$C W$-spheres encoded by polyspherical coordinates

Gábor Hetyei*
Department of Mathematics and Statistics
UNC Charlotte
Charlotte, NC 28223

April 30, 2005

Abstract

We construct spherical $C W$-complexes whose face structure may be conveniently described using a system of polyspherical coordinates introduced by Vilenkin, Kuznetsov and Smorodinskii. We prove that these complexes may be constructed by repeated use of $C W$-suspension, free join, and edge subdivision. We show that all $C W$-spheres constructed this way have a non-negative $c d$-index and thus verify Stanley's famous conjecture. Among the particular examples we find a new class of partially ordered sets whose order complexes encode the derivative polynomials for secant of even degree. The geometric constructions presented here generalize $C W$-complexes whose flag numbers are suitable to encode systems of orthogonal polynomials.

Résumé

Nous construisons des sphères $C W$ dont la structure de faces se décrit d'une manière convenable en utilisant des coordonnées polysphériques de Vilenkin, Kuznetsov, et Smorodinskii. Nous montrons que ces complexes peuvent être construits récursivement en utilisant des suspensions des complexes $C W$, des joins libres et des sous-division des arêtes. Nous démontrons ques tous nos sphères ont un indexe $c d$ positif, en accord avec la fameuse conjecture de Stanley. Parmis les examples particulières nous retrouvons un nouveau class d'ensembles ordonnés dont le complex des chaînes croissants code les polynômes dérivés pour la fonction secant de degré pair. Nos constructions géométriques qénéralisent des complexes $C W$ dont les nombres de drapeaux codent des systemes des polynômes orthogonaux.

Introduction

In a recent paper [13] the present author introduced sequences of $C W$-spheres whose $c e$-indices may be transformed into sequences of orthogonal polynomials by sending c into x and e into 1 .

[^0]These complexes were shown to be spherically shellable, and the resulting non-negativity of their $c d$-index implied by Stanley's [21, Theorem 2.2] induces a new proof for the fact that the true interval of orthogonality of any orthogonal polynomial system $\left\{Q_{n}(x)\right\}_{n=0}^{\infty}$, given by a recurrence formula $Q_{n}(x)=\nu_{n} \cdot x \cdot Q_{n-1}(x)-\left(\nu_{n}-1\right) \cdot Q_{n-2}(x)$ where $\nu_{i} \geq 2$, is a subset of $[-1,1]$.

The system of spherical coordinates used in that paper is the simplest example of a system of polyspherical coordinates introduced by Vilenkin, Kuznetsov and Smorodinskii [22] to encode the points of a unit sphere. Each such coordinate system may be described by a rooted binary tree. The spherical coordinate system used in [13] corresponds to the situation when the subtree of interior nodes (=the "small tree") is a rooted path.

In Section 2 we describe the faces of our complexes as intersections of certain lunes and hemispheres, and define our polyspherical complexes by explicitly listing their faces. The fact that our constructions yield $C W$-spheres may be shown by combining all results of Section 3 where we describe our polyspherical complexes recursively.

Our main result is in Section 4: every polyspherical complex we constructed has a non-negative $c d$-index. Unlike [13], it seems to be extremely hard to find a proof that uses spherical shelling, the main problem being with the spherical shellability of a $C W$-complex that arises as the free join of two $C W$-spheres. Fortunately, the dual version of a result of Ehrenborg and Fox [9] (based on the work of Ehrenborg and Readdy [10]) provides an immediate proof of the fact that the non-negativity of the $c d-$ index is preserved by the free join operation. The same question for $C W$-suspension is trivial. Finally, edge-subdivision does not necessarily preserve the non-negativity of the $c d$-index (since it involves changing by a multiple of the $c d$-index of a proper interval in the associated poset). Fortunately, the face posets of our polyspherical complexes belong to a narrower class of Eulerian posets: not only their $c d$-index but the $c d$-index of every interval of the form $[x, \widehat{1}]$ turns out to be non-negative. This fact is easily shown by proving that all poset-operations used preserve this stronger positivity property.

Finally, in Section 5 we focus on a special class of polyspherical complexes, that has about the same "degree of freedom" as the ones studied in [13]: we require the underlying small trees to be strongly binary, and we forbid subdividing the intervals of angles associated to interior nodes. Using the dual version of the type B quasisymmetric functions defined by C.-O. Chow [5], we obtain an explicit formula for their flag f-vectors. We show that substituting x into c and 1 into e in the $c e$-index of a free join of quadrilaterals yields the derivative polynomials for secant of even degree. These polynomials appear in chain enumeration related to some generalization of the Tchebyshev posets introduced in [12] for the second time (the first connection was noted in [14, Section 9]). The appearance of this second, non-isomorphic connection suggests that the Tchebyshev polynomials of the first and second kind and the derivative polynomials for tangent and secant may be more intimately related at a combinatorial level than we ever thought.

