINITION 2.2. A ring is called Noetherian if it does not contain an infinite

ascending chain of ideals.

REMARK 2.1. If R is Noetherian, it satisfies the ascending chain condition on

ideals.

PROPOSITION 2.1. The following properties are equivalent.

(1) R satisfies the ascending chain condition on ideals.

(2) Every ideal of R is finitely generated.

(3) Every set of ideals contains a maximal element.

Let M be a module over a ring R. We say that x ∈ R is a M-regular element if it

is not a zero-divisor on M .

DEFINITION 2.3. A sequence x = x1, . . . , xn of elements of R is called a M-

regular sequence if

• (i) xi is a M/(x1, . . . , xi−1) M-regular element for i = 1, . . . , n;

• (ii) M/xM 6= 0.

EXAMPLE 2.1. The typical example of regular sequence is the sequence x1, . . . , xn

of indeterminates in a polynomial ring R = S[x1, . . . , xn].

Let R be a Noetherian ring and let M be a R-module. If x = x1, . . . , xn is a M-

sequence, then the sequence of ideals (x1) ⊂ (x1, x2) ⊂ . . . ⊂ (x1, . . . , xn) is strictly

ascending. Therefore a M-sequence can be extended to a maximal sequence in the

following way: a M-sequence x in an ideal I is maximal in I if x1, . . . , xn+1 is not

a M-sequence for any xn+1 ∈ I.

THEOREM 2.1. (Rees)

Let R be a Noetherian ring. Let M be a finite R −module and let I be an ideal,

such that IM 6= M . Then all maximal M-sequences in I have the same length n,

that is called grade of I on M , and it is denoted by grade(I, M).
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DEFINITION 2.4. A ring R is called local, if it has a unique maximal ideal m

and it is denoted by (R, m).

The notions of grade and Noetherian local ring imply the definition of depth of a

local ring R.

DEFINITION 2.5. Let (R, m) be a Noetherian local ring and let M be a finite

R-module. Then the grade of (R, m) on M is called the depth of Mand it is denoted

by depthM .

We introduce the notion of height of an ideal p in R, in order to define the dimension

of a commutative ring R. height p, is the supremum of the lengths t of strictly

descending chains p = p0 ⊃ p1 ⊃ . . . ⊃ pt of prime ideals.

DEFINITION 2.6. Let (R, m) be a local ring. The dimension of R is the height

of m and it is denoted by dimR.

In general depthR ≤ dimR.

Finally we define a Cohen-Macaulay ring

DEFINITION 2.7. Let R be a Noetherian local ring. A finite R-module M 6= 0

is a Cohen-Macaulay module if depth M=dim M. If R itself is a Cohen-Macaulay

module, then it is called a Cohen Macaulay ring.

DEFINITION 2.8. A noetherian ring R is said to be a Cohen-Macaulay ring if

Rm is a Cohen-Macaulay ring for every maximal ideal m of R.

To every undirected graph G with the vertex set V (G) = {v1, . . . , vn} and the edge

set E(G) = {e1, . . . , em} it is possible to associate a monomial ideal I(G), that is

generated by all square free monomials vivj , such that {vi, vj} = eh is an edge of

G. Such an ideal is usually called the monomial edge ideal.

DEFINITION 2.9. G is said Cohen-Macaulay (CM for short) with respect to the

field K, if the quotient ring K[v1, . . . , vn]/I(G) is Cohen-Macaulay.
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DEFINITION 2.10. A vertex cover V ′ of a graph G is a subset of vertices of G,

such that at least one vertex of every edge of G is in V ′. A vertex cover V ′ is said

to be minimal if no subsets of V ′ is itself a vertex cover.

Of course every graph has vertex covers (it is enough to take the whole set of

vertices). By using the following proposition of Villarreal it is possible to find them

by looking at the primary decomposition of the monomial edge ideal.

PROPOSITION 2.2. (See [6], chapter 6 proposition 1.16)

Let K[v] = K[v1, ..., vn] be a polynomial ring over a field K and let G be an undi-

rected graph. If P is the ideal of K[v] generated by A = {vi1, . . . , vir}, then P is a

minimal prime over the edge ideal I(G) if and only if A is a minimal vertex cover

of G.

As a corollary of the previous proposition we obtain a way to compute the height

of an edge ideal.

