Some Symmetry and Unimodality Properties of the q, x, y-Hit Numbers

Fred Butler
Department of Mathematics
West Virginia University
P.O. Box 6310
Morgantown, WV 26506-6310
fbutler@math.wvu.edu

Abstract

We prove symmetry and in some cases symmetry and unimodality of polynomials related to the q, x, y-hit numbers introduced by Haglund. These results generalize theorems proven by Haglund for the q-hit numbers. We also apply one of these results to obtain a corollary concerning a generalization of the Eulerian numbers.

Résumé

Nous prouvons la symétrie et dans certains cas la symétrie et l'unimodalité de polynômes relatifs aux q, x, y nombres de contacts introduits par Haglund, généralisant ainsi certains théorèmes. Un de ces résultats nous permet d'obtenir un corollaire à propos d'une généralisation des nombres Eulériens.

1 Introduction

1.1 Preliminaries

We will use the notation $S Q_{n}$ to denote the $n \times n$ square chess board. We will number the columns of $S Q_{n}$ with 1 through n going from left to right across the bottom, and the rows of $S Q_{n}$ with 1 through n going from bottom to top. We will label a square on $S Q_{n}$ in column i row j with (i, j).

More generally, a board will be any subset of $S Q_{n}$ for some $n \in \mathbb{N}$. A Ferrers board is a board with non-decreasing column heights from left to right, or more precisely a board of the form $\left\{(i, j) \in S Q_{n} \mid 1 \leq j \leq b_{i}, 1 \leq\right.$ $i \leq n\}$ where $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$. We will denote the Ferrers board with

Figure 1: The Ferrers board $B\left(h_{1}, d_{1} ; \ldots ; h_{t}, d_{t}\right)$.
column heights $b_{1}, b_{2}, \ldots b_{n}$ by $B\left(b_{1}, \ldots, b_{n}\right)$. We will also specify a Ferrers board by its step heights and depths. The Ferrers board $B\left(h_{1}, d_{1} ; \ldots ; h_{t}, d_{t}\right)$ is shown in Figure 1. We will call $B=B\left(b_{1}, \ldots, b_{n}\right)=B\left(h_{1}, d_{1} ; \ldots ; h_{t}, d_{t}\right)$ a regular Ferrers board if $b_{i} \geq i$ for $1 \leq i \leq n$, or equivalently if $h_{1}+\cdots+h_{i} \geq$ $d_{1}+\cdots+d_{i}$ for $1 \leq i \leq t$ as was defined in [9]. In this paper we will focus on regular Ferrers boards.

A rook placement on a board $B \subseteq S Q_{n}$ is a subset of squares of B such that no two of these squares lie in the same row or the same column. As the name suggests, these squares represent positions on an $n \times n$ chess board where non-attacking rooks can be placed. Let $r_{k}(B)$ denote the number of k rook placements on B, and let $h_{n, k}(B)$ denote the number of n rook placements on $S Q_{n}$ such that exactly k rooks lie on B. These are known as the k th rook number and the k th hit number, respectively, of the board B. Classical rook theory is concerned with studying the relationships between these two numbers.

1.2 Cycle-counting q-rook theory

The cycle-counting q-rook numbers were first introduced in the unpublished work of Ehrenborg, Haglund, and Readdy [4], defined only for Ferrers boards. These rook numbers generalize both the q-rook numbers $R_{k}(q, B)$ of Garsia and Remmel [5], and the cycle-counting rook numbers $r_{k}(y, B)$ of Chung and Graham [2]. In order to describe them, we need to define the following three statistics.

The first statistic is denoted inv_{B}, a generalization of the number of inversions of a permutation. Given a placement P of rooks on a Ferrers board $B \subseteq S Q_{n}$, let each rook cancel all squares to the right in its row and below in its column. We can then define $\operatorname{inv}_{B}(P)$ to be the number of squares of B which neither contain a rook from P nor are cancelled.

$\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}$

Figure 2: The placement P on B and the associated digraph G_{P}.

The second statistic is denoted $c y c$, and is a generalization of the number of cycles of a permutation. Given a rook placement P on a board $B \subseteq S Q_{n}$, it is possible to associate to P a simple directed graph G_{P} on n vertices. This fact was first noted in [6] (see also [2] and [3]). There is an edge from i to j in G_{P} if and only if there is a rook from P on the square (i, j). We can then define $\operatorname{cyc}(P)$ to be the number of cycles in G_{P}.

The third statistic, denoted E, depends on the following fact. Given any placement P of j non-attacking rooks in columns 1 through $i-1$ of a Ferrers board B (where $j \leq i-1$), it is an easy exercise to see that if $b_{i} \geq i$ then there is exactly one square in column i where placement of a rook will complete a new cycle in the digraph G_{P}. If $b_{i}<i$ then there is no square where placing a rook will complete a new cycle. Note that a regular Ferrers board will have such a square in each of its columns (since $b_{i} \geq i$ for all $1 \leq i \leq n$). Now for i with $b_{i} \geq i$ we can define $s_{i}(P)$ to be the unique square which, considering only rooks from P in columns 1 through $i-1$ of P, completes a new cycle. Then let $E(P)$ be the number of i such that $b_{i} \geq i$ and there is no rook from P in column i on or above square $s_{i}(P)$.

