
ON GROWTH OF SOLVABLE LIE SUPERALGEBRAS AND
GENERATING FUNCTIONS

S. G. KLEMENTYEV AND V. M. PETROGRADSKY

Abstract. Finitely generated solvable Lie algebras have an intermediate growth be-
tween polynomial and exponential. Recently the second author suggested the scale to
measure such an intermediate growth of Lie algebras. The growth was specified for solv-
able Lie algebras F (Aq , k) with a finite number of generators k, and which are free with
respect to a fixed solubility length q. Later, an application of generating functions al-
lowed to obtain more precise asymptotic. These results were obtained in generality of
polynilpotent Lie algebras.

Now we consider the case of Lie superalgebras; we announce main results and describe
methods. Our goal is to compute the growth for F (Aq ,m, k), the free solvable Lie
superalgebra of length q with m even and k odd generators. The proof is based upon a
precise formula of the generating function for this algebra obtained earlier. The result is
obtained in the generality of free polynilpotent Lie superalgebras.

We also consider almost solvable finitely generated Lie algebras and establish an upper
bound on their growth in terms of our scale of subexponential functions.

1. Introduction

The ground field is denoted by K. Recall that a Z2-graded algebra L = L+ ⊕ L− is
called a Lie superalgebra if it satisfies the following graded identities [27]. Let ε(L+, L+) =
ε(L+, L−) = ε(L−, L+) = 1, and ε(L−, L−) = −1. We suppose that

[x, y] = −ε(x, y)[y, x], x, y ∈ L± (anticommutativity);

[x, [y, z]] = [[x, y], z]− ε(y, z)[[x, z], y], x, y, z ∈ L± (Jacobi identity).

(In case charK = 2 some more additional assumptions should be imposed [2], also in case
charK = 3 one requires [[y, y], y] = 0 for all y ∈ L−, this identity being satisfied in other
characteristics). A variety of (Lie) (super)algebras is a class of all (Lie) (super)algebras that
satisfy some set of (graded or non-graded) identical relations. Concerning varieties of Lie
algebras we refer the reader to the monograph [1]. On Lie superalgebras and their varieties
see also [2] and [16].

Let L be a Lie (super)algebra. Then the lower central series is defined by iteration L1 = L,
Li+1 = [L,Li], i = 1, 2, . . . . Now L is called nilpotent of class s provided that Ls+1 = {0}. All
Lie algebras nilpotent of class s form the variety denoted by Ns. This notation we also shall
use for the variety of nilpotent Lie superalgebras of class s. Recall that L is polynilpotent with
a tuple (sq, . . . , s2, s1) iff there exists a chain of ideals 0 = Lq+1 ⊂ Lq ⊂ · · · ⊂ L2 ⊂ L1 = L
such that Li/Li+1 ∈ Nsi , i = 1, . . . , q. All polynilpotent Lie (super)algebras with the fixed
tuple (sq, . . . , s2, s1) form the variety denoted by Nsq · · ·Ns2Ns1 . In the case sq = · · · =
s1 = 1, one obtains as a particular case the variety Aq of solvable Lie (super)algebras of
length q. Polynilpotent varieties of groups and Lie algebras as well as their interactions were
studied by A.L. Shmelkin [28]. A basis for free polynilpotent Lie algebras was constructed
by L.A. Bokut [4], for the case of free solvable Lie algebras, see also the monograph of
C. Reutenauer [26].
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Let L be a Lie superalgebra, then by L = L+ ⊕ L− we denote its decomposition into
the even and odd components. Suppose that M is a variety of Lie superalgebras, then by
F (M, X), X = X+ ∪X− we denote its free algebra generated by X. Let X+ = {xi|i ∈ I+},
X− = {xj |j ∈ I−}. Recall that F (M, X) is the algebra generated by X and such that
for all H = H+ ⊕ H− ∈ M and any yi ∈ H+, i ∈ I+; yj ∈ H−, j ∈ I−, there exists a
homomorphism φ : F (M, X)→ H with φ(xi) = yi, i ∈ I+∪I−. In case |X+| = m, |X−| = k
we also denote F (M, X) = F (M,m, k).

One verifies that each polynilpotent Lie (super)algebra is solvable, i.e. belongs to some
Aq for a sufficiently large q. So, by studying free polynilpotent Lie (super)algebras we study
first, some solvable Lie (super)algebras. Second, this setting, as a particular case, includes
the free solvable (super)algebras F (Aq, X) = F (N1 · · ·N1︸ ︷︷ ︸

q times

, X).