COROLLARY 2.1. (See [6], chapter 6 corollary 1.18)

If G is a graph and I(G) its monomial edge ideal, then the height of I(G) is equal

to the vertex covering number α0(G), that is the smallest number of vertices in a

minimal vertex cover.

DEFINITION 2.11. A graph is said unmixed if all minimal vertex covers have

the same cardinality.

REMARK 2.2. A Cohen-Macaulay graph is unmixed. (See, for instance, [4])

Finally it is useful to introduce the definition of bipartite graph.

DEFINITION 2.12. A graph G is bipartite, if its vertices can be divided in two

sets, such that no edge connects vertices in the same set. Here we will call these

two sets partition sets. Equivalently G is bipartite iff all cycles in G are even.

2.1. Construction of Cohen-Macaulay Graphs. The main part of the results

in this subsection can be found in [6], chapter 6 section 2.
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The degree of a vertex v, deg(v), is the number of edges incident in v and the set

of neighbors of v, N(v) is the set of vertices connected with v.

Of course | deg(v) | = | N(v) |, ∀v ∈ V (G).

First construction

Let G be a graph on the vertex set V = {v1, . . . , vr, z, w} with deg(w) = 1, N(w) =

{z}, deg(z) = k + 1, N(z) = {w, v1, . . . , vk}.
Let G1 be the graph obtained by deleting the vertices w and z in G, and let F1 be

the graph obtained by deleting the vertices {v1, . . . , vk} in G1 .1

Then the following propositions hold:

(1) If G is CM, then both G1 and F1 are CM

(2) If G1 and F1 are CM and {v1, . . . , vk} form a part of a minimal vertex cover

for G, then G is CM

(3) If G1 is CM and {v1, . . . , vk} is a minimal vertex cover for G1, then G is

CM

(4) Every bipartite CM graph has a vertex of degree 1.

Second construction

Let G be a graph on the vertex set V = {v1, . . . , vn, z} with deg(z) ≥ 2, N(z) =

{v1, . . . , vk}, and deg(vi) ≥ 2 for all i = 1, . . . , k.

Let G1 be the graph obtained by deleting z in G and let F1 be the graph obtained

from by deleting v1, . . . , vk in G1.

Let I be the edge ideal of G1.

Then the following propositions hold:

(1’) If G is CM, then F1 is CM

(2’) Suppose that {v1, . . . , vk} do not form a part of a minimal vertex cover for

G1 and height(I, v1, . . . , vk)=height(I) + 1. If F1 and G1 are CM, then G

is CM

(3’) If G1 is CM and {v1, . . . , vk−1} is a minimal vertex cover for G1, then G is

CM

1When a vertex is removed from a graph, then all edges incident in the vertex are also removed.
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(4’) For every CM graph two vertices of degree 1 cannot have a vertex in com-

mon.

2.2. Characterization of bipartite CM graphs. The main results in this sub-

section can be found in [4].

DEFINITION 2.13. A simple graph is an unweighted, undirected graph and with

no self-loops.

Let G be a simple finite bipartite graph and let us suppose G unmixed. Let us call

W and W ′ the two bipartition sets.

REMARK 2.3. If G is a bipartite graph without isolated vertices, then the parti-

tion sets are minimal vertex covers of G. In fact if W and W ′ are the two partition

sets, then W (resp W ′) is a vertex cover, because every edge has a vertex in W (resp

W ′). Moreover W (resp.W ′) is minimal, because there are no edges connecting two

vertices in W ′ (resp. W ).

So, if G is bipartite and unmixed, then W and W ′ have the same cardinality n.

Now (W\U) ∪N(U) is a vertex cover of G for every subset U of W . In fact every

edge incident in a vertex of U is covered by a vertex in N(U) and every vertex not

incident in a vertex of U is covered by a vertex in W\U .

So |(W\U) ∪ N(U)| ≥ |W | and then |U | ≤ |N(U)|. By marriage theorem every

vertex in W is connected with a vertex in W ′. This means we can relabel the names

of the vertices in the following way: W = {x1, . . . , xn} and W ′ = {y1, . . . , yn}, such

that (a) {xi, yi} is an edge of G for all 1 ≤ i ≤ n.

