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Abstract

We construct spherical CW -complexes whose face structure may be conveniently described using a

system of polyspherical coordinates introduced by Vilenkin, Kuznetsov and Smorodinskii. We prove that

these complexes may be constructed by repeated use of CW -suspension, free join, and edge subdivision.

We show that all CW -spheres constructed this way have a non-negative cd-index and thus verify Stanley’s

famous conjecture. Among the particular examples we find a new class of partially ordered sets whose

order complexes encode the derivative polynomials for secant of even degree. The geometric constructions

presented here generalize CW -complexes whose flag numbers are suitable to encode systems of orthogonal

polynomials.

Résumé

Nous construisons des sphères CW dont la structure de faces se décrit d’une manière convenable en

utilisant des coordonnées polysphériques de Vilenkin, Kuznetsov, et Smorodinskii. Nous montrons que ces

complexes peuvent être construits récursivement en utilisant des suspensions des complexes CW , des joins

libres et des sous-division des arêtes. Nous démontrons ques tous nos sphères ont un indexe cd positif,

en accord avec la fameuse conjecture de Stanley. Parmis les examples particulières nous retrouvons un

nouveau class d’ensembles ordonnés dont le complex des châınes croissants code les polynômes dérivés pour

la fonction secant de degré pair. Nos constructions géométriques généralisent des complexes CW dont les

nombres de drapeaux codent des systemes des polynômes orthogonaux.

Introduction

In a recent paper [13] the present author introduced sequences of CW -spheres whose ce-indices

may be transformed into sequences of orthogonal polynomials by sending c into x and e into 1.
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These complexes were shown to be spherically shellable, and the resulting non-negativity of their

cd-index implied by Stanley’s [21, Theorem 2.2] induces a new proof for the fact that the true inter-

val of orthogonality of any orthogonal polynomial system {Qn(x)}∞n=0, given by a recurrence formula

Qn(x) = νn · x · Qn−1(x) − (νn − 1) · Qn−2(x) where νi ≥ 2, is a subset of [−1, 1].

The system of spherical coordinates used in that paper is the simplest example of a system of

polyspherical coordinates introduced by Vilenkin, Kuznetsov and Smorodinskii [22] to encode the

points of a unit sphere. Each such coordinate system may be described by a rooted binary tree. The

spherical coordinate system used in [13] corresponds to the situation when the subtree of interior

nodes (=the “small tree”) is a rooted path.

In Section 2 we describe the faces of our complexes as intersections of certain lunes and hemi-

spheres, and define our polyspherical complexes by explicitly listing their faces. The fact that our

constructions yield CW -spheres may be shown by combining all results of Section 3 where we describe

our polyspherical complexes recursively.

Our main result is in Section 4: every polyspherical complex we constructed has a non-negative

cd-index. Unlike [13], it seems to be extremely hard to find a proof that uses spherical shelling, the

main problem being with the spherical shellability of a CW -complex that arises as the free join of two

CW -spheres. Fortunately, the dual version of a result of Ehrenborg and Fox [9] (based on the work of

Ehrenborg and Readdy [10]) provides an immediate proof of the fact that the non-negativity of the cd-

index is preserved by the free join operation. The same question for CW -suspension is trivial. Finally,

edge-subdivision does not necessarily preserve the non-negativity of the cd-index (since it involves

changing by a multiple of the cd-index of a proper interval in the associated poset). Fortunately, the

face posets of our polyspherical complexes belong to a narrower class of Eulerian posets: not only their

cd-index but the cd-index of every interval of the form [x, 1̂] turns out to be non-negative. This fact

is easily shown by proving that all poset-operations used preserve this stronger positivity property.