Let A be a Lie (associative) algebra over a field K, generated by a finite set X. Denote
by A(X,n) the subspace spanned by all monomials in X of length not exceeding n. Denote

γA(n) = γA(X,n) = dimK A
(X,n), n ∈ N;

λA(n) = γA(n)− γA(n− 1), n ∈ N.
where dimK stands for the dimension of a vector space over K. If A is an associative algebra
with unity then we consider that this unity belongs to A(X,n), n ≥ 0, and γA(0) = λA(0) = 1.
On functions f : N → R+, where R+ = {α ∈ R |α > 0}, we consider the partial order:

f(n)
a≤ g(n) iff there exists N > 0, such that f(n) ≤ g(n), n ≥ N .

Consider two extreme examples of growth. Suppose that A is a free associative algebra
(or a free Lie algebra) of finite rank. Then the growth function γA(X,n) is an exponential.
On the other hand, let A = U(L) be the universal enveloping algebra of a finite dimensional
Lie algebra L. Then the growth function γA(X,n) is a polynomial of degree k = dimK L,
and the degree k is extracted by computing of the Gelfand-Kirillov dimension [13].

But there are growths between these two extreme types of growth. The growth less than
any exponent is called subexponential. If it is also greater than any polynomial growth, then
it is called intermediate. For study of such growths the following series of dimensions has
been suggested [17], [18]. Denote by iteration

ln(1) n = lnn; ln(q+1) n = ln(ln(q) n), q = 1, 2, . . . .

Consider the series of functions Φqα(n), q = 1, 2, 3, . . . of the natural argument with the
parameter α ∈ R+:

Φ1
α(n) = α; q = 1;

Φ2
α(n) = nα; q = 2;

Φ3
α(n) = exp(nα/(α+1)); q = 3;

Φqα(n) = exp

(
n

(ln(q−3) n)1/α

)
, q = 4, 5, . . . .

Suppose that f(n) is a positive valued function of a natural argument. We define the (upper)
dimension of level q, q = 1, 2, 3, . . . , and the lower dimension of level q by

Dimq f(n) = inf{α ∈ R+ | f(n)
a≤ Φqα(n)},

Dimq f(n) = sup{α ∈ R+ | f(n)
a≥ Φqα(n)}.

Suppose that A is a finitely generated algebra. We define the q-dimension and the lower
q-dimension, q = 1, 2, 3, . . . , of A by

Dimq A = Dimq γA(n), Dimq A = Dimq γA(n).

Roughly speaking, the condition Dimq A = Dimq A = α means that the growth function
γA(n) behaves like Φqα(n). These q-dimensions do not depend on a generating set X [18].
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Remark that 1-dimension coincides with the dimension of the vector space A over K. Di-
mensions of level 2 are exactly the upper and lower Gelfand-Kirillov dimensions [7], [13],
and [15]. Dimensions of level 3 correspond to the superdimensions of [5] up to normalization
(see [18]). If L is a Lie (super)algebra, then by U(L) we denote its universal enveloping
algebra. The following two theorems are the crucial facts about this scale of functions and
dimensions.

Theorem 1.1 ([17], [18]). Let L be a finitely generated Lie algebra with Dimq L = α >
0, q = 1, 2, . . . . Also for q ≥ 3 suppose that Dimq L = α and for q = 2 suppose that
Dim2 λL(n) = α− 1, and α ≥ 1. Then

Dimq+1 U(L) = Dimq+1 U(L) = α.

A. Lichtman proved that the growth of finitely generated solvable Lie algebras is subex-
ponential [14]. The following result specifies the growth of such algebras in terms of our
scale of functions.

Theorem 1.2. [18] Let L = F (Nsq · · ·Ns2Ns1 , k) be the free polynilpotent Lie algebra of
rank k, k ≥ 2, q ≥ 2. Then

Dimq L = Dimq L = s2 dimK F (Ns1 , k).

As a particular case, we have the following.

Corollary 1.1. [17] Let L = F (Aq, k) be the free solvable Lie algebra of length q and
rank k, k ≥ 2, q ≥ 1. Then Dimq L = Dimq L = k.

More precise asymptotic for free polynilpotent Lie algebras L = F (Nsq · · ·Ns1 , k) is
found in [19]. As an application, this result gave also an answer to the question of M. I. Kar-
gapolov [12] to describe the lower central series ranks for free polynilpotent finitely generated
groups. Earlier exact recursive formulae were found by G.P. Egorychev [6]. Another answer
to this problem was given by the second author by describing the asymptotic behaviour
of these ranks [19]. In general, the approach [19] heavily relies on the use of generating
functions and study of their growth.

