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ABSTRACT. An algorithm is provided in order to decide whether a bipartite
graph is Cohen-Macaulay. It works by appropriately deleting vertices from the

given graph and by applying known properties on the obtained subgraphs.

1. INTRODUCTION

The Cohen-Macaulay property of a graph (CM for short) is worth investigating,
since it comes from an algebraic concept and the combinatorial meaning is not so
evident. In fact it is difficult to recognize a CM graph just by looking at it. So, it
is interesting to find necessary and sufficient conditions for a graph in order to be
Cohen Macaulay and it would be very useful to find a decision procedure.

Cohen-Macaulay graphs are investigated in several works, see for example [6], where
one can find constructions of CM graphs and properties about bipartite CM graphs.
The latter ones are characterized in [4]. It is also known that a chordal graph is
CM if and only if it is unmixed (see [5]) and that the complement of a d-tree is
CM (see [2]). Actually there is no decision procedure for CM graphs. In this paper
we show an algorithm for checking Cohen-Macauly property of a bipartite graph.
Such algorithm uses some results about CM graphs in [6] and it is based on the

decision procedure for bipartite graphs and vertex covers in [1].

2. COHEN-MACAULAY GRAPHS

Here we will introduce the concept of Cohen-Macaulay graph and all definitions

and properties, that we will use as tools for studying such graphs.
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DEFINITION 2.1. The ascending chain condition, commonly abbreviated A.C.C.,”
for a partially ordered set X requires that all increasing sequences in X become sta-

tionary.

DEFINITION 2.2. A ring is called Noetherian if it does not contain an infinite

ascending chain of ideals.

REMARK 2.1. If R is Noetherian, it satisfies the ascending chain condition on

ideals.

PROPOSITION 2.1. The following properties are equivalent.
(1) R satisfies the ascending chain condition on ideals.
(2) Every ideal of R is finitely generated.

(3) Ewvery set of ideals contains a mazimal element.

Let M be a module over a ring R. We say that x € R is a M-reqular element if it

is not a zero-divisor on M.

DEFINITION 2.3. A sequence x = x1,...,%, of elements of R is called a M-
regular sequence if

o (i) x; is a M/(x1,...,x;—1) M-reqular element fori=1,... n;

o (i) M/xM # 0.

EXAMPLE 2.1. The typical example of reqular sequence is the sequence x1, . .., Ty

of indeterminates in a polynomial ring R = S[x1,...,Ty].

Let R be a Noetherian ring and let M be a R-module. If x = z1,...,z, is a M-
sequence, then the sequence of ideals (z1) C (z1,22) C ... C (21,...,2,) is strictly
ascending. Therefore a M-sequence can be extended to a maximal sequence in the
following way: a M-sequence x in an ideal I is mazimal in I if x1,...,2,41 is not

a M-sequence for any x,41 € I.

THEOREM 2.1. (Rees)

Let R be a Noetherian ring. Let M be a finite R — module and let I be an ideal,
such that IM # M. Then all maximal M-sequences in I have the same length n,
that is called grade of I on M, and it is denoted by grade(I, M).
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DEFINITION 2.4. A ring R is called local, if it has a unique mazximal ideal m
and it is denoted by (R, m).

The notions of grade and Noetherian local ring imply the definition of depth of a

local ring R.

DEFINITION 2.5. Let (R,m) be a Noetherian local ring and let M be a finite
R-module. Then the grade of (R, m) on M is called the depth of M and it is denoted
by depthM .

We introduce the notion of height of an ideal p in R, in order to define the dimension
of a commutative ring R. height p, is the supremum of the lengths t of strictly

descending chains p = p, D p, D ... D p¢ of prime ideals.

DEFINITION 2.6. Let (R, m) be a local ring. The dimension of R is the height

of m and it is denoted by dimR.

In general depthR < dimR.

Finally we define a Cohen-Macaulay ring

DEFINITION 2.7. Let R be a Noetherian local ring. A finite R-module M # 0
is a Cohen-Macaulay module if depth M=dim M. If R itself is a Cohen-Macaulay

module, then it is called a Cohen Macaulay ring.

DEFINITION 2.8. A noetherian ring R is said to be a Cohen-Macaulay ring if

Ry, is a Cohen-Macaulay ring for every mazimal ideal m of R.