Finally, in Section 5 we focus on a special class of polyspherical complexes, that has about the

same “degree of freedom” as the ones studied in [13]: we require the underlying small trees to be

strongly binary, and we forbid subdividing the intervals of angles associated to interior nodes. Using

the dual version of the type B quasisymmetric functions defined by C.-O. Chow [5], we obtain an

explicit formula for their flag f -vectors. We show that substituting x into c and 1 into e in the

ce-index of a free join of quadrilaterals yields the derivative polynomials for secant of even degree.

These polynomials appear in chain enumeration related to some generalization of the Tchebyshev

posets introduced in [12] for the second time (the first connection was noted in [14, Section 9]). The

appearance of this second, non-isomorphic connection suggests that the Tchebyshev polynomials of the

first and second kind and the derivative polynomials for tangent and secant may be more intimately

related at a combinatorial level than we ever thought.
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1 Preliminaries

1.1 Graded and Eulerian posets, transformations, flag-enumeration

A partially ordered set P is graded if it has a unique minimum 0̂, a unique maximum 1̂, and a rank

function ρ. If P has rank n + 1 and S ⊆ {1, . . . , n}, fS(P ) is the number of saturated chains in

PS = {x ∈ P : ρ(x) ∈ S} ∪ {0̂, 1̂}. The vector (fS(P ) : S ⊆ {1, . . . , n}) is the flag f -vector of P .

It has several equivalent encodings. The connection between the flag f -vectors of P , Q, and direct

product P × Q is most easily expressed by the flag quasisymmetric function F (P ) [8], given by

F (P ) = lim
m−→∞

∑
�

0=x0≤x1≤···≤xm=
�

1

t
ρ(x1)−ρ(x0)
1 t

ρ(x2)−ρ(x1)
2 · · · tρ(xm)−ρ(xm−1)

m . (1)

By Ehrenborg’s result [8, Proposition 4.4], F (P × Q) = F (P ) × F (Q). A modified version of P × Q

is the diamond product P � Q := (P \ {0̂}) × (Q \ {0̂}) ∪ {0̂}. The analogue of [8, Proposition 4.4],

recently discovered by Ehrenborg and Readdy [11], is

FB(P � Q) = FB(P ) · FB(Q), (2)

where FB(Q) is the type B quasisymmetric function

FB(P ) = lim
m−→∞

∑
�

0<x0≤x1≤···≤xm=1

sρ(x0)−1t
ρ(x1)−ρ(x0)
1 t

ρ(x2)−ρ(x1)
2 · · · tρ(xm)−ρ(xm−1)

m .

Another equivalent encoding of the flag f -vector is the flag h-vector (hS(P ) : S ⊆ {1, . . . , n}) (see [21]),

given by hS(P ) =
∑

T⊆S(−1)|S\T |fT (P ).

A graded poset is Eulerian if every interval [x, y] of positive rank in it satisfies
∑

x≤z≤y(−1)ρ(z) =

0. All linear relations holding for the flag f -vector of an arbitrary Eulerian poset of rank n were

determined by Bayer and Billera [1]. These linear relations were rephrased by J. Fine as follows (see

Bayer and Klapper [2]). For any S ⊆ {1, . . . , n} define the non-commutative monomial uS = u1 . . . un

by setting

ui =

{
b if i ∈ S,
a if i 6∈ S.

Then the polynomial Ψab(P ) =
∑

S hSuS in non-commuting variables a and b, called the ab-index of

P , is a polynomial Φcd(P ) of c = a + b and d = ab + ba, called the cd-index of P . It was noted by

Stanley [21] that the existence of the cd-index is equivalent to saying that the ab-index rewritten as

a polynomial of c = a + b and e = a − b involves only even powers of e. Stanley’s conjecture [21,

Conjecture 2.1] states that the cd-index of any Gorenstein∗ poset has non-negative coefficients. The

cd-index form is convenient to calculate the flag f -vector of the join P ∗Q := (P \ {1̂P })∪ (Q \ {0̂Q})
of two Eulerian posets. (We place the elements of Q above the elements of P .) By [21, Lemma 1.1]

we have Φcd(P ∗ Q) = Φcd(P )Φcd(Q).
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1.2 The Tchebyshev transform of a graded poset