1 Preliminaries

1.1 Graded and Eulerian posets, transformations, flag-enumeration

A partially ordered set P is graded if it has a unique minimum $\widehat{0}$, a unique maximum $\widehat{1}$, and a rank function ρ. If P has rank $n+1$ and $S \subseteq\{1, \ldots, n\}, f_{S}(P)$ is the number of saturated chains in $P_{S}=\{x \in P: \rho(x) \in S\} \cup\{\widehat{0}, \widehat{1}\}$. The vector $\left(f_{S}(P): S \subseteq\{1, \ldots, n\}\right)$ is the flag f-vector of P. It has several equivalent encodings. The connection between the flag f-vectors of P, Q, and direct product $P \times Q$ is most easily expressed by the flag quasisymmetric function $F(P)$ [8], given by

$$
\begin{equation*}
F(P)=\lim _{m \longrightarrow} \sum_{\hat{0}=x_{0} \leq x_{1} \leq \cdots \leq x_{m}=\widehat{1}} t_{1}^{\rho\left(x_{1}\right)-\rho\left(x_{0}\right)} t_{2}^{\rho\left(x_{2}\right)-\rho\left(x_{1}\right)} \cdots t_{m}^{\rho\left(x_{m}\right)-\rho\left(x_{m-1}\right)} \tag{1}
\end{equation*}
$$

By Ehrenborg's result [8, Proposition 4.4], $F(P \times Q)=F(P) \times F(Q)$. A modified version of $P \times Q$ is the diamond product $P \diamond Q:=(P \backslash\{\widehat{0}\}) \times(Q \backslash\{\widehat{0}\}) \cup\{\widehat{0}\}$. The analogue of [8, Proposition 4.4], recently discovered by Ehrenborg and Readdy [11], is

$$
\begin{equation*}
F_{B}(P \diamond Q)=F_{B}(P) \cdot F_{B}(Q), \tag{2}
\end{equation*}
$$

where $F_{B}(Q)$ is the type B quasisymmetric function

$$
F_{B}(P)=\lim _{m \longrightarrow \infty} \sum_{\hat{0}<x_{0} \leq x_{1} \leq \cdots \leq x_{m}=1} s^{\rho\left(x_{0}\right)-1} t_{1}^{\rho\left(x_{1}\right)-\rho\left(x_{0}\right)} t_{2}^{\rho\left(x_{2}\right)-\rho\left(x_{1}\right)} \cdots t_{m}^{\rho\left(x_{m}\right)-\rho\left(x_{m-1}\right)} .
$$

Another equivalent encoding of the flag f-vector is the flag h-vector $\left(h_{S}(P): S \subseteq\{1, \ldots, n\}\right.$) (see [21]), given by $h_{S}(P)=\sum_{T \subseteq S}(-1)^{|S \backslash T|} f_{T}(P)$.

A graded poset is Eulerian if every interval $[x, y]$ of positive rank in it satisfies $\sum_{x \leq z \leq y}(-1)^{\rho(z)}=$ 0 . All linear relations holding for the flag f-vector of an arbitrary Eulerian poset of rank n were determined by Bayer and Billera [1]. These linear relations were rephrased by J. Fine as follows (see Bayer and Klapper [2]). For any $S \subseteq\{1, \ldots, n\}$ define the non-commutative monomial $u_{S}=u_{1} \ldots u_{n}$ by setting

$$
u_{i}= \begin{cases}b & \text { if } i \in S \\ a & \text { if } i \notin S\end{cases}
$$

Then the polynomial $\Psi_{a b}(P)=\sum_{S} h_{S} u_{S}$ in non-commuting variables a and b, called the $a b$-index of P, is a polynomial $\Phi_{c d}(P)$ of $c=a+b$ and $d=a b+b a$, called the $c d$-index of P. It was noted by Stanley [21] that the existence of the $c d$-index is equivalent to saying that the $a b$-index rewritten as a polynomial of $c=a+b$ and $e=a-b$ involves only even powers of e. Stanley's conjecture [21, Conjecture 2.1] states that the $c d$-index of any Gorenstein* poset has non-negative coefficients. The $c d$-index form is convenient to calculate the flag f-vector of the join $P * Q:=\left(P \backslash\left\{\hat{1}_{P}\right\}\right) \cup\left(Q \backslash\left\{\widehat{0}_{Q}\right\}\right)$ of two Eulerian posets. (We place the elements of Q above the elements of P.) By [21, Lemma 1.1] we have $\Phi_{c d}(P * Q)=\Phi_{c d}(P) \Phi_{c d}(Q)$.