To every undirected graph G with the vertex set V(G) = {v1,...,v,} and the edge
set E(G) = {e1,...,em} it is possible to associate a monomial ideal I(G), that is
generated by all square free monomials v;v;, such that {v;,v;} = e, is an edge of

G. Such an ideal is usually called the monomial edge ideal.

DEFINITION 2.9. G is said Cohen-Macaulay (CM for short) with respect to the
field K, if the quotient ring Kv1,...,v,]/I(G) is Cohen-Macaulay.
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DEFINITION 2.10. A vertex cover V' of a graph G is a subset of vertices of G,
such that at least one vertex of every edge of G is in V'. A wvertex cover V' is said

to be minimal if no subsets of V' is itself a vertex cover.

Of course every graph has vertex covers (it is enough to take the whole set of
vertices). By using the following proposition of Villarreal it is possible to find them

by looking at the primary decomposition of the monomial edge ideal.

PROPOSITION 2.2. (See [6], chapter 6 proposition 1.16)

Let K[v] = K[vy,...,v,] be a polynomial ring over a field K and let G be an undi-
rected graph. If P is the ideal of K[v] generated by A = {vi1,...,vir}, then P is a
minimal prime over the edge ideal I(G) if and only if A is a minimal vertex cover

of G.

As a corollary of the previous proposition we obtain a way to compute the height

of an edge ideal.

COROLLARY 2.1. (See [6], chapter 6 corollary 1.18)
If G is a graph and I(G) its monomial edge ideal, then the height of 1(G) is equal
to the vertex covering number an(G), that is the smallest number of vertices in a

minimal vertex cover.

DEFINITION 2.11. A graph is said unmixed if all minimal vertex covers have

the same cardinality.
REMARK 2.2. A Cohen-Macaulay graph is unmized. (See, for instance, [4])
Finally it is useful to introduce the definition of bipartite graph.

DEFINITION 2.12. A graph G is bipartite, if its vertices can be divided in two
sets, such that no edge connects vertices in the same set. Here we will call these

two sets partition sets. Fquivalently G is bipartite iff all cycles in G are even.

2.1. Construction of Cohen-Macaulay Graphs. The main part of the results

in this subsection can be found in [6], chapter 6 section 2.



DECIDING THE COHEN-MACAULAY PROPERTY FOR BIPARTITE GRAPHS 5

The degree of a vertex v, deg(v), is the number of edges incident in v and the set
of neighbors of v, N(v) is the set of vertices connected with v.
Of course | deg(v) | = | N(v) |, Vv € V(G).

First construction
Let G be a graph on the vertex set V = {v1,..., v, z,w} with deg(w) =1, N(w) =
{z}, deg(z) = k+1, N(z) = {w,v1,..., 0%}
Let G be the graph obtained by deleting the vertices w and z in G, and let F; be
the graph obtained by deleting the vertices {v1,..., v} in Gy .1

Then the following propositions hold:

(1) If G is CM, then both G; and F; are CM

(2) If G; and Fy are CM and {v1,..., v} form a part of a minimal vertex cover
for G, then G is CM

(3) If Gy is CM and {vy,...,vr} is a minimal vertex cover for Gy, then G is
CM

(4) Every bipartite CM graph has a vertex of degree 1.

Second construction
Let G be a graph on the vertex set V = {vy,...,v,, 2} with deg(z) > 2, N(z) =
{v1,...,v;}, and deg(v;) > 2 for all i = 1,... k.
Let G be the graph obtained by deleting z in G and let F; be the graph obtained
from by deleting vy, ..., v in Gy.
Let I be the edge ideal of G;.

Then the following propositions hold:

(1) If G is CM, then F is CM

(2’) Suppose that {vy,...,v;} do not form a part of a minimal vertex cover for
Gy and height(I,vy,...,v;)=height(I) + 1. If F} and G; are CM, then G
is CM

(3) If G4 is CM and {vy,...,vx_1} is a minimal vertex cover for Gy, then G is

CM

When a vertex is removed from a graph, then all edges incident in the vertex are also removed.
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(4’) For every CM graph two vertices of degree 1 cannot have a vertex in com-

mon.

2.2. Characterization of bipartite CM graphs. The main results in this sub-

section can be found in [4].

DEFINITION 2.13. A simple graph is an unweighted, undirected graph and with

no self-loops.

Let G be a simple finite bipartite graph and let us suppose G unmixed. Let us call

W and W' the two bipartition sets.

REMARK 2.3. If G is a bipartite graph without isolated vertices, then the parti-
tion sets are minimal vertex covers of G. In fact if W and W' are the two partition
sets, then W (resp W') is a vertex cover, because every edge has a vertex in W (resp
W'). Moreover W (resp.W') is minimal, because there are no edges connecting two

vertices in W' (resp. W ).