For the rook placement P pictured in Figure 2, we see that $\operatorname{inv}_{B}(P)=4$, $\operatorname{cyc}(P)=2$, and $E(P)=2$ (corresponding to $i=4$ and $i=5$). We will use the common notation of

$$
[x]=\frac{1-q^{x}}{1-q}
$$

to denote the q-analog of the real number x. Note that when $x=n \in \mathbb{N}$,

$$
[n]=\frac{1-q^{n}}{1-q}=1+q+\cdots+q^{n-1}
$$

is a polynomial in q. We use the notation $[n]$! to denote the q-analog of n !, the product $[n][n-1] \cdots[2][1]$. Finally, for $n, k \in \mathbb{N}$ we denote by $\left[\begin{array}{l}n \\ k\end{array}\right]$ the
q-analog of the binomial coefficient $\binom{n}{k}$, equal to

$$
\frac{[n]!}{[k]![n-k]!}=\frac{[n][n-1] \cdots[n-k+1]}{[k]!}
$$

for $k \leq n$ and equal to 0 for $k>n$. The fact that $\left[\begin{array}{l}n \\ k\end{array}\right]$ is also a polynomial in q is proven in [10]. More generally for $z \in \mathbb{C}$ we will write $\left[\begin{array}{l}z \\ k\end{array}\right]$ for $[z][z-$ $1] \cdots[z-k+1] /[k]$!.

As in [4], we now define the k th cycle-counting q-rook number of a Ferrers board B by the equation

$$
\begin{equation*}
R_{k}(y, q, B)=\sum_{P \text { r rooks on } B}[y]^{c y c(P)} q^{i n v_{B}(P)+(y-1) E(P)} \tag{1}
\end{equation*}
$$

Letting $y=1$ in (1) yields the q-rook numbers of [5], and letting $q \rightarrow 1$ gives the cycle-counting rook numbers of [2]. The $R_{k}(y, q, B)$ satisfy the useful equation

$$
\begin{gather*}
\sum_{k=0}^{n} R_{n-k}(y, q, B)[z][z-1] \cdots[z-k+1]= \\
\prod_{i \text { with } b_{i} \geq i}\left[z+b_{i}-i+y\right] \prod_{i \text { with } b_{i}<i}\left[z+b_{i}-i+1\right] \tag{2}
\end{gather*}
$$

a version of the well-known factorization theorems proven for the $r_{k}(B)[7]$, $R_{k}(q, B)$ [5], and $r_{k}(y, B)$ [2].

Haglund [9] further extended this model by defining the q, x, y-hit numbers algebraically by the equation

$$
\begin{gather*}
\sum_{k=0}^{n} A_{n, k}(x, y, q, B) z^{k}= \tag{3}\\
\sum_{k=0}^{n} R_{n-k}(y, q, B)[x][x+1] \cdots[x+k-1] z^{k} \prod_{i=k+1}^{n}\left(1-z q^{x+i-1}\right),
\end{gather*}
$$

which generalize the $a_{n, k}(x, y, B)$ also discussed in [9]. The case $x=y$ is studied in [1], where a combinatorial interpretation for $A_{n, k}(y, y, q, B)$ is given. In addition to generalizing the q-hit numbers of Garsia and Remmel [5], the $A_{n, k}(y, y, q, B)$ also generalize the cycle-counting hit numbers in the model of Chung and Graham [2].

In Section 2 we prove symmetry and unimodality of $A_{n, k}(a, b, q, B)$ for $a, b \in \mathbb{N}$. We then apply this theorem to prove a symmetry and unimodality property of the cycle-counting q-Eulerian numbers introduced in [1]. In Section 3, we prove symmetry of the polynomial $A_{n, k}(a, b, q, B) / \prod_{i=1}^{t}\left[d_{i}\right]$! for any regular Ferrers board $B=B\left(h_{1}, d_{1} ; \ldots ; h_{t}, d_{t}\right)$. Finally in Section 4 , we prove unimodality of $A_{n, k}(a, b, q, B) / \prod_{i=1}^{t}\left[d_{i}\right]$! for a certain class of regular Ferrers boards.

2 Symmetry and Unimodality of $A_{n, k}(a, b, q, B)$

If $B=B\left(h_{1}, d_{1} ; \ldots ; h_{t}, d_{t}\right) \subseteq S Q_{n}$ is a Ferrers board, let us denote by $B-$ $h_{p}-d_{p}$ the Ferrers board $B\left(h_{1}, d_{1} ; \ldots ; h_{p}-1, d_{p}-1 ; \ldots h_{t}, d_{t}\right) \subseteq S Q_{n-1}$, obtained from B by decreasing the p th step by 1 . We will call the number of squares in the board B the $\operatorname{Area}(B)$.