We define the Tchebyshev transform T (P ) of a graded poset P as follows: we adjoin a new minimum

element −̂1 < 0̂ to P and set T (P ) = {(x, y) : x < y, x, y ∈ {−̂1} ∪ P} ∪ {1̂T (P )}. Here 1̂T (P ) is the

maximum element of T (P ), and we set (x1, y1) < (x2, y2) if either y1 < x2 or x1 = x2 and y1 < y2. It

was shown in [12] that this operation yields a graded poset and preserves the Eulerian property. It was

observed in [14, Section 9] that substituting x into c and 1 into e in the ce index of the Tchebyshev

transform of the Boolean algebra of rank n yields the polynomial (
√
−1)n ·Qn(x ·

√
−1) where Qn(x)

is the n-th derivative polynomial for secant given by dn

dun sec(u) = Qn(tan u) sec u. Further information

on these polynomials may be found in Hoffman’s papers [15] and [16]. The study of these polynomials

goes back to Krichnamachary and Rao [18] and Knuth and Buckholtz [17]. Further results on the

Tchebyshev transform are in [11], [12], and [14].

1.3 Free join and suspension of CW -spheres

Given a regular CW -complex Ω, we obtain a graded poset P1(Ω) by adjoining a maximum element

1̂ to the face poset of Ω. Such posets are called CW -posets and were characterized by Björner [3].

P1(Ω) is Eulerian if Ω is a CW -sphere. We use two basic operations on CW -complexes: free join and

CW -suspension. The free join X ∗ Y of the topological spaces X and Y is X × Y × [0, 1]/ ≡, where

the only nontrivial equivalence classes of ≡ are {(x, y0, 0) : x ∈ X} and {(x0, y, 1) : y ∈ Y }. The

free join Ω ∗ Ω′ of two CW -complexes Ω and Ω′ may also be given as a CW -complex (see May [19,

Chapter 10, Section 2]). This operation satisfies

P1(Ω ∗ Ω′) = P1(Ω) �∗ P1(Ω
′) (3)

where P �∗ Q = (P ∗ � Q∗)∗. The suspension of a topological space X is usually defined as Susp(X) =

X ∗ S
0 (see, e.g., Dong [7] or Readdy [20]), because this operation assigns a simplicial complex to a

simplicial complex. For CW -complexes there is also a more economical way to create a face structure

Susp(Ω) on the suspension of the topological space underlying Ω. This is noted by Dold [6, Chapter

V, Example 3.10]. Using that construction we obtain

P1(Susp(Ω)) ∼= B2 ∗ P1(Ω). (4)

Here and later Bm is the Boolean algebra of rank m.

1.4 Polyspherical coordinates

Our polyspherical coordinates (θ1, . . . , θn−1) parameterize the unit (n−1)-sphere defined by
∑n

i=1 x2
i =

1. Recall that a binary tree is a planar rooted tree such that each internal node has at most two children.

It is strongly binary if each internal node has exactly two children. Let us fix strongly binary tree with

4



n leaves, and label its leaves with the rectangular coordinates x1, . . . , xn, as shown in Fig. 1. Associate

to each internal node an angle θi (i = 1, . . . , n − 1). We call such a labeled tree a large tree. For the

cos(θ3)
sin(θ3)

sin(θ1)cos(θ1)

sin(θ2)cos(θ2)

cos(θ4) sin(θ4)
x2x1 x5

x3 x4

θ1

θ4

θ3θ2

Figure 1: Large tree of polyspherical coordinates for a 4-dimensional sphere

internal node labeled θi, we label the edge to its left child with cos(θi) and the edge to its right child

with sin(θi). Define the value of each xj as the product of the labels on the edges along the unique

path connecting the root with xj. For example, for the labeled tree in Fig. 1 we set

x1 = cos(θ1) · cos(θ2)
x2 = cos(θ1) · sin(θ2)
x3 = sin(θ1) · cos(θ3) · cos(θ4)
x4 = sin(θ1) · cos(θ3) · sin(θ4)
x5 = sin(θ1) · sin(θ3)