So, if G is bipartite and unmixed, then W and W'’ have the same cardinality n.
Now (W\U)U N(U) is a vertex cover of G for every subset U of W. In fact every
edge incident in a vertex of U is covered by a vertex in N(U) and every vertex not
incident in a vertex of U is covered by a vertex in W\U.

So |(W\U) UN(U)| > |W| and then |U| < |N(U)|. By marriage theorem every
vertex in W is connected with a vertex in W’. This means we can relabel the names
of the vertices in the following way: W = {x1,...,2,} and W’ = {y1,...,yn}, such
that (a) {z;,v;} is an edge of G for all 1 < i < n.

LEMMA 2.1. (see [4], lemma 3.3)
With the above notation, let us suppose that G is a simple bipartite Cohen-Macaulay
graph. Then G satisfies condition (a) and, furthermore, it satisfies also the condi-

tion (b) if {x;,y;} is an edge of G, then i < j.
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THEOREM 2.2. (see [4], theorem 3.4)
Let G be a simple bipartite graph without loops on the vertex set W |JW’, with
W ={z1,...,xn}, W ={y1,...,yn} such that

(a): {zi,yi} s an edge for all 1 < i < n;

(b): if {x;,y;} is an edge then i < j;
then G is CM iff

(c): whenever {z;,y;} and {z;,yr} are edges, then {x;,yx} is an edge.

The previous theorem allows to know how a bipartite CM graph looks like. See
the picture below. This fact is not trivial, because it is not clear just by looking

only at the definition.

3. A DECISION ALGORITHM FOR CM GRAPHS

Actually there is no algorithm for checking whether a graph is CM. Here we found
a decision procedure for graphs, when the graph is bipartite. The main strategy is
given by removing vertices from the initial graph and by checking some properties
for the corresponding subgraphs. So if the graph is CM, then at the end of the
algorithm we will find either a vertex or an edge, that are trivially Cohen-Macaulay.

In order to write the algorithm we need the following results. (See [1]).

DEFINITION 3.1. Let G=(V(G), E(Q)) be a finite undirected graph. The bino-
mial extended edge ideal of G is the ideal I(G, E(G))= ( er, — vvj: e, = {v;,v;}
is in E(G) ).

The ideal I1(G)pqy = I1(G, E(G)) N Kle1, ..., en] is the binomial edge ideal of G.
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REMARK 3.1. I(G)gq) is the toric ideal of the incidence matriz IM(G) =
(@in)i=1,...n.h=1,...m of G defined by a;p, =1 if v; € e, and a;p, = 0 if v; & ey for
every v; € V(E) and e, € E(G).

DEFINITION 3.2. Let G=(V(G), E(G)) be a finite undirected graph. The ideal
I(G,V(GQ))=(vi — [ en: vi belongs to the edge ey in G) is the binomial extended
vertex ideal of G. Iy =I(G,V(G)) N K[v1,...,v,]. is the binomial vertex ideal
of G.

Iy () is the toric ideal of the transpose of the incidence matrix IM(G) of G.

THEOREM 3.1. Let G=(V(G), E(G) be a finite undirected graph with V(G)=
{v1,...,vn} and E(G)={e1,...,em}. The odd cycle C=(e;; = {viy,vi,},€i, =

{Wigs Vi by ooy Cingy = {Ving_0sVing_1 1+ Cing_1 = \Ving_1+Vis }) 15 in G iff the binomial
fe = Hk:l,...,q—l ei2kvi21 - Hk:l ..... q Cian—1 € I(G7 E(G))

Let o be a lexicographic term ordering on the set of the power products in {e1, ..., em,
V1, ..., Un} with v; > ej for all i and j and vi,, | >g Viy,_y >g ... >q iy, If Cis

minimal, then the binomial fc is in the Grobner basis of I(G, E(G)) with respect

to o.

THEOREM 3.2. Let G=(V(G), E(G)) be a simple undirected connected graph
without isolated vertices. If Iy () contains an irreducible polynomial p of the form
p=[1lc;vi—Ilrerx vk, then G is bipartite and the partition sets are V'={v; : j € J}
and V"'={vy, : k € K}.