Suppose

$$
f(q)=\sum_{i=M}^{N} a_{i} q^{i}
$$

is a polynomial in q with $a_{M}, a_{N} \neq 0$. We call $M+N$ the virtual degree of f. We will say the polynomial $f(q)$ is $z s u(d)$ if either

1. $f(q)$ is identically zero, or
2. $f(q)$ is in $\mathbb{N}[q]$, symmetric, and unimodal with virtual degree d.

Note that for $s \in \mathbb{N}, q^{s}$ is $z s u(2 s)$ and $[s]$ is $z s u(s-1)$. We have the following lemmas. The proof of Lemma 2.1 is trivial, and a proof of Lemma 2.2 can be found in [11].

Lemma 2.1. If f and g are polynomials which are both zsu(d), then $f+g$ is zsu(d).

Lemma 2.2. If f is $z s u(d)$ and g is $z s u(e)$, then $f g$ is $z s u(d+e)$.
Combining Lemmas 2.1 and 2.2 with (2) and (3), we can easily prove the following.

Lemma 2.3. Let $a, b \in \mathbb{N}$. For any regular Ferrers board $B \subseteq S Q_{n}$, $A_{n, 0}(a, b, q, B)$ is zsu $\left(\operatorname{Area}(B)+n(b-1)-\binom{n+1}{2}\right)$.

Lemma 2.4. Let $B=B\left(h_{1}, d_{1} ; \ldots ; h_{t}, d_{t}\right) \subseteq S Q_{n}$ be a regular Ferrers board, $B-h_{t}-d_{t} \subseteq S Q_{n-1}$ as described earlier. Then

$$
\begin{aligned}
& A_{n, k}(x, y, q, B)=\left[k+y+d_{t}-1\right] A_{n-1, k}\left(x, y, q, B-h_{t}-d_{t}\right)+ \\
& q^{k+y+d_{t}-2}\left[n+x-y-d_{t}-k+1\right] A_{n-1, k-1}\left(x, y, q, B-h_{t}-d_{t}\right)
\end{aligned}
$$

for any $1 \leq k \leq n$.
Proof. Let $p=t$ in Lemma 5.7 of [9].
The following is now a simple corollary of the above lemmas.
Corollary 2.5. Let $B=B\left(h_{1}, d_{1} ; \ldots ; h_{t}, d_{t}\right) \subseteq S Q_{n}$ be a regular Ferrers board, $a, b \in \mathbb{N}$. If $n+a+1 \geq b+d_{t}+k$, then $A_{n, k}(a, b, q, B)$ is zsu $(\operatorname{Area}(B)+$ $\left.n(b+k-1)+k(a-1)-\binom{n+1}{2}\right)$ for $0 \leq k \leq n$.

Proof. The proof is by induction on $\operatorname{Area}(B)$. When $\operatorname{Area}(B)=1$ the only regular Ferrers board is the 1×1 square $S Q_{1}$. A quick calculation from the definition shows that $A_{1,0}\left(x, y, q, S Q_{1}\right)=[y], A_{1,1}\left(x, y, q, S Q_{1}\right)=$ $q^{y}[x-y]$, and $A_{1, k}\left(x, y, q, S Q_{1}\right)=0$ for $k>1$. Thus $A_{1,0}(a, b, q, B)=[b]$ and $A_{1,1}(a, b, q, B)=q^{b}[a-b]$ are $z s u(b-1)$ and $z s u(a+b-1)$ respectively, and the result holds for the case $\operatorname{Area}(B)=1$.

Now assume the result holds for all regular Ferrers boards with Area $<A$, and let B be such a board with $\operatorname{Area}(B)=A$. We know by Lemma 2.3 that the result holds for $A_{n, 0}(a, b, q, B)$, so assume $k>0$. Then by Lemma 2.4 with $x=a$ and $y=b$, we have that

$$
\begin{gather*}
A_{n, k}(a, b, q, B)=\left[k+b+d_{t}-1\right] A_{n-1, k}\left(a, b, q, B-h_{t}-d_{t}\right)+ \\
q^{k+b+d_{t}-2}\left[n+a-b-d_{t}-k+1\right] A_{n-1, k-1}\left(a, b, q, B-h_{t}-d_{t}\right) . \tag{4}
\end{gather*}
$$

Now we know that $\left[k+b+d_{t}-1\right]$ is $z s u\left(k+b+d_{t}-2\right)$, and by the induction hypothesis, $A_{n-1, k}\left(a, b, q, B-h_{t}-d_{t}\right)$ is $z s u\left(\operatorname{Area}\left(B-h_{t}-d_{t}\right)+\right.$ $\left.(n-1)(b+k-1)+k(a-1)-\binom{n}{2}\right)$. Note here that $\operatorname{Area}\left(B-h_{t}-d_{t}\right)=$ $\operatorname{Area}(B)-n-d_{t}+1$. Then by Lemma 2.2 , the first term on the right side of (4) is $z \operatorname{sun}\left(\operatorname{Area}(B)+n(b+k-1)+k(a-1)-\binom{n+1}{2}\right)$.