Denote by ζ(∗), Γ(∗), µ(∗) the Riemann zeta-function, the Gamma-function, and the
Möbius function, respectively. By δi,j denote the Kronecker symbol.

2. Main result: Growth of solvable Lie superalgebras

Now, our goal is to study the growth of solvable Lie superalgebras. Let us formulate the
first result in this direction. Its says that F (Nsq · · ·Ns1 ,m, k) lies, as a rule, also on the
level q.

Theorem 2.1. Let L = F (Nsq · · ·Ns2Ns1 ,m, k) be the free polynilpotent Lie superalge-
bra, where m+ k ≥ 2 and q ≥ 2. Then

(1) Dimq L = Dimq L = s2 dimF+(Ns1 ,m, k).
(2) dimF+(Ns1 ,m, k) = 0 is equivalent to s1 = 1 and m = 0. In this case we also

suppose that q ≥ 3, then Dimq−1 L = Dimq−1 L = s3 dimF+(Ns2A, 0, k).

As a particular case, we obtain.

Corollary 2.1. Let L = F (Aq,m, k) be the free solvable Lie superalgebra of length q,
where m+ k ≥ 2, q ≥ 2. Then

(1) Dimq L = Dimq L = m;
(2) If m = 0 and q ≥ 3 then Dimq−1 L = Dimq−1 L = 1 + (k − 1)2k−1.

We shall refer to the second case as the degenerate case. Now we formulate our main
result, that immediately implies Theorem 2.1. Complete proofs of main results will appear
in [10].
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Theorem 2.2. Consider the polynilpotent variety V = Nsq · · ·Ns1 , q ≥ 2, of Lie superal-
gebras. Suppose that L = F (V,m, k) is its free superalgebra, generated by set X = X+∪X−,
X+ = {x1, . . . , xm}, X− = {xm+1, . . . , xm+k}. Then

(1) If s1 > 1 or m > 0 then

γL(X,n) =





A+ o(1)
N !

nN , q = 2;

exp
(

(C + o(1))n
N
N+1

)
, q = 3;

exp

(
(B1/N + o(1))

n

(ln(q−3) n)1/N

)
, q ≥ 4;

where the constants are

N = s2 dimF+(Ns1 ,m, k), A =
1
s2

(
(m+ k − 1)

2dimF−(Ns1 ,m,k)

∏s1
j=1 j

ψ+(j)

)s2
,

B = s3Aζ(N + 1)
(

1− 1− δk,0
2N+1

)
, C =

(
1 +

1
N

)
(BN)

1
1+N ;

and ψ+(j) = dimFj,+(Ns1 ,m, k), 1 ≤ j ≤ s1, are dimensions of the even parts of
the homogeneous components.

(2) If s1 = 1, m = 0, and additionally q ≥ 3 then

γL(X,n) =





A+ o(1)
N !

nN , q = 3;

exp
(

(C + o(1))n
N
N+1

)
, q = 4;

exp

(
(B1/N + o(1))

n

(ln(q−4) n)1/N

)
, q ≥ 5;

where the constants in this case are

N = s3 dimF+(Ns2A, 0, k), A =
1
s3

(
(k − 1)

2dimF−(Ns2A,0,k)

∏
2|j jφ(j)

)s3
,

B = s4Aζ(N + 1)
(

1− 1
2N+1

)
, C =

(
1 +

1
N

)
(BN)

1
1+N ;

and φ(j) = dimFj(Ns2A, 0, k) are dimensions of the homogeneous components of
the finite dimensional algebra F (Ns2A, 0, k).

We draw the readers attention that these asymptotics hold for the growth with respect
to the standard generating set X only. One can also easily derive the corollary for the
particular case of free solvable Lie superalgebras L = F (Aq,m, k), q ≥ 2.

Our approach heavily relies on application of generating functions. Suppose that an
algebra A is generated by a finite set X and is homogeneous with respect to the degree in
X. So, we have A =

∞⊕
n=0

An and dimAn = λA(X,n). In this case we define the Hilbert-

Poincaré series

HX(A, t) =
∞∑
n=0

dimAnt
n.

We introduce some more series in the next section. The following result plays an important
role in our proof. It is also of independent interest.

Theorem 2.3. Consider the polynilpotent variety V = Nsq · · ·Ns1 , q ≥ 2, of Lie super-
algebras and L = F (V,m, k), m + k ≥ 2. Then the Hilbert-Poincaré series with respect to
the standard generating set X has the following growth, while t→ 1− o:
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(1) If s1 > 1 or m > 0 then

HX(L, t) =





A+ o(1)
(1− t)N , q = 2;

exp(q−2)

(
B + o(1)
(1− t)N

)
, q ≥ 3.