1.2 The Tchebyshev transform of a graded poset

We define the Tchebyshev transform $T(P)$ of a graded poset P as follows: we adjoin a new minimum element $\widehat{-1}<\widehat{0}$ to P and set $T(P)=\{(x, y): x<y, x, y \in\{\widehat{-1}\} \cup P\} \cup\left\{\widehat{1}_{T(P)}\right\}$. Here $\widehat{1}_{T(P)}$ is the maximum element of $T(P)$, and we set $\left(x_{1}, y_{1}\right)<\left(x_{2}, y_{2}\right)$ if either $y_{1}<x_{2}$ or $x_{1}=x_{2}$ and $y_{1}<y_{2}$. It was shown in [12] that this operation yields a graded poset and preserves the Eulerian property. It was observed in [14, Section 9] that substituting x into c and 1 into e in the $c e$ index of the Tchebyshev transform of the Boolean algebra of rank n yields the polynomial $(\sqrt{-1})^{n} \cdot Q_{n}(x \cdot \sqrt{-1})$ where $Q_{n}(x)$ is the n-th derivative polynomial for secant given by $\frac{d^{n}}{d u^{n}} \sec (u)=Q_{n}(\tan u) \sec u$. Further information on these polynomials may be found in Hoffman's papers [15] and [16]. The study of these polynomials goes back to Krichnamachary and Rao [18] and Knuth and Buckholtz [17]. Further results on the Tchebyshev transform are in [11], [12], and [14].

1.3 Free join and suspension of $C W$-spheres

Given a regular $C W$-complex Ω, we obtain a graded poset $P_{1}(\Omega)$ by adjoining a maximum element $\widehat{1}$ to the face poset of Ω. Such posets are called $C W$-posets and were characterized by Björner [3]. $P_{1}(\Omega)$ is Eulerian if Ω is a $C W$-sphere. We use two basic operations on $C W$-complexes: free join and $C W$-suspension. The free join $X * Y$ of the topological spaces X and Y is $X \times Y \times[0,1] / \equiv$, where the only nontrivial equivalence classes of \equiv are $\left\{\left(x, y_{0}, 0\right): x \in X\right\}$ and $\left\{\left(x_{0}, y, 1\right): y \in Y\right\}$. The free join $\Omega * \Omega^{\prime}$ of two $C W$-complexes Ω and Ω^{\prime} may also be given as a $C W$-complex (see May [19, Chapter 10, Section 2]). This operation satisfies

$$
\begin{equation*}
P_{1}\left(\Omega * \Omega^{\prime}\right)=P_{1}(\Omega) \diamond^{*} P_{1}\left(\Omega^{\prime}\right) \tag{3}
\end{equation*}
$$

where $P \diamond^{*} Q=\left(P^{*} \diamond Q^{*}\right)^{*}$. The suspension of a topological space X is usually defined as $\operatorname{Susp}(X)=$ $X * \mathbb{S}^{0}$ (see, e.g., Dong [7] or Readdy [20]), because this operation assigns a simplicial complex to a simplicial complex. For $C W$-complexes there is also a more economical way to create a face structure $\operatorname{Susp}(\Omega)$ on the suspension of the topological space underlying Ω. This is noted by Dold [6, Chapter V, Example 3.10]. Using that construction we obtain

$$
\begin{equation*}
P_{1}(\operatorname{Susp}(\Omega)) \cong B_{2} * P_{1}(\Omega) . \tag{4}
\end{equation*}
$$

Here and later B_{m} is the Boolean algebra of rank m.

1.4 Polyspherical coordinates

Our polyspherical coordinates $\left(\theta_{1}, \ldots, \theta_{n-1}\right)$ parameterize the unit $(n-1)$-sphere defined by $\sum_{i=1}^{n} x_{i}^{2}=$ 1. Recall that a binary tree is a planar rooted tree such that each internal node has at most two children. It is strongly binary if each internal node has exactly two children. Let us fix strongly binary tree with
n leaves, and label its leaves with the rectangular coordinates x_{1}, \ldots, x_{n}, as shown in Fig. 1. Associate to each internal node an angle $\theta_{i}(i=1, \ldots, n-1)$. We call such a labeled tree a large tree. For the

Figure 1: Large tree of polyspherical coordinates for a 4-dimensional sphere
internal node labeled θ_{i}, we label the edge to its left child with $\cos \left(\theta_{i}\right)$ and the edge to its right child with $\sin \left(\theta_{i}\right)$. Define the value of each x_{j} as the product of the labels on the edges along the unique path connecting the root with x_{j}. For example, for the labeled tree in Fig. 1 we set

$$
\begin{aligned}
& x_{1}=\cos \left(\theta_{1}\right) \cdot \cos \left(\theta_{2}\right) \\
& x_{2}=\cos \left(\theta_{1}\right) \cdot \sin \left(\theta_{2}\right) \\
& x_{3}=\sin \left(\theta_{1}\right) \cdot \cos \left(\theta_{3}\right) \cdot \cos \left(\theta_{4}\right) \\
& x_{4}=\sin \left(\theta_{1}\right) \cdot \cos \left(\theta_{3}\right) \cdot \sin \left(\theta_{4}\right) \\
& x_{5}=\sin \left(\theta_{1}\right) \cdot \sin \left(\theta_{3}\right)
\end{aligned}
$$