For the second term on the right side of (4), we know that $q^{k+b+d_{t}-2}$ is $z s u\left(2 k+2 b+2 d_{t}-4\right),\left[n+a-b-d_{t}-k+1\right]$ is $z s u\left(n+a-b-d_{t}-k\right)$ (since we have assumed $n+a+1 \geq b+d_{t}+k$), and by the induction hypothesis $A_{n-1, k-1}\left(a, b, q, B-h_{t}-d_{t}\right)$ is $z s u\left(\operatorname{Area}\left(B-h_{t}-d_{t}\right)+(n-1)(b+k-2)+\right.$ $\left.(k-1)(a-1)-\binom{n}{2}\right)$. Finally, applying Lemma 2.2 one last time we get that the second term on the right side of (4) is $z \operatorname{su}(\operatorname{Area}(B)+n(b+k-1)+k(a-$ $1)-\binom{n+1}{2}$, and Lemma 2.1 gives us the result for $A_{n, k}(a, b, q, B)$ as well.

A cycle-counting version of the Eulerian numbers is given in [1], defined by the equation

$$
\begin{equation*}
\tilde{E}_{n, k}(y, q)=\sum_{\sigma \in S_{n}, \operatorname{des}(\sigma)=k-1}[y]^{\ell r m i n}(\sigma) q^{(n-\ell r \min (\sigma))(y-1)+\operatorname{maj}(\sigma)} . \tag{5}
\end{equation*}
$$

Here ℓ rmin (σ) denotes the number of left-to-right minima of the permutation σ, computed by the following algorithm. For $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{n} \in S_{n}$, if $\sigma_{j_{1}}=1$ then let y_{1} be the cycle $\left(\sigma_{1} \cdots \sigma_{j_{1}}\right)$. If α is the smallest integer not contained in y_{1}, and $\sigma_{j_{2}}=\alpha$, let y_{2} be the cycle ($\sigma_{j_{1}+1} \cdots \sigma_{j_{2}}$), etc. If the result of the above procedure is the product of cycles $y_{1} y_{2} \cdots y_{p}$, we will let $p=\operatorname{lrmin}(\sigma)$.

It was proven in [1] that

$$
\begin{equation*}
\tilde{E}_{n, k}(y, q)=A_{n, k-1}\left(y, y, q, \mathbb{T}_{n}\right) \tag{6}
\end{equation*}
$$

where $\mathbb{T}_{n}=B(1,2, \ldots, n)$ denotes the triangular Ferrers board. In light of (6) and Corollary 2.5 , the following can be easily proven.

Corollary 2.6. For $m \in \mathbb{N}$, the polynomial

$$
\sum_{\sigma \in S_{n}, \operatorname{des}(\sigma)=k-1}[m]^{\ell r m i n}(\sigma) q^{(n-\ell r \min (\sigma))(m-1)+\operatorname{maj}(\sigma)}
$$

is symmetric and unimodal with virtual degree $n(m+k-2)+(k-1)(m-1)$.

3 Symmetry of $A_{n, k}(a, b, q, B) / \prod_{i=1}^{t}\left[d_{i}\right]$!

In this section we prove a more general symmetry result for all regular Ferrers boards, namely the symmetry of the polynomial

$$
\frac{A_{n, k}(a, b, q, B)}{\prod_{i=1}^{t}\left[d_{i}\right]!}
$$

where $B=B\left(h_{1}, d_{1} ; \ldots ; h_{t}, d_{t}\right)$. Throughout the rest of the paper we will use the notation H_{i} for the partial sum $h_{1}+\cdots+h_{i}$, and D_{i} for $d_{1}+\cdots+d_{i}$. We have the following lemmas.

Lemma 3.1. Let $B=B\left(b_{1}, \ldots, b_{n}\right)=B\left(h_{1}, d_{1} ; \ldots ; h_{t}, d_{t}\right)$ be a regular Ferrers board, $j \in \mathbb{N}$. Then

$$
\frac{\prod_{i=1}^{n}\left[j+b_{i}-i+y\right]}{\prod_{i=1}^{t}\left[d_{i}\right]!}=\prod_{i=1}^{t}\left[\begin{array}{c}
j+H_{i}-D_{i-1}+y-1 \\
d_{i}
\end{array}\right]
$$

Proof. We see that

$$
\begin{gathered}
\prod_{i=1}^{n}\left[j+b_{i}-i+y\right]= \\
\prod_{i=1}^{t}\left[j+H_{i}-D_{i-1}+y-1\right]\left[\left(j+H_{i}-D_{i-1}+y-1\right)-1\right] \cdots\left[\left(j+H_{i}-D_{i-1}+y-1\right)-d_{i}+1\right] .
\end{gathered}
$$