Using the rule to express the xi’s as products of edge labels, every point of the unit sphere is al-

ready determined by the subtree of internal nodes and the labels θj associated to them. We call the

rooted tree (T, r), consisting of these internal nodes only, a small tree. According to [22, (13)], our

parameterization provides a single covering of the unit sphere if we set the following restrictions:

(S1) If the node associated to θi is a leaf in the small tree, we require θi ∈ [0, 2π].

(S2) If the node of θi has only a right child, we require θi ∈ [0, π].

(S3) If the node of θi has only a left child, we require θi ∈ [−π/2, π/2].

(S4) If the node θi has two children, we require θi ∈ [0, π/2].

The representation by polyspherical coordinates may be made unique by factoring by the following

equivalence relation.

Definition 1.1 We say that (θ1, . . . , θn−1) and (θ′1, . . . , θ
′
n−1) are equivalent, if for each j such that

θj 6= θ′j at least one of the following holds:

(i) θj (and θ′j) is the label of a leaf in the small tree and θj, θ
′
j ∈ {0, 2π},

(ii) θj (and θ′j) is the right descendant of a node whose labels in both vectors satisfy θi = θ′i ∈ {0, π},
(iii) θj (and θ′j) is the left descendant of a node whose labels in both vectors satisfy θi = θ′i ∈

{−π/2, π/2}.
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Thus, for example, the labels of the right descendants of a node labeled 0 or π are irrelevant. Each

equivalence class may be represented by a simplified code, where the irrelevant coordinates are replaced

with a dash.

2 The polyspherical complex C((T, r); m1, . . . , mn−1)

Definition 2.1 Consider a code (σ1, . . . , σn−1) associated to a small tree, such that each σj is either

a real number, or an interval [α, β], or the ∗ sign. We call such a code a standard lune code if it

satisfies the following conditions:

(i) Exactly one σi is an interval [α, β]. The node of this σi is the root of the standard lune code.

(ii) The interval [α, β] is a proper subset of the interval I(σi) that occurs in the restrictions (S1)–(S4)

applied to the node of σi. Moreover, 0 < β − α < π.

(iii) All descendants of the node of σi are labeled with a real number, subject to the restrictions

(S1)–(S4).

(iv) All other nodes are labeled with ∗.

We use a standard lune code to denote the set of all polyspherical vectors (θ1, . . . , θn−1) satisfying

θi ∈ [α, β], and θj = σj whenever j 6= i and σj 6= ∗. A standard hemisphere code is defined analogously,

the only difference is setting α = β. The equivalence relation for polyspherical coordinates may be

extended to codes of standard lunes and hemispheres, so we may obtain a simplified code for them,

and think of them as subsets of the unit sphere.

Proposition 2.2 A standard lune code with d − 1 star signs encodes a d-dimensional closed region,

whose boundary is the union of two spheres obtained by replacing the interval [α, β] with α or β

respectively (thus obtaining standard hemispheres).

Taking intersections of standard lunes motivates the introduction of canonical regions.

Definition 2.3 A canonical region code is a vector (σ1, . . . , σn−1) such that each σi is either a real

number, or an interval [α, β], or the symbol ∗, or the symbol −, subject to the following conditions:

(i) If σi is a real number or an interval, then it is an element or proper subset of I(σi).

(ii) If σi ∈ {0, π} then every right descendant of the node labeled σi is labeled −.

(iii) If σi ∈ {−π/2, π/2} then every left descendant of the node labeled σi is labeled −.

(iv) σi is − then every descendant of the node labeled σi is labeled −.