LEMMA 2.1. (see [4], lemma 3.3)

With the above notation, let us suppose that G is a simple bipartite Cohen-Macaulay

graph. Then G satisfies condition (a) and, furthermore, it satisfies also the condi-

tion (b) if {xi, yj} is an edge of G, then i ≤ j.
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THEOREM 2.2. (see [4], theorem 3.4)

Let G be a simple bipartite graph without loops on the vertex set W
⋃

W ′, with

W = {x1, . . . , xn}, W ′ = {y1, . . . , yn} such that

(a): {xi, yi} is an edge for all 1 6 i 6 n;

(b): if {xi, yj} is an edge then i 6 j;

then G is CM iff

(c): whenever {xi, yj} and {xj , yk} are edges, then {xi, yk} is an edge.

The previous theorem allows to know how a bipartite CM graph looks like. See

the picture below. This fact is not trivial, because it is not clear just by looking

only at the definition.
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3. A Decision Algorithm for CM Graphs

Actually there is no algorithm for checking whether a graph is CM. Here we found

a decision procedure for graphs, when the graph is bipartite. The main strategy is

given by removing vertices from the initial graph and by checking some properties

for the corresponding subgraphs. So if the graph is CM, then at the end of the

algorithm we will find either a vertex or an edge, that are trivially Cohen-Macaulay.

In order to write the algorithm we need the following results. (See [1]).

DEFINITION 3.1. Let G=(V (G), E(G)) be a finite undirected graph. The bino-

mial extended edge ideal of G is the ideal I(G,E(G))= ( eh − vivj: eh = {vi, vj}
is in E(G) ).

The ideal I(G)E(G) = I(G,E(G)) ∩K[e1, . . . , em] is the binomial edge ideal of G.
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REMARK 3.1. I(G)E(G) is the toric ideal of the incidence matrix IM(G) =

(aih)i=1,...,n,h=1,...,m of G defined by aih = 1 if vi ∈ eh and aih = 0 if vi /∈ eh for

every vi ∈ V (E) and eh ∈ E(G).

DEFINITION 3.2. Let G=(V (G), E(G)) be a finite undirected graph. The ideal

I(G,V (G))=(vi −
∏

eh: vi belongs to the edge eh in G) is the binomial extended

vertex ideal of G. IV (G)=I(G,V (G)) ∩K[v1, . . . , vn]. is the binomial vertex ideal

of G.

IV (G) is the toric ideal of the transpose of the incidence matrix IM(G) of G.

THEOREM 3.1. Let G=(V (G), E(G) be a finite undirected graph with V (G)=

{v1, . . . , vn} and E(G)={e1, . . . , em}. The odd cycle C=(ei1 = {vi1 , vi2}, ei2 =

{vi2 , vi3}, . . . , ei2q−2 = {vi2q−2 , vi2q−1}, ei2q−1 = {vi2q−1 , vi1}) is in G iff the binomial

fC =
∏

k=1,...,q−1 ei2k
v2

i1
− ∏

k=1,...,q ei2k−1 ∈ I(G,E(G)).

Let σ be a lexicographic term ordering on the set of the power products in {e1, . . . , em,

v1, . . . , vn} with vi > ej for all i and j and vi2q−1 >σ vi2q−2 >σ . . . >σ vi1 . If C is

minimal, then the binomial fC is in the Gröbner basis of I(G,E(G)) with respect

to σ.

THEOREM 3.2. Let G=(V (G), E(G)) be a simple undirected connected graph

without isolated vertices. If IV (G) contains an irreducible polynomial p of the form

p=
∏

j∈J vj−
∏

k∈K vk, then G is bipartite and the partition sets are V ′={vj : j ∈ J}
and V ′′={vk : k ∈ K}.

3.1. The Decision Algorithm. Now we can show our decision procedure for

bipartite CM graphs. First of all we have to check if our graph is bipartite. This

can be done in the following way:

• We observe that a graph is CM if and only if every connected components

is CM, and an isolated vertex is trivially CM; so we can apply the following

step to the graph, that it is obtained by deleting the isolated vertices of G;
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• Given a graph G, check if | V (G) | is even. If | V (G) | is odd, then G

cannot be a bipartite unmixed graph and then it is not CM.

• Given a graph G, by using the package networks of Maple we can get the

incidence matrix IG of G;

• Given the matrix IG, we can get the ideal I(G, E(G)) in the ring

K[e1, . . . , em, v1, . . . , vn];

• Given the ideal I(G,E(G)), by using the package Groebner of Maple we

can get a Gröbner basis of it with respect to a lexicographic term ordering

σ with vi >σ ej for all i and j and then we can get the ideal I(G)E(G);

• By using the theorem 3.1 and the property of Gröbner bases about the

decidability of the membership problem for polynomials, if G has no odd

cycle, then G is bipartite;

• If G is not bipartite, we cannot conclude anything about the Cohen-Macaulay

property.