Thus

$$
\begin{gathered}
\frac{\prod_{i=1}^{n}\left[j+b_{i}-i+y\right]}{\prod_{i=1}^{t}\left[d_{i}\right]!}= \\
\prod_{i=1}^{t} \frac{\left[j+H_{i}-D_{i-1}+y-1\right] \cdots\left[\left(j+H_{i}-D_{i-1}+y-1\right)-d_{i}+1\right]}{\left[d_{i}\right]!}
\end{gathered}
$$

which is

$$
\prod_{i=1}^{t}\left[\begin{array}{c}
j+H_{i}-D_{i-1}+y-1 \\
d_{i}
\end{array}\right]
$$

by definition.
Lemma 3.2. Let $B=B\left(b_{1}, \ldots, b_{n}\right)=B\left(h_{1}, d_{1} ; \ldots ; h_{t}, d_{t}\right) \subseteq S Q_{n}$ be a regular Ferrers board. Then $A_{n, k}(x, y, q, B) / \prod_{i=1}^{t}\left[d_{i}\right]!=$

$$
\left.\sum_{j=0}^{k}\left[\begin{array}{l}
n+x \\
k-j
\end{array}\right]\left[\begin{array}{c}
x+j-1 \\
j
\end{array}\right](-1)^{k-j} q^{(k-j}{ }^{k-j}\right) \prod_{i=1}^{t}\left[\begin{array}{c}
j+H_{i}-D_{i-1}+y-1 \\
d_{i}
\end{array}\right]
$$

Proof. By Lemma 5.1 of [9], we have

$$
A_{n, k}(x, y, q, B)=\sum_{j=0}^{k}\left[\begin{array}{c}
n+x \\
k-j
\end{array}\right]\left[\begin{array}{c}
x+j-1 \\
j
\end{array}\right](-1)^{k-j} q^{\left({ }^{k-j}\right)} \prod_{i=1}^{n}\left[j+b_{i}-i+y\right]
$$

The lemma now follows trivially from Lemma 3.1.
We can now prove the following.
Theorem 3.3. Let $B=B\left(h_{1}, d_{1} ; \ldots ; h_{t}, d_{t}\right)$ be a regular Ferrers board (so $H_{i} \geq D_{i}$ for $1 \leq i \leq t$). Let $a, b \in \mathbb{N}$ with $a \geq b \geq 1$, and set

$$
L_{k}^{a, b}(B)=\operatorname{Area}(B)+n(b-1)+k(n+a-1)-\sum_{i=1}^{t} d_{i} D_{i} .
$$

Then $A_{n, k}(a, b, q, B) / \prod_{i=1}^{t}\left[d_{i}\right]$! is either zero or symmetric with virtual degree $L_{k}^{a, b}(B)$.
Proof. By Lemma 3.2, $A_{n, k}(a, b, q, B) / \prod_{i=1}^{t}\left[d_{i}\right]!=$

$$
\sum_{j=0}^{k}\left[\begin{array}{l}
n+a \\
k-j
\end{array}\right]\left[\begin{array}{c}
a+j-1 \\
j
\end{array}\right](-1)^{k-j} q^{\left({ }^{(k-j}\right)} \prod_{i=1}^{t}\left[\begin{array}{c}
j+H_{i}-D_{i-1}+b-1 \\
d_{i}
\end{array}\right]
$$

which is a polynomial in q (the first two q-binomial coefficients in each summand are clearly polynomials, and the third is since $H_{i} \geq D_{i} \geq D_{i-1}$ and $b \geq 1$). Using the fact that $\left[\begin{array}{l}r \\ s\end{array}\right]$ is $z s u(s(r-s)$) (see [8, 12] for a proof) and Lemma 2.2, each term on the right side above has virtual degree $(k-j)(n+a-k+j)+j(a-1)+(k-j)(k-j-1)+\sum_{i=1}^{t} d_{i}\left(j+H_{i}-D_{i}+b-1\right)$, which is exactly $L_{k}^{a, b}(B)$. Since the sign alternates, we can only conclude that $A_{n, k}(a, b, q, B) / \prod_{i=1}^{t}\left[d_{i}\right]$! is symmetric with virtual degree $L_{k}^{a, b}(B)$.

4 Unimodality of $A_{n, k}(a, b, q, B) / \prod_{i=1}^{t}\left[d_{i}\right]$].

In this section we give some sufficient conditions on the regular Ferrers board B for the polynomial of the previous section to also be unimodal. Let us first define some more notation.

Suppose we have integers $h_{1}, \ldots, h_{t}, d_{1}, \ldots, d_{t}$, and e_{1}, \ldots, e_{t} with $d_{i} \in \mathbb{P}$, $h_{i} \in \mathbb{N}$, and $0 \leq e_{i} \leq d_{i}$. We will denote the vector $\left(e_{1}, e_{2}, \ldots, e_{t}\right)$ by \vec{e}. We will continue to denote the partial sum $h_{1}+\cdots+h_{i}$ by $H_{i}, d_{1}+\cdots+d_{i}$ by D_{i}, and we will also let $E_{i}=e_{1}+\cdots+e_{i}$. We make the convention that $H_{0}=D_{0}=E_{0}=0$. For fixed h_{1}, \ldots, h_{t} and d_{1}, \ldots, d_{t} we can define
$P(\vec{e}, x, y)=\prod_{i=1}^{t}\left[\begin{array}{c}H_{i}-D_{i-1}+E_{i-1}+y-1 \\ d_{i}-e_{i}\end{array}\right]\left[\begin{array}{c}D_{i}+D_{i-1}-H_{i}-E_{i-1}+x-y \\ e_{i}\end{array}\right]$
and prove the following lemmas.