(v) If σi is − then the parent of the node labeled σi is either labeled with −, or it is labeled with an

element of {0, π} and the node of σi is the right child, or it is an element of {−π/2, π/2} and

the node of σi is the left child.
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(vi) If σi 6= ∗ and some descendant of its node is ∗ or an interval, then the node of σi has two children

in the small tree, and σi is a real number belonging to {0, π/2}. (Thus either its left or its right

subtree will have all of its nodes labeled with −.)

Again we obtain equivalence classes of polyspherical vectors; thus we may think of canonical regions

as subsets of the unit sphere.

Proposition 2.4 Every canonical region, except for the entire unit sphere, may be written as an

intersection of finitely many standard hemispheres and standard lunes. Conversely, the intersection

of any two canonical regions may be written as a union of canonical regions.

Definition 2.5 We call a rooted tree (T, r) whose nodes are labeled with positive integers such that

the label on each leaf is at least two a loopless complex code.

Given a loopless complex code, consider the family C((T, r);m1, . . . ,mn−1) consisting of the empty

set, and of all canonical regions whose code is subject to the following conditions:

(C1) No leaf is labeled with ∗.
(C2) Each node labeled with a real number has either an ancestor whose label is an interval, or an

ancestor labeled with σi = ∗ for which the corresponding mi is equal to 1.

(C3) If σi is a real number and I(σi) = [γ, δ], then we have

σi = γ + t · δ − γ

mi

for some t ∈ {0, 1, . . . ,mi}.

(C4) If σi is an interval and I(σi) = [γ, δ], then we have

[α, β] =

[
γ + t · δ − γ

mi
, γ + (t + 1) · δ − γ

mi

]
for some t ∈ {0, 1, . . . ,mi − 1}.

Theorem 2.6 Given a loopless code associated to a small tree (T, r), C((T, r);m1, . . . ,mn−1) is a

CW -complex, homeomorphic to an (n − 1)-sphere.

3 A recursive description of the polyspherical complexes

Any binary tree (T, r) having at least two nodes may be reconstructed from knowing the children r1

and r2 of the root and the subtrees Ti of descendants of ri. (Only at least one of the ri’s needs to

exist.) In this section we describe the structure of a polyspherical complex in terms of the polyspherical

complexes associated to the subtrees of the children of the root in its small tree. The arising operations

assign the face poset of a CW -sphere to face posets of CW -spheres. Thus the aggregate of the

statements in this section provides proof of Theorem 2.6.
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Consider a family of canonical regions C((T, r);m1, . . . ,mn−1). Assume w.l.o.g. that m1 is as-

sociated to the root. We introduce P1(C((T, r);m1, . . . ,mn−1)) to denote the partially ordered set

obtained by taking the elements of C((T, r);m1, . . . ,mn−1), ordered by inclusion, and add a new

unique maximum element 1̂, which we associate to the canonical region (∗, . . . , ∗).

Lemma 3.1 If m1 = 1 and the root r has only a right child r ′ then P1(C((T, r); 1,m2, . . . ,mn−1)) =

B2 ∗ P1(C((T ′, r′);m2, . . . ,mn−1)).

Proposition 3.2 Assume that Ω is an (n − 2)-dimensional CW -sphere, whose faces subdivide the

unit sphere {(x2, . . . , xn) : x2
2 + · · · + x2

n−1 = 1}. Then the CW -suspension Ω′ = Susp(Ω) may be

realized as a CW -complex subdividing the unit sphere {(x1, . . . , xn) : x2
1 + · · · + x2

n−1 = 1}. As a

consequence we have P1(Ω
′) = B2 ∗ P1(Ω).