Using the rule to express the x_{i} 's as products of edge labels, every point of the unit sphere is already determined by the subtree of internal nodes and the labels θ_{j} associated to them. We call the rooted tree (T, r), consisting of these internal nodes only, a small tree. According to [22, (13)], our parameterization provides a single covering of the unit sphere if we set the following restrictions:
(S1) If the node associated to θ_{i} is a leaf in the small tree, we require $\theta_{i} \in[0,2 \pi]$.
(S2) If the node of θ_{i} has only a right child, we require $\theta_{i} \in[0, \pi]$.
(S3) If the node of θ_{i} has only a left child, we require $\theta_{i} \in[-\pi / 2, \pi / 2]$.
(S4) If the node θ_{i} has two children, we require $\theta_{i} \in[0, \pi / 2]$.
The representation by polyspherical coordinates may be made unique by factoring by the following equivalence relation.

Definition 1.1 We say that $\left(\theta_{1}, \ldots, \theta_{n-1}\right)$ and $\left(\theta_{1}^{\prime}, \ldots, \theta_{n-1}^{\prime}\right)$ are equivalent, if for each j such that $\theta_{j} \neq \theta_{j}^{\prime}$ at least one of the following holds:
(i) θ_{j} (and θ_{j}^{\prime}) is the label of a leaf in the small tree and $\theta_{j}, \theta_{j}^{\prime} \in\{0,2 \pi\}$,
(ii) θ_{j} (and θ_{j}^{\prime}) is the right descendant of a node whose labels in both vectors satisfy $\theta_{i}=\theta_{i}^{\prime} \in\{0, \pi\}$,
(iii) θ_{j} (and θ_{j}^{\prime}) is the left descendant of a node whose labels in both vectors satisfy $\theta_{i}=\theta_{i}^{\prime} \in$ $\{-\pi / 2, \pi / 2\}$.

Thus, for example, the labels of the right descendants of a node labeled 0 or π are irrelevant. Each equivalence class may be represented by a simplified code, where the irrelevant coordinates are replaced with a dash.

2 The polyspherical complex $C\left((T, r) ; m_{1}, \ldots, m_{n-1}\right)$

Definition 2.1 Consider a code $\left(\sigma_{1}, \ldots, \sigma_{n-1}\right)$ associated to a small tree, such that each σ_{j} is either a real number, or an interval $[\alpha, \beta]$, or the $*$ sign. We call such a code a standard lune code if it satisfies the following conditions:
(i) Exactly one σ_{i} is an interval $[\alpha, \beta]$. The node of this σ_{i} is the root of the standard lune code.
(ii) The interval $[\alpha, \beta]$ is a proper subset of the interval $I\left(\sigma_{i}\right)$ that occurs in the restrictions (S1)-(S4) applied to the node of σ_{i}. Moreover, $0<\beta-\alpha<\pi$.
(iii) All descendants of the node of σ_{i} are labeled with a real number, subject to the restrictions (S1)-(S4).
(iv) All other nodes are labeled with *.

We use a standard lune code to denote the set of all polyspherical vectors $\left(\theta_{1}, \ldots, \theta_{n-1}\right)$ satisfying $\theta_{i} \in[\alpha, \beta]$, and $\theta_{j}=\sigma_{j}$ whenever $j \neq i$ and $\sigma_{j} \neq *$. A standard hemisphere code is defined analogously, the only difference is setting $\alpha=\beta$. The equivalence relation for polyspherical coordinates may be extended to codes of standard lunes and hemispheres, so we may obtain a simplified code for them, and think of them as subsets of the unit sphere.

Proposition 2.2 A standard lune code with $d-1$ star signs encodes a d-dimensional closed region, whose boundary is the union of two spheres obtained by replacing the interval $[\alpha, \beta]$ with α or β respectively (thus obtaining standard hemispheres).

Taking intersections of standard lunes motivates the introduction of canonical regions.

Definition 2.3 A canonical region code is a vector $\left(\sigma_{1}, \ldots, \sigma_{n-1}\right)$ such that each σ_{i} is either a real number, or an interval $[\alpha, \beta]$, or the symbol $*$, or the symbol -, subject to the following conditions:
(i) If σ_{i} is a real number or an interval, then it is an element or proper subset of $I\left(\sigma_{i}\right)$.
(ii) If $\sigma_{i} \in\{0, \pi\}$ then every right descendant of the node labeled σ_{i} is labeled -.
(iii) If $\sigma_{i} \in\{-\pi / 2, \pi / 2\}$ then every left descendant of the node labeled σ_{i} is labeled -.
(iv) σ_{i} is - then every descendant of the node labeled σ_{i} is labeled -.
(v) If σ_{i} is - then the parent of the node labeled σ_{i} is either labeled with -, or it is labeled with an element of $\{0, \pi\}$ and the node of σ_{i} is the right child, or it is an element of $\{-\pi / 2, \pi / 2\}$ and the node of σ_{i} is the left child.
(vi) If $\sigma_{i} \neq *$ and some descendant of its node is $*$ or an interval, then the node of σ_{i} has two children in the small tree, and σ_{i} is a real number belonging to $\{0, \pi / 2\}$. (Thus either its left or its right subtree will have all of its nodes labeled with -.)