Lemma 4.1. Let $B=B\left(h_{1}, d_{1} ; \ldots h_{t-1}, d_{t-1} ; h_{t}, d_{t}\right) \subseteq S Q_{n}$ be a regular Ferrers board, $B^{\prime}=B\left(h_{1}, d_{1} ; \ldots ; h_{t-1}, d_{t-1}\right) \subseteq S Q_{H_{t-1}}$. Then

$$
\begin{aligned}
& A_{n, k}(x, y, q, B)=\left[d_{t}\right]!\sum_{s=k-d_{t}}^{k} A_{H_{t-1}, s}\left(x, y, q, B^{\prime}\right)\left[\begin{array}{c}
y+d_{t}+s-1 \\
d_{t}-k+s
\end{array}\right] \\
& \times\left[\begin{array}{c}
n-y-d_{t}+x-s \\
k-s
\end{array}\right] q^{(k-s)(y+k-1)} .
\end{aligned}
$$

Proof. Let $p=t$ in Corollary 5.10 of [9] and note that because B is a regular Ferrers board, $H_{t}=D_{t}=n$.

Lemma 4.2. Let $B=B\left(h_{1}, d_{1} ; \ldots ; h_{t}, d_{t}\right)$ be a regular Ferrers board. Then

$$
\begin{gather*}
A_{n, k}(x, y, q, B)= \\
\prod_{i=1}^{t}\left[d_{i}\right]!\sum_{e_{1}+\cdots+e_{t}=k,, 0 \leq e_{i} \leq d_{i}} P(\vec{e}, x, y) \prod_{i=1}^{t} q^{e_{i}\left(H_{i}-D_{i}+E_{i}+y-1\right)} . \tag{7}
\end{gather*}
$$

Proof. By induction on t. When $t=1$ we have that $d_{1}=n$, and Lemma 4.1 gives us

$$
\begin{gather*}
A_{n, k}(x, y, q, B)=\left[d_{1}\right]!\sum_{s=k-n}^{k} A_{0, s}(x, y, q, \emptyset)\left[\begin{array}{c}
y+n+s-1 \\
d_{1}-k+s
\end{array}\right] \tag{8}\\
\times\left[\begin{array}{c}
n-y-n+x-s \\
k-s
\end{array}\right] \times q^{(k-s)(y+k-1)} .
\end{gather*}
$$

In this case we have that $H_{1}=D_{1}=d_{1}=n$ and $D_{0}=H_{0}=0$, so we get that the $s=0$ term in (8) is equal to

$$
\left[d_{1}\right]!\left[\begin{array}{c}
H_{1}-D_{0}+y-1 \tag{9}\\
d_{1}-k
\end{array}\right]\left[\begin{array}{c}
D_{1}+D_{0}-H_{1}+x-y \\
k
\end{array}\right] \times q^{k\left(H_{1}-D_{1}+k+y-1\right)}
$$

Note that by definition

$$
A_{0, s}(x, y, q, \emptyset)=\delta_{s, 0},
$$

so the only nonzero summand in (8) occurs when $s=0$ and hence (9) is actually equal to (8). Finally if we recall that $E_{1}=e_{1}$ and $E_{0}=0$, we can rewrite (9) as

$$
\begin{gathered}
{\left[d_{1}\right]!\sum_{e_{1}=k, 0 \leq e_{1} \leq d_{1}}\left[\begin{array}{c}
H_{1}-D_{0}+E_{0}+y-1 \\
d_{1}-e_{1}
\end{array}\right]} \\
\times\left[\begin{array}{c}
D_{1}+D_{0}-H_{1}-E_{0}+x-y \\
e_{1}
\end{array}\right] \times q^{e_{1}\left(H_{1}-D_{1}+E_{1}+y-1\right)},
\end{gathered}
$$

which is exactly of the form of (7).
For $t>1$, Lemma 4.1 gives that

$$
\begin{align*}
A_{n, k}(x, y, q, B)= & {\left[d_{t}\right]!\sum_{E_{t-1}=E_{t}-d_{t}}^{E_{t}} A_{H_{t-1}, E_{t-1}}\left(x, y, q, B^{\prime}\right)\left[\begin{array}{c}
y+d_{t}+E_{t-1}-1 \\
d_{t}-e_{t}
\end{array}\right] } \\
& \times\left[\begin{array}{c}
n-y-d_{t}+x-E_{t-1} \\
e_{t}
\end{array}\right] \times q^{e_{t}\left(y+E_{t}-1\right)} . \tag{10}
\end{align*}
$$