To handle the case m1 > 1, we introduce m-fold edge subdivisions. Given an edge e in a CW complex,

connecting the vertices u and v, we introduce m − 1 new vertices u1, u2, . . . , um−1, and set u0 := u

and um := v. We remove e and introduce m new edges e1, . . . , em such that ei connects ui−1 and

ui for i = 1, 2, . . . ,m and a face f contains any of the ei’s in the new CW -complex if and only if it

contains e in the original complex. We make the analogous definition for graded posets as well. An

m-fold edge subdivision does not change the homeomorphy type of the CW -complex and, for posets,

it preserves the Eulerian property. We denote by Em(P ) the poset obtained by applying m-fold edge

subdivision to all rank 2elements of the graded poset P .

Theorem 3.3 Assume that the root r in the small tree associated to C((T, r);m1,m2, . . . ,mn−1) has

only a right child r′. Then P1(C((T, r);m1,m2, . . . ,mn−1)) ∼= Em1
(B2∗P1(C((T ′, r′);m2, . . . ,mn−1))).

Here T ′ is the subtree of descendants of r′.

The case when the root of the small tree has only a left child is completely analogous. Consider

finally the case when the root r has two children: a left child r1 and a right child r2, with subtrees

of descendants T1 and T2. W.l.o.g. we may assume that m2, . . . ,mk belong to the nodes in T1 and

mk+1, . . . ,mn−1 belong to the nodes of T2. Again we discuss first the case m1 = 1 separately.

Lemma 3.4 Under the conditions listed above, we have

P1(C((T, r); 1,m2, . . . ,mn−1)) ∼= P1(C((T1, r1);m1, . . . ,mk)) �∗ P1(C((T2, r2);mk+1, . . . ,mn−1)).

Proposition 3.5 Assume that the (k−1)-dimensional CW -sphere Ω1 subdivides {(x1, . . . , xk) : x2
1 +

· · ·+x2
k = 1} and the (n−k−1)-dimensional CW -sphere Ω2 subdivides {(xk+1, . . . , xn) : x2

k+1 + · · ·+
x2

n = 1}. Then Ω1∗Ω2 may be realized as a CW -sphere Ω, subdividing {(x1, . . . , xn) : x2
1+· · ·+x2

n−1 =

1}. As a consequence we have P1(Ω) = P1(Ω1) �∗ P1(Ω2).
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Finally, to state the analogue of Theorem 3.3, we need the following analogue of the operator Em.

Definition 3.6 The m-fold edge-subdivided dual diamond product P �∗m Q is obtained from P �∗ Q by

applying m-fold edge subdivision to all elements of the form (p, q) ∈ P �∗ Q such that both p and q

have rank 1.

Theorem 3.7 Making the same assumptions as in Lemma 3.4 except for allowing m1 > 1, we have

P1(C((T, r);m1,m2, . . . ,mn−1)) ∼= P1(C((T1, r1);m2, . . . ,mk)) �∗m1
P1(C((T2, r2);mk+1, . . . ,mn−1)).

When we prove Theorem 2.6 by induction, the basis is the case when the tree T has only one vertex,

and m1 ≥ 2. The resulting complex C({r}, r;m1) is a circle, subdivided into m1 arcs.

4 Non-negativity of the cd-index

Theorem 4.1 The cd-index of any poset P1(C((T, r);m1,m2, . . . ,mn−1)) associated to a loopless

complex code is non-negative.

This may be shown using the recursive description of our polyspherical complexes given in Section 3.

Definition 4.2 We say that an Eulerian poset P is upwards cd-positive if, for every x ∈ P \ {1̂}, the

interval [x, 1̂] has a non-negative cd-index.

It is easy to see that C({r}, r;m1) is upwards cd-positive for all m1 > 1.

Proposition 4.3 If P is an upwards cd-positive Eulerian poset, then so is B2 ∗ P .

The following is an easy consequence of [9, Proposition 7.4].

Proposition 4.4 If the Eulerian posets P and Q are upwards cd-positive, then so is P �∗ Q.

Finally, since any m-fold subdivision may be obtained by iterated 2-fold subdivisions, it is sufficient

to show the following.