Again we obtain equivalence classes of polyspherical vectors; thus we may think of canonical regions as subsets of the unit sphere.

Proposition 2.4 Every canonical region, except for the entire unit sphere, may be written as an intersection of finitely many standard hemispheres and standard lunes. Conversely, the intersection of any two canonical regions may be written as a union of canonical regions.

Definition 2.5 We call a rooted tree (T, r) whose nodes are labeled with positive integers such that the label on each leaf is at least two a loopless complex code.

Given a loopless complex code, consider the family $C\left((T, r) ; m_{1}, \ldots, m_{n-1}\right)$ consisting of the empty set, and of all canonical regions whose code is subject to the following conditions:
(C1) No leaf is labeled with *.
(C2) Each node labeled with a real number has either an ancestor whose label is an interval, or an ancestor labeled with $\sigma_{i}=*$ for which the corresponding m_{i} is equal to 1 .
(C3) If σ_{i} is a real number and $I\left(\sigma_{i}\right)=[\gamma, \delta]$, then we have

$$
\sigma_{i}=\gamma+t \cdot \frac{\delta-\gamma}{m_{i}} \quad \text { for some } \quad t \in\left\{0,1, \ldots, m_{i}\right\}
$$

(C4) If σ_{i} is an interval and $I\left(\sigma_{i}\right)=[\gamma, \delta]$, then we have

$$
[\alpha, \beta]=\left[\gamma+t \cdot \frac{\delta-\gamma}{m_{i}}, \gamma+(t+1) \cdot \frac{\delta-\gamma}{m_{i}}\right] \quad \text { for some } \quad t \in\left\{0,1, \ldots, m_{i}-1\right\}
$$

Theorem 2.6 Given a loopless code associated to a small tree (T, r), $C\left((T, r) ; m_{1}, \ldots, m_{n-1}\right)$ is a $C W$-complex, homeomorphic to an ($n-1$)-sphere.

3 A recursive description of the polyspherical complexes

Any binary tree (T, r) having at least two nodes may be reconstructed from knowing the children r_{1} and r_{2} of the root and the subtrees T_{i} of descendants of r_{i}. (Only at least one of the r_{i} 's needs to exist.) In this section we describe the structure of a polyspherical complex in terms of the polyspherical complexes associated to the subtrees of the children of the root in its small tree. The arising operations assign the face poset of a $C W$-sphere to face posets of $C W$-spheres. Thus the aggregate of the statements in this section provides proof of Theorem 2.6.

Consider a family of canonical regions $C\left((T, r) ; m_{1}, \ldots, m_{n-1}\right)$. Assume w.l.o.g. that m_{1} is associated to the root. We introduce $P_{1}\left(C\left((T, r) ; m_{1}, \ldots, m_{n-1}\right)\right)$ to denote the partially ordered set obtained by taking the elements of $C\left((T, r) ; m_{1}, \ldots, m_{n-1}\right)$, ordered by inclusion, and add a new unique maximum element $\widehat{1}$, which we associate to the canonical region $(*, \ldots, *)$.

Lemma 3.1 If $m_{1}=1$ and the root r has only a right child r^{\prime} then $P_{1}\left(C\left((T, r) ; 1, m_{2}, \ldots, m_{n-1}\right)\right)=$ $B_{2} * P_{1}\left(C\left(\left(T^{\prime}, r^{\prime}\right) ; m_{2}, \ldots, m_{n-1}\right)\right)$.

Proposition 3.2 Assume that Ω is an $(n-2)$-dimensional $C W$-sphere, whose faces subdivide the unit sphere $\left\{\left(x_{2}, \ldots, x_{n}\right): x_{2}^{2}+\cdots+x_{n-1}^{2}=1\right\}$. Then the $C W$-suspension $\Omega^{\prime}=\operatorname{Susp}(\Omega)$ may be realized as a $C W$-complex subdividing the unit sphere $\left\{\left(x_{1}, \ldots, x_{n}\right): x_{1}^{2}+\cdots+x_{n-1}^{2}=1\right\}$. As a consequence we have $P_{1}\left(\Omega^{\prime}\right)=B_{2} * P_{1}(\Omega)$.