(2) If s1 = 1, m = 0, and additionally g ≥ 3 then

HX(L, t) =





A+ o(1)
(1− t)N , q = 3;

exp(q−3)

(
B + o(1)
(1− t)N

)
, q ≥ 4.

where the constants N , A, and B are the same as in the respective cases of Theorem 2.2.

3. Generating functions for solvable Lie superalgebras

As it is seen from the previous theorem, the generating functions and their growth play an
important role in our arguments. The goal of this section is to formulate a precise formula
for generating functions for free solvable (more generally, polynilpotent) Lie superalgebras
(Theorem 3.1). The proof of our main result is based on this formula. So, we solve a problem
of enumerative combinatorics [8, 29, 30].

Let X = {xi|i ∈ I}, I = I+∪I− be an at most countable generating set for a superalgebra
A = A+ ⊕ A−. We assume that A is multihomogeneous with respect to X. For example,
this is the case when A is the relatively free algebra of some variety of superalgebras and
X = X+ ∪ X− is the free generating set. Denote N0 = N ∪ {0}. We define the grading
A = ⊕

α∈NI0
Aα induced by setting xi ∈ Aαi , where αi = (. . . , 0, 1, 0, . . .) ∈ NI0 with 1 on the

ith place. Also we define a homomorphism ε : NI0 → {±1} by ε(αi) = ±1, i ∈ I±. The
sequence α =

∑
i∈I miαi ∈ NI0 has only finitely many nonzero entrees mi, and we denote

tα =
∏
i∈I t

mi
i . We consider the formal power series ring Q[[t]] = Q[[ti|i ∈ I]]. Suppose that

W = ⊕
α∈NI0

Wα ⊂ A is a homogeneous subalgebra, then we define its Hilbert-Poincaré series

HX(W, t) = HX(W, ti|i ∈ I) =
∑

α∈NI0

dim(Wα) tα ∈ Q[[t].

We use the following operators acting on the formal power series ring Q[[t]]. These operators
were introduced in [22], [23]:

φ[−](t) = φ
∣∣∣
ti=ε(ti)ti, i∈I

;

φ[m](t) = φ
∣∣∣
ti=ε(ti)m+1tmi , i∈I

, m ∈ N;

E(φ)(t) = exp
( ∞∑
m=1

1
m
φ[m](t)

)
=
∏

α∈NI0

(1− ε(α)tα)−ε(α)bα , (1)

where φ(t) =
∑

α∈NI0

bαtα ∈ Q[[t]]0;

and Q[[t]]0 denotes series with zero constant term. For the equality (1) see [22]. For the
right hand side of (1) to be defined we also suppose that bα ∈ Z, such expressions enumerate
universal enveloping algebras [31]. The importance of E is explained by the following.

Lemma 3.1 ([22]). Let L be a Lie superalgebra generated by an at most countable gen-
erating set X = X+ ∪X− and multihomogeneous with respect to it. Then the series for the
universal enveloping algebra equals HX(U(L), t) = E(HX(L, t)).
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The proof of our main result is based on the following explicit formula of the generat-
ing function for free polynilpotent Lie superalgebras [23]. In a particular case of the free
metabelian Lie superalgebra F (A2,m, k) this series was found in [3], see also [2].

Theorem 3.1 ([23]). Let L = F (Nsq · · ·Ns2Ns1 , X) be the free polynilpotent Lie super-
algebra generated by an at most countable generating set X = {xi|i ∈ I}, where I = I+ ∪ I−
and X+ = {xi|i ∈ I+}, X− = {xi|i ∈ I−} are the even and odd generators, respectively. We
define functions gi(t), fi(t) ∈ Q[[t]], i = 0, . . . , q by g0(t) = 0, f0(t) =

∑
i∈I ti, and

gi(t) = gi−1(t) +
si∑
m=1

1
m

∑

a|m
µ(a)

(
f

[a]
i−1(t)

)m/a
, 1 ≤ i ≤ q;

fi(t) = 1 +
(∑

i∈I
ti − 1

)
· E(gi(t)), 1 ≤ i ≤ q.

Then HX(L, t) = gq(t).