Proposition 4.5 Assume that P is an upwards cd-positive Eulerian poset of rank n + 1, and that

e ∈ P is an element of rank two. Let Q be the Eulerian poset obtained from P by applying 2-fold

edge-subdivision to e. Then Q is also upwards cd-positive.
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5 Strongly binary small trees

It is hard to convert the cd-index to a type B quasisymmetric function; thus finding an explicit general

formula for the flag f -vector of an arbitrary polyspherical complex seems difficult. The situation

becomes easier when we may restrict ourselves to using only one of these two encodings of the flag

f -vector. The special case when the small tree is a path is the subject of [13]. From now on, we assume

the “other extreme” that all underlying small trees are strongly binary. To reduce the complexity of

the question to a level similar to [13], we we also require that the number mi associated to any interior

node in the small tree has to be 1. Then the shape of the tree becomes irrelevant, because of the

following:

Lemma 5.1 Consider a loopless code ((T, r);m1,m2, . . . ,m2n−1)) such that the underlying small tree

(T, r), is strongly binary. Assume that mn+1, . . . ,m2n−1 are associated to the interior nodes and that

these numbers are equal to 1. Then we have

P1(C((T, r);m1,m2, . . . ,m2n−1)) ∼= P1(C({r}, r;m1)) �∗ P1(C({r}, r;m2)) �∗ · · · �∗ P1(C({r}, r;mn)).

The computation of the flag f -vector of such a poset is possible using dual type B quasisymmetric

functions

F ∗
B(P ) =

∑
�

0≤x1≤···≤xm<1

sρ(
�

1)−ρ(xm)−1 · tρ(x1)−ρ(x0)
1 t

ρ(x2)−ρ(x1)
2 · · · tρ(xm)−ρ(xm−1)

m .

Dually to (2) we have the identity F ∗
B(P �∗Q) = F ∗

B(P )·F ∗
B(Q). Direct substitution into the definitions

yields

F ∗
B(P1(C({r}, r;m))) = m ·

(∑

i

ti +
s

2

)2

−
(m

4
− 1
)
· s2. (5)

Corollary 5.2 Under the assumptions of Lemma 5.1 we have

F ∗
B(P1(C((T, r);m1,m2, . . . ,m2n−1))) =

n∏

j=1


mj ·

(∑

i

ti +
s

2

)2

−
(mj

4
− 1
)
· s2


 .

Using this Corollary it is possible to calculate the f -vectors of the order complexes, and it will be

worthwhile to explore the sequences of polynomials arising, in analogy to [13]. To conclude, consider

the special case m1 = . . . = mn = 4. Then all terms (mj/4 − 1)s2 vanish from all factors:

Proposition 5.3 The n-th dual diamond power Qn of P1(C({r}, r; 4)) satisfies

F ∗
B(Qn) =

(
2 ·
∑

i

ti + s

)2n

=

2k∑

k=0

(
2n

k

)
s2n−k

(
2 ·
∑

i

ti

)k

.
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From this we may deduce

f{s1...,sk}(Qn) =

(
2n

sk

)
· 2sk ·

(
sk

s1, s2 − s1, . . . , sk − sk−1

)
(6)

which is also equal to f{s1...,sk}(T (B2n).

Corollary 5.4 Substituting x into c and 1 into e in the ce-index of Qn yields (−1)nQ2n(x ·
√
−1),

where Q2n(x) the 2n-th derivative polynomial for secant.

Remark 5.5 Among all posets of the form P1(C({r}, r;m)), only P1(C({r}, r; 4)) is the Tchebyshev

transform of a poset of rank 2. Thus we may also use a result of Ehrenborg and Readdy [11] stating

that for any pair of graded posets (P,Q), T (P × Q) has the same flag f -vector as T (P ) �∗ T (Q).

Acknowledgments
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Final note

To observe the 12 page limit, we omitted all proofs. A preprint with the title “Polyspherical complexes”

is available at http://www.math.uncc.edu/~ghetyei .
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