Here we are letting $E_{t-1}=s$ and defining $e_{t}=k-s$ and $E_{t}=E_{t-1}+e_{t}=k$. Since B is regular $H_{t}=D_{t}=n$, so $H_{t}-D_{t-1}=D_{t}-D_{t-1}=d_{t}$ and (10) can be rewritten as

$$
\begin{gathered}
A_{n, k}(x, y, q, B)=\left[d_{t}\right]!\sum_{e_{t}=0}^{d_{t}} A_{H_{t-1}, E_{t-1}}\left(x, y, q, B^{\prime}\right)\left[\begin{array}{c}
H_{t}-D_{t-1}+E_{t-1}+y-1 \\
d_{t}-e_{t}
\end{array}\right] \\
\times\left[\begin{array}{c}
D_{t}+D_{t-1}-H_{t}-E_{t-1}+x-y \\
e_{t}
\end{array}\right] \times q^{e_{t}\left(H_{t}-D_{t}+E_{t}+y-1\right)} .
\end{gathered}
$$

By the inductive hypothesis, the above is equal to

$$
\begin{aligned}
& {\left[d_{t}\right]!} \sum_{e_{t}=0}^{d_{t}}\left\{\prod_{i=1}^{t-1}\left[d_{i}\right]!\sum_{e_{1}+\cdots+e_{t-1}=E_{t-1},} \prod_{0 \leq e_{i} \leq d_{i}}^{t-1}\left[\begin{array}{c}
H_{i}-D_{i-1}+E_{i-1}+y-1 \\
d_{i}-e_{i}
\end{array}\right]\right. \\
&\left.\times\left[\begin{array}{c}
D_{i}+D_{i-1}-H_{i}-E_{i-1}+x-y \\
e_{i}
\end{array}\right] q^{e_{i}\left(H_{i}-D_{i}+E_{i}+y-1\right)}\right\} \\
& \times\left[\begin{array}{c}
H_{t}-D_{t-1}+E_{t-1}+y-1 \\
d_{t}-e_{t}
\end{array}\right]\left[\begin{array}{c}
D_{t}+D_{t-1}-H_{t}-E_{t-1}+x-y \\
e_{t}
\end{array}\right] q^{e_{t}\left(H_{t}-D_{t}+E_{t}+y-1\right)}
\end{aligned}
$$

which is

$$
\prod_{i=1}^{t}\left[d_{i}\right]!\sum_{e_{1}+\cdots+e_{t}=k, 0 \leq e_{i} \leq d_{t}} P(\vec{e}, x, y) \prod_{i+1}^{t} q^{e_{i}\left(H_{i}-D_{i}+E_{i}+y-1\right)}
$$

as desired.
Lemma 4.3. Let $B=B\left(h_{1}, d_{1} ; \ldots ; h_{t}, d_{t}\right)$ be a regular Ferrers board, $a, b \in \mathbb{N}$ with $a \geq b \geq 1$. Let $e_{i}, d_{i}, h_{i}, E_{i}, D_{i}$, and H_{i} be as in the definition of $P(\vec{e}, x, y)$. Assume that B is such that $d_{i-1}+d_{i} \geq h_{i}$ for $1 \leq i \leq t$ (where $d_{0}:=0$). If any of the numerators of the q-binomial coefficients in
$P(\vec{e}, a, b)=\prod_{i=1}^{t}\left[\begin{array}{c}H_{i}-D_{i-1}+E_{i-1}+b-1 \\ d_{i}-e_{i}\end{array}\right]\left[\begin{array}{c}D_{i}+D_{i-1}-H_{i}-E_{i-1}+a-b \\ e_{i}\end{array}\right]$
are negative, then $P(\vec{e}, a, b)=0$.

Proof. First note that $H_{i}-D_{i-1}+E_{i-1}+b-1 \geq 0$ for $1 \leq i \leq t$, since $H_{i} \geq D_{i} \geq D_{i-1}$ and $b \geq 1$, so none of the numerators in the first q-binomial coefficient of the product are ever negative.

Now suppose that $D_{k}+D_{k-1}-H_{k}-E_{k-1}+a-b<0$ for some k with $0 \leq k \leq t$. Note $D_{1}+D_{0}-H_{1}-E_{0}+a-b=d_{1}-h_{1}+a-b$, and since we assumed $d_{i-1}+d_{i} \geq h_{i}$ (and in particular $d_{1} \geq h_{1}$) and $a \geq b$, we have that $d_{1}-h_{1}+a-b \geq 0$. Thus we see that such a k must be greater than 2 .