3.1. The Decision Algorithm. Now we can show our decision procedure for

bipartite CM graphs. First of all we have to check if our graph is bipartite. This
can be done in the following way:

e We observe that a graph is CM if and only if every connected components

is CM, and an isolated vertex is trivially CM; so we can apply the following

step to the graph, that it is obtained by deleting the isolated vertices of G;
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e Given a graph G, check if | V(G) | is even. If | V(G) | is odd, then G
cannot be a bipartite unmixed graph and then it is not CM.

e Given a graph G, by using the package networks of Maple we can get the
incidence matrix I of G;

o Given the matrix I, we can get the ideal I(G, E(G)) in the ring
Klel, ... em,01,. .., Un];

e Given the ideal I(G, E(G)), by using the package Groebner of Maple we
can get a Grobner basis of it with respect to a lexicographic term ordering
o with v; >, e; for all i and j and then we can get the ideal I(G)g(q);

e By using the theorem 3.1 and the property of Grobner bases about the
decidability of the membership problem for polynomials, if G has no odd
cycle, then G is bipartite;

e If G is not bipartite, we cannot conclude anything about the Cohen-Macaulay

property.
Once we know that G is bipartite we can start the following algorithm

e We can get the transpose of the incidence matrix IZ of G;

e Given I} we can get the ideal I(G,V(G)) in the ring Klvi,...,v,,
€1,y Eml];

e We can find the two partition sets by computing a Grobner basis of the ideal
I(G,V(G)) with respect to a lexicographic term ordering 7 with e; >, v;
for all 7+ and j and then we can get the ideal I(G)y(g). The monomials
appearing in the binomial of the basis represent the two sets, as in theorem
3.2;

e If the partition sets have different cardinality, then we can conclude that G
is not CM. (In fact, the graph is not unmixed by remark as above);

e Given the bipartite graph G we can get the monomial edge ideal I(G) and
then we can find its minimal primes, that represent the minimal vertex
covers of G, according to proposition 2.2

e Given the minimal vertex covers, we can decide if G is unmixed by looking

at the cardinality of its minimal vertex covers;
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e If G is not unmixed, then we can conclude that it is not CM;

e If G is unmixed, we can look at the degrees of its vertices; if there is not a
vertex of degree one, then we can conclude that G is not CM, according to
condition 4 in section 2.1;

e If G has a vertex of degree one, then we can consider the two partition sets
being the sets W and W', with W = {x1,..., 2.}, W ={y1,...,yn}. W
and W' have the same cardinality, and G is unmixed. We can order the
vertices in such a way as the vertex of degree one is y; (it belongs just to
the edge x1,y; by condition (b) in theorem 2.1). Gy = G\{z1,y1}. If the
set of neighbors of x; is the entire set {ys,...,yn}, that is a minimal vertex
cover for (31, then by condition 3 G is CM if and only if G; is CM. So we
can apply the algorithm to Gy;

e If the set of neighbors of z; is a proper subset of {ya,...,9,}, %, then by
condition 2 in 2.1 G is CM if and only if both G; and F; are CM. So we
start with F; (the smallest subgraph) as input of the algorithm. If F} is
not CM, we can conclude that G is not CM. Else we put GG as input of the
algorithm. If G4 is not CM, then G is not CM;

e If in the previous steps we did not conclude that G is not CM, then we can

conclude that G is CM.

Finiteness and correctness

Note that the algorithm finishes, because at each recursive step the input is a
subgraph of the given one. So, in the worst case we apply the algorithm until the
input is either an isolated vertex or an edge, that are trivially Cohen-Macaulay.
Moreover of course by deleting vertices from a bipartite graph we get a graph, that

is still bipartite, since there are no new edges.

21t is clear that every set of x;’s or y;’s is at least a part of a minimal vertex cover for G
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4. EXAMPLE

Our algorithm is implemented in Maple 9.5 by using the packages networks, for
graphs, and Groebner, for Grobner bases, and it is called isbipCM. Here we will

show an example.

EXAMPLE 4.1. Let us consider the following graph G with eight vertices

> with(networks) :

> with(Groebner) :

> G = void(8) :

> addedge([{1,5},{2,6}, {3,7}, {4,8}, {1, 6}, {1,8}, {2,8}], G);

el,e2,e3,ed, eb, eb, e7

> draw(Linear([1,2,3,4],1[5,6,7,8]),G);

> isbipCM (G);
true

At each step the algorithm chooses a vertex of degree 1 and it works on the obtained

subgraphs, according to the construction of CM graphs with the following choices:

w=3,z="7, N(z)\{w} = {}, G1 is the graph on the left of the following picture

and Fj is the same.
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and then w =4, z =8, N(z)\{w} = {1, 2}, G, is the graph on the right and since

{1,2} is the entire set of bipartition of G; we do not need to construct Fj.

At the third step w =5, z =1, N(2)\{w} = {6}, G; is just the edge {5,6} and we
do not need to construct Fj.

An edge is trivially Cohen-Macaulay and the algorithm returns true.
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