Once we know that G is bipartite we can start the following algorithm

• We can get the transpose of the incidence matrix IT
G of G;

• Given IT
G we can get the ideal I(G,V (G)) in the ring K[v1, . . . , vn,

e1, . . . , em];

• We can find the two partition sets by computing a Gröbner basis of the ideal

I(G,V (G)) with respect to a lexicographic term ordering τ with ej >τ vi

for all i and j and then we can get the ideal I(G)V (G). The monomials

appearing in the binomial of the basis represent the two sets, as in theorem

3.2;

• If the partition sets have different cardinality, then we can conclude that G

is not CM. (In fact, the graph is not unmixed by remark as above);

• Given the bipartite graph G we can get the monomial edge ideal I(G) and

then we can find its minimal primes, that represent the minimal vertex

covers of G, according to proposition 2.2

• Given the minimal vertex covers, we can decide if G is unmixed by looking

at the cardinality of its minimal vertex covers;
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• If G is not unmixed, then we can conclude that it is not CM;

• If G is unmixed, we can look at the degrees of its vertices; if there is not a

vertex of degree one, then we can conclude that G is not CM, according to

condition 4 in section 2.1;

• If G has a vertex of degree one, then we can consider the two partition sets

being the sets W and W ′, with W = {x1, . . . , xn}, W ′ = {y1, . . . , yn}. W

and W ′ have the same cardinality, and G is unmixed. We can order the

vertices in such a way as the vertex of degree one is y1 (it belongs just to

the edge x1, y1 by condition (b) in theorem 2.1). G1 = G\{x1, y1}. If the

set of neighbors of x1 is the entire set {y2, . . . , yn}, that is a minimal vertex

cover for G1, then by condition 3 G is CM if and only if G1 is CM. So we

can apply the algorithm to G1;

• If the set of neighbors of x1 is a proper subset of {y2, . . . , yn}, 2, then by

condition 2 in 2.1 G is CM if and only if both G1 and F1 are CM. So we

start with F1 (the smallest subgraph) as input of the algorithm. If F1 is

not CM, we can conclude that G is not CM. Else we put G1 as input of the

algorithm. If G1 is not CM, then G is not CM;

• If in the previous steps we did not conclude that G is not CM, then we can

conclude that G is CM.

Finiteness and correctness

Note that the algorithm finishes, because at each recursive step the input is a

subgraph of the given one. So, in the worst case we apply the algorithm until the

input is either an isolated vertex or an edge, that are trivially Cohen-Macaulay.

Moreover of course by deleting vertices from a bipartite graph we get a graph, that

is still bipartite, since there are no new edges.

2It is clear that every set of xi’s or yi’s is at least a part of a minimal vertex cover for G
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4. Example

Our algorithm is implemented in Maple 9.5 by using the packages networks, for

graphs, and Groebner, for Gröbner bases, and it is called isbipCM. Here we will

show an example.

EXAMPLE 4.1. Let us consider the following graph G with eight vertices

> with(networks) :

> with(Groebner) :

> G := void(8) :

> addedge([{1, 5}, {2, 6}, {3, 7}, {4, 8}, {1, 6}, {1, 8}, {2, 8}], G);

e1, e2, e3, e4, e5, e6, e7

> draw(Linear([1, 2, 3, 4], [5, 6, 7, 8]), G);

3

8

2

1

7

6

5

4

> isbipCM(G);

true

At each step the algorithm chooses a vertex of degree 1 and it works on the obtained

subgraphs, according to the construction of CM graphs with the following choices:

w = 3, z = 7, N(z)\{w} = {}, G1 is the graph on the left of the following picture

and F1 is the same.
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and then w = 4, z = 8, N(z)\{w} = {1, 2}, G1 is the graph on the right and since

{1, 2} is the entire set of bipartition of G1 we do not need to construct F1.

2 6

51

84

1

2 6

5

At the third step w = 5, z = 1, N(z)\{w} = {6}, G1 is just the edge {5, 6} and we

do not need to construct F1.

An edge is trivially Cohen-Macaulay and the algorithm returns true.
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