Now choose j such that $D_{i}+D_{i-1}-H_{i}-E_{i-1}+a-b \geq 0$ for $1 \leq i<j$, but $D_{j}+D_{j-1}-H_{j}-E_{j-1}+a-b<0$ (such a j exists because of the remarks in the previous paragraph). Then $D_{j}+D_{j-1}-H_{j}-E_{j-1}+a-b<$ 0 implies $D_{j}+D_{j-1}-H_{j}-E_{j-2}+a-b<e_{j-1}$, which is equivalent to $d_{j}+d_{j-1}-h_{j}+D_{j-1}+D_{j-2}-H_{j-1}-E_{j-2}+a-b<e_{j-1}$, which implies $D_{j-1}+D_{j-2}-H_{j-1}-E_{j-2}+a-b<e_{j-1}\left(\right.$ since $\left.d_{j}+d_{j-1} \geq h_{j}\right)$. Hence

$$
\left[\begin{array}{c}
D_{j-1}+D_{j-2}-H_{j-1}-E_{j-2}+a-b \\
e_{j-1}
\end{array}\right]=0
$$

since the numerator is non-negative by definition of j but less than the denominator, so the product $P(\vec{e}, a, b)=0$ as well.

Theorem 4.4. Let $B=B\left(h_{1}, d_{1} ; \ldots ; h_{t}, d_{t}\right)$ be a regular Ferrers board such that $d_{i-1}+d_{i} \geq h_{i}$ for $1 \leq i \leq t$. Let $a, b \in \mathbb{N}$ with $a \geq b \geq 1$, and set

$$
L_{k}^{a, b}(B)=\operatorname{Area}(B)+n(b-1)+k(n+a-1)-\sum_{i=1}^{t} d_{i} D_{i}
$$

as before. Then $A_{n, k}(a, b, q, B) / \prod_{i=1}^{t}\left[d_{i}\right]$! is zsu $\left(L_{k}^{a, b}(B)\right)$.
Proof. We apply Lemma 4.2 , which says that

$$
\frac{A_{n, k}(a, b, q, B)}{\prod_{i=1}^{t}\left[d_{i}\right]!}=\sum_{e_{1}+\cdots+e_{t}=k, 0 \leq e_{i} \leq d_{i}} P(\vec{e}, a, b) \prod_{i=1}^{t} q^{e_{i}\left(H_{i}-D_{i}+E_{i}+b-1\right)}
$$

and all of the terms on the right hand side above are in $\mathbb{N}[q]$ by Lemma 4.3. Each term is $z s u\left(\sum_{i=1}^{t}\left\{\left(d_{i}-e_{i}\right)\left(H_{i}-D_{i}+E_{i}+b-1\right)+e_{i}\left(D_{i}+D_{i-1}-H_{i}-\right.\right.\right.$ $\left.\left.E_{i}+a-b\right)+2 e_{i}\left(H_{i}-D_{i}+E_{i}+b-1\right)\right\}$), which a simple calculation shows is the same $z s u\left(L_{k}^{a, b}(B)\right)$. Thus by Lemma 2.1, $A_{n, k}(a, b, q, B) / \prod_{i=1}^{t}\left[d_{i}\right]$! is $z s u\left(L_{k}^{a, b}(B)\right)$ as well.

References

[1] F. Butler. Rook theory and cycle-counting permutation statistics. Adv. in Apl. Math., 33:655-675, 2004.
[2] F. Chung and R. Graham. On the cover polynomial of a digraph. J. Combin. Theory, Ser. B, 65:273-290, 1995.
[3] M. Dworkin. Factorization of the cover polynomial. J. Combin. Theory, Ser. B, 71:17-53, 1997.
[4] R. Ehrenborg, J. Haglund, and M. Readdy. Colored juggling patterns and weighted rook placements. Unpublished manuscript.
[5] A. Garsia and J. Remmel. q-Counting rook configurations and a formula of Frobenius. J. Combin. Theory, Ser. A, 41:246-275, 1986.
[6] I. Gessel. Generalized rook polynomials and orthogonal polynomials. In Dennis Stanton, editor, q-Series and Partitions, IMA Volumes in Mathematics and Its Applications, pages 159-167. Springer Verlag, 1989.
[7] J. Goldman, J. Joichi, and D. White. Rook theory I: Rook equivalence of Ferrers boards. Proc. Amer. Math. Soc., 52:485-492, 1975.
[8] F. Goodman and K. O'Hara. On the Gaussian polynomials. In Dennis Stanton, editor, q-Series and Partitions, IMA Volumes in Mathematics and Its Applications, pages 57-66. Springer Verlag, 1989.
[9] J. Haglund. Rook theory and hypergeometric series. Adv. in Appl. Math., 17:408-459, 1996.
[10] R. Stanely. Enumerative Combinatorics Voulme I. Cambridge University Press, 1997.
[11] R. Stanley. Unimodal and log-concave sequences in algebra, combinatorics, and geometry. In Graph Theory and Its Applications: East and West, volume 576 of Ann. New York Acad. Sci., pages 500-535. 1989.
[12] D. Zeilberger. A one-line high school algebra proof of the unimodality of the Gaussian polynomials $\left[\begin{array}{l}n \\ k\end{array}\right]$ for $k<20$. In Dennis Stanton, editor, q-Series and Partitions, IMA Volumes in Mathematics and Its Applications, pages 67-72. Springer Verlag, 1989.