To handle the case $m_{1}>1$, we introduce m-fold edge subdivisions. Given an edge e in a $C W$ complex, connecting the vertices u and v, we introduce $m-1$ new vertices $u_{1}, u_{2}, \ldots, u_{m-1}$, and set $u_{0}:=u$ and $u_{m}:=v$. We remove e and introduce m new edges e_{1}, \ldots, e_{m} such that e_{i} connects u_{i-1} and u_{i} for $i=1,2, \ldots, m$ and a face f contains any of the e_{i} 's in the new $C W$-complex if and only if it contains e in the original complex. We make the analogous definition for graded posets as well. An m-fold edge subdivision does not change the homeomorphy type of the $C W$-complex and, for posets, it preserves the Eulerian property. We denote by $E_{m}(P)$ the poset obtained by applying m-fold edge subdivision to all rank 2elements of the graded poset P.

Theorem 3.3 Assume that the root r in the small tree associated to $C\left((T, r) ; m_{1}, m_{2}, \ldots, m_{n-1}\right)$ has only a right child r^{\prime}. Then $P_{1}\left(C\left((T, r) ; m_{1}, m_{2}, \ldots, m_{n-1}\right)\right) \cong E_{m_{1}}\left(B_{2} * P_{1}\left(C\left(\left(T^{\prime}, r^{\prime}\right) ; m_{2}, \ldots, m_{n-1}\right)\right)\right)$. Here T^{\prime} is the subtree of descendants of r^{\prime}.

The case when the root of the small tree has only a left child is completely analogous. Consider finally the case when the root r has two children: a left child r_{1} and a right child r_{2}, with subtrees of descendants T_{1} and T_{2}. W.l.o.g. we may assume that m_{2}, \ldots, m_{k} belong to the nodes in T_{1} and m_{k+1}, \ldots, m_{n-1} belong to the nodes of T_{2}. Again we discuss first the case $m_{1}=1$ separately.

Lemma 3.4 Under the conditions listed above, we have

$$
P_{1}\left(C\left((T, r) ; 1, m_{2}, \ldots, m_{n-1}\right)\right) \cong P_{1}\left(C\left(\left(T_{1}, r_{1}\right) ; m_{1}, \ldots, m_{k}\right)\right) \diamond^{*} P_{1}\left(C\left(\left(T_{2}, r_{2}\right) ; m_{k+1}, \ldots, m_{n-1}\right)\right) .
$$

Proposition 3.5 Assume that the $(k-1)$-dimensional $C W$-sphere Ω_{1} subdivides $\left\{\left(x_{1}, \ldots, x_{k}\right): x_{1}^{2}+\right.$ $\left.\cdots+x_{k}^{2}=1\right\}$ and the $(n-k-1)$-dimensional $C W$-sphere Ω_{2} subdivides $\left\{\left(x_{k+1}, \ldots, x_{n}\right): x_{k+1}^{2}+\cdots+\right.$ $\left.x_{n}^{2}=1\right\}$. Then $\Omega_{1} * \Omega_{2}$ may be realized as a $C W$-sphere Ω, subdividing $\left\{\left(x_{1}, \ldots, x_{n}\right): x_{1}^{2}+\cdots+x_{n-1}^{2}=\right.$ $1\}$. As a consequence we have $P_{1}(\Omega)=P_{1}\left(\Omega_{1}\right) \diamond^{*} P_{1}\left(\Omega_{2}\right)$.

Finally, to state the analogue of Theorem 3.3, we need the following analogue of the operator E_{m}.

Definition 3.6 The m-fold edge-subdivided dual diamond product $P \diamond_{m}^{*} Q$ is obtained from $P \diamond^{*} Q$ by applying m-fold edge subdivision to all elements of the form $(p, q) \in P \diamond^{*} Q$ such that both p and q have rank 1 .

Theorem 3.7 Making the same assumptions as in Lemma 3.4 except for allowing $m_{1}>1$, we have

$$
P_{1}\left(C\left((T, r) ; m_{1}, m_{2}, \ldots, m_{n-1}\right)\right) \cong P_{1}\left(C\left(\left(T_{1}, r_{1}\right) ; m_{2}, \ldots, m_{k}\right)\right) \diamond_{m_{1}}^{*} P_{1}\left(C\left(\left(T_{2}, r_{2}\right) ; m_{k+1}, \ldots, m_{n-1}\right)\right)
$$

When we prove Theorem 2.6 by induction, the basis is the case when the tree T has only one vertex, and $m_{1} \geq 2$. The resulting complex $C\left(\{r\}, r ; m_{1}\right)$ is a circle, subdivided into m_{1} arcs.

4 Non-negativity of the $c d$-index

Theorem 4.1 The cd-index of any poset $P_{1}\left(C\left((T, r) ; m_{1}, m_{2}, \ldots, m_{n-1}\right)\right)$ associated to a loopless complex code is non-negative.

This may be shown using the recursive description of our polyspherical complexes given in Section 3.

Definition 4.2 We say that an Eulerian poset P is upwards $c d$-positive $i f$, for every $x \in P \backslash\{\widehat{1}\}$, the interval $[x, \widehat{1}]$ has a non-negative cd-index.

It is easy to see that $C\left(\{r\}, r ; m_{1}\right)$ is upwards $c d$-positive for all $m_{1}>1$.

Proposition 4.3 If P is an upwards cd-positive Eulerian poset, then so is $B_{2} * P$.

The following is an easy consequence of [9, Proposition 7.4].

Proposition 4.4 If the Eulerian posets P and Q are upwards $c d$-positive, then so is $P \diamond^{*} Q$.

Finally, since any m-fold subdivision may be obtained by iterated 2 -fold subdivisions, it is sufficient to show the following.

Proposition 4.5 Assume that P is an upwards cd-positive Eulerian poset of rank $n+1$, and that $e \in P$ is an element of rank two. Let Q be the Eulerian poset obtained from P by applying 2-fold edge-subdivision to e. Then Q is also upwards cd-positive.

5 Strongly binary small trees

It is hard to convert the $c d$-index to a type B quasisymmetric function; thus finding an explicit general formula for the flag f-vector of an arbitrary polyspherical complex seems difficult. The situation becomes easier when we may restrict ourselves to using only one of these two encodings of the flag f-vector. The special case when the small tree is a path is the subject of [13]. From now on, we assume the "other extreme" that all underlying small trees are strongly binary. To reduce the complexity of the question to a level similar to [13], we we also require that the number m_{i} associated to any interior node in the small tree has to be 1 . Then the shape of the tree becomes irrelevant, because of the following:

Lemma 5.1 Consider a loopless code $\left.\left((T, r) ; m_{1}, m_{2}, \ldots, m_{2 n-1}\right)\right)$ such that the underlying small tree (T, r), is strongly binary. Assume that $m_{n+1}, \ldots, m_{2 n-1}$ are associated to the interior nodes and that these numbers are equal to 1 . Then we have

$$
P_{1}\left(C\left((T, r) ; m_{1}, m_{2}, \ldots, m_{2 n-1}\right)\right) \cong P_{1}\left(C\left(\{r\}, r ; m_{1}\right)\right) \diamond^{*} P_{1}\left(C\left(\{r\}, r ; m_{2}\right)\right) \diamond^{*} \cdots \diamond^{*} P_{1}\left(C\left(\{r\}, r ; m_{n}\right)\right) .
$$

The computation of the flag f-vector of such a poset is possible using dual type B quasisymmetric functions

$$
F_{B}^{*}(P)=\sum_{\hat{0} \leq x_{1} \leq \cdots \leq x_{m}<1} s^{\rho(\hat{1})-\rho\left(x_{m}\right)-1} \cdot t_{1}^{\rho\left(x_{1}\right)-\rho\left(x_{0}\right)} t_{2}^{\rho\left(x_{2}\right)-\rho\left(x_{1}\right)} \cdots t_{m}^{\rho\left(x_{m}\right)-\rho\left(x_{m-1}\right)} .
$$

Dually to (2) we have the identity $F_{B}^{*}\left(P \diamond^{*} Q\right)=F_{B}^{*}(P) \cdot F_{B}^{*}(Q)$. Direct substitution into the definitions yields

$$
\begin{equation*}
F_{B}^{*}\left(P_{1}(C(\{r\}, r ; m))\right)=m \cdot\left(\sum_{i} t_{i}+\frac{s}{2}\right)^{2}-\left(\frac{m}{4}-1\right) \cdot s^{2} . \tag{5}
\end{equation*}
$$

Corollary 5.2 Under the assumptions of Lemma 5.1 we have

$$
F_{B}^{*}\left(P_{1}\left(C\left((T, r) ; m_{1}, m_{2}, \ldots, m_{2 n-1}\right)\right)\right)=\prod_{j=1}^{n}\left(m_{j} \cdot\left(\sum_{i} t_{i}+\frac{s}{2}\right)^{2}-\left(\frac{m_{j}}{4}-1\right) \cdot s^{2}\right)
$$

Using this Corollary it is possible to calculate the f-vectors of the order complexes, and it will be worthwhile to explore the sequences of polynomials arising, in analogy to [13]. To conclude, consider the special case $m_{1}=\ldots=m_{n}=4$. Then all terms $\left(m_{j} / 4-1\right) s^{2}$ vanish from all factors:

Proposition 5.3 The n-th dual diamond power \mathcal{Q}_{n} of $P_{1}(C(\{r\}, r ; 4))$ satisfies

$$
F_{B}^{*}\left(\mathcal{Q}_{n}\right)=\left(2 \cdot \sum_{i} t_{i}+s\right)^{2 n}=\sum_{k=0}^{2 k}\binom{2 n}{k} s^{2 n-k}\left(2 \cdot \sum_{i} t_{i}\right)^{k} .
$$

From this we may deduce

$$
\begin{equation*}
f_{\left\{s_{1} \ldots, s_{k}\right\}}\left(\mathcal{Q}_{n}\right)=\binom{2 n}{s_{k}} \cdot 2^{s_{k}} \cdot\binom{s_{k}}{s_{1}, s_{2}-s_{1}, \ldots, s_{k}-s_{k-1}} \tag{6}
\end{equation*}
$$

which is also equal to $f_{\left\{s_{1} \ldots, s_{k}\right\}}\left(T\left(B_{2 n}\right)\right.$.

Corollary 5.4 Substituting x into c and 1 into e in the ce-index of \mathcal{Q}_{n} yields $(-1)^{n} Q_{2 n}(x \cdot \sqrt{-1})$, where $Q_{2 n}(x)$ the $2 n$-th derivative polynomial for secant.

Remark 5.5 Among all posets of the form $P_{1}(C(\{r\}, r ; m))$, only $P_{1}(C(\{r\}, r ; 4))$ is the Tchebyshev transform of a poset of rank 2. Thus we may also use a result of Ehrenborg and Readdy [11] stating that for any pair of graded posets $(P, Q), T(P \times Q)$ has the same flag f-vector as $T(P) \diamond^{*} T(Q)$.

Acknowledgments

I wish to thank Richard Stanley, Margaret Readdy, and Richard Ehrenborg for providing valuable mathematical information and advice.

Final note

To observe the 12 page limit, we omitted all proofs. A preprint with the title "Polyspherical complexes" is available at http://www.math.uncc.edu/~ghetyei.

References

[1] M. M. Bayer and L. J. Billera, Generalized Dehn-Sommerville relations for polytopes, spheres and Eulerian partially ordered sets, Invent. Math. 79 (1985), 143-157.
[2] M. Bayer and A. Klapper, A new index for polytopes, Discrete Comput. Geom. 6 (1991), 33-47.
[3] A. Björner, Posets, regular CW-complexes and Bruhat order European J. Combin. 5 (1984), 7-16.
[4] M. Bruggeser and P. Mani, Shellable decompositions of cells and spheres, Math. Scand. 29 (1971), 197-205.
[5] C.-O. Chow, Noncommutative symmetric functions of type B, Doctoral dissertation, Massachussetts Institute of Technology, 2001.
[6] A. Dold, "Lectures on Algebraic Topology," Springer-Verlag New York, 1980.
[7] X. Dong, Topology of bounded-degree graph complexes, J. Algebra 262 (2003), 287-312.
[8] R. Ehrenborg, On Posets and Hopf Algebras, Adv. in Math. 119 (1996), 1-25.
[9] R. Ehrenborg and H. Fox, Inequalities for cd-indices of joins and products of polytopes, Combinatorica 23 (2003), 427-452.
[10] R. Ehrenborg and M. Readdy, Coproducts and the cd-index, J. Algebraic Combin. 8 (1998), 273-299.
[11] R. Ehrenborg and M. Readdy, The Tchebyshev Transforms of the First and Second Kind, manuscript in preparation.
[12] G. Hetyei, Tchebyshev posets, Discrete \& Comput. Geom. 32 (2004) 493-520.
[13] G. Hetyei, Orthogonal polynomials represented by CW-spheres, Electron. J. Combin. 11(2) (2004), \#R4, 28 pp.
[14] G. Hetyei, Matrices of formal power series associate to binomial posets, to appear in J. Algebraic Combin.
[15] M. E. Hoffman, Derivative Polynomials for Tangent and Secant, Amer. Math. Monthly 102 (1995), 23-30.
[16] M. E. Hoffman, Derivative Polynomials, Euler Polynomials, and Associated Integer Sequences, Electron. J. Comb. 6 (1999), \#R21.
[17] D. E. Knuth and T. J. Buckholtz, Computation of tangent, Euler and Bernoulli numbers, Math. Comp. 21 (1967), 663-688.
[18] C. Krichnamachary and Rao M. Bhimasena, On a table for calculating Eulerian numbers based on a new method, Proc. London Math. Soc. (2) 22 (1923), 73-80.
[19] J. P. May, "A concise course in algebraic topology," The University of Chicago Press, Chicago and London, 1999.
[20] M. Readdy, The pre-WDVV ring of physics and its topology, preprint 2003, http://www.ms.uky.edu/~readdy/Papers/pre_WDVV.pdf
[21] R. P. Stanley, Flag f-vectors and the $c d$-index, Math. Z. 216 (1994), 483-499.
[22] N. Ya. Vilenkin, G. I. Kuznetsov, and Ya. A. Smorodinski, Eigenfunctions of the Laplace Operator, Providing Representations of the $U(2), S U(2), S O(3), U(3)$, and $S U(3)$ Groups and the Symbolic Method, Sov. J. Nucl. Phys. 2 (1966), 645-652.

[^0]: *On leave from the Rényi Mathematical Institute of the Hungarian Academy of Sciences. 2000 Mathematics Subject Classification: Primary 05E35; Secondary 06A07, 57Q05
 Key words and phrases: partially ordered set, Eulerian, flag, polyspherical coordinates, derivative polynomial.