Now assume that the generating set is finite. Let I = I+ ∪ I−, I+ = {1, . . . ,m}, I− =
{m+1,m+2, . . . ,m+k}, 1 < m+k <∞. We have the generating set X = X+∪X−, where
X+ = {x1, . . . , xm}, and X− = {xm+1, . . . , xm+k}. Let W ⊂ A be a multihomogeneous
subspace. Then one has components for the gradation by the multidegree Wα, degree Wn,
and ”superdegree” Wij , where the last space consists of elements of degree i with respect to
X+, and degree j with respect to X−. So, we obtain the following different Hilbert–Poincaré
series

HX(W, t) = H(W, t1, . . . , tm+k) =
∑

α∈Nm+k
0

dimWα t
α1
1 · · · tαm+k

m+k ;

HX(W,x, y) =
∞∑

i,j=0

dimWij x
iyj ;

HX(W, t) =
∞∑
n=0

dimWn t
n = H(W,x, y)

∣∣∣
x=y=t

.

In [22] we used variables t+, t−, now in order to simplify formulas, we use symbols x, y
and hope that they are not mixed up with the elements of the generating set X. We can
now apply Theorem 3.1 and obtain H(L, x, y) just by the setting ti = x for i ∈ I+, and
ti = y for i ∈ I− in the formula H(L, t). The above operators look in this case as

φ[−](x, y) = φ(x,−y);

φ[m](x, y) = φ(xm, (−1)m+1ym);

E(φ(x, y)) = exp
( ∞∑
m=1

1
m
φ
(
xm, (−1)m+1ym

))
;

E
( ∑

i,j≥0; i+j>0

bijx
iyj
)

=
∏

i,j

(
1− (−1)jxiyj

)(−1)j+1bij
.

These and other formulas proved to be useful earlier and allowed to obtain dimension
formulas for free Lie superalgebras and study invariants of finite groups acting on free Lie
superalgebras [20, 21, 22], see also similar formulas in [9].

Having the explicit formula for H(L, x, y), we obtain H(L, t) = H(L, x, y)|x=t,y=t and
we proceed further similar to the case of Lie algebras [19] and using different asymptotic
methods [24, 25].

In order to prove main results we study the growth for universal enveloping algebras of Lie
superalgebras [10]. Also, some special bases for free Lie superalgebras are constructed [10].



ON GROWTH OF SOLVABLE LIE SUPERALGEBRAS AND GENERATING FUNCTIONS 7

4. Growth of almost solvable Lie algebras

We extend our results on the growth of solvable Lie algebras to almost solvable Lie al-
gebras. A Lie algebra is called almost solvable if it has a solvable subalgebra of finite
codimension.

Theorem 4.1 ([11]). Let L be a finitely generated Lie algebra such that there exists a
subalgebra H ⊆ L of finite codimension and such that H is solvable of length q. Then L is
of subexponential growth and

Dimq+1 L ≤ dimK(L/H).

By Corollary 1.1 this upper bound is exact. Indeed, we consider L = F (Aq+1, k) and
its commutator subalgebra H = L2. Then dimK L/H = k, H is solvable of step q, and
by Corollary 1.1, we have Dimq+1 L = k. On the other hand, there are no lower bounds
because L can be finite dimensional.

We say that a set X = ∪∞m=1Xm, where |Xm| < ∞, m ∈ N, is graded. We extend our
definitions for algebras generated by such sets, where we assume that the elements of Xm

have weight m in computations of all growth functions and series. We define H(X, t) =∑∞
n=1 |Xn| tn. The next result is a particular case of Theorem 3.1.

Theorem 4.2 ([23]). Let L = F (Aq, Y ) be the free solvable Lie algebra of length q,
generated by a graded set Y . Denote g1(t) = H(Y, t) and gi(t) = gi−1(t) + 1 + (H(Y, t) −
1)E(gi−1(t)) for i = 2, . . . , q. Then HY (L, t) = gq(t).

We show how series are used to prove Theorem 4.1. Let L be generated by Z =
{z1, . . . , zk}. By assumption, dimK L/H = N < ∞ and H(q) = 0. Let F = F (X) be
the free Lie algebra generated by X = {x1, . . . , xk}. We have an epimorphism φ : F → L,
φ(xi) = zi for i = 1, . . . , k. Denote D = φ−1(H) and G = Kerφ. Then dimK F/D = N ,
F/G ∼= L and D(q) ⊆ G.

We consider the filtration F 1 ⊆ F 2 ⊆ · · · , given by the degree in X. For any V ⊆ F
let grV = ⊕∞n=1 grn V ⊆ F denote the associated graded space. The subalgebra grD ⊆ F
is free by Shirshov-Witt theorem [1]. Let Ȳ = ∪∞n=1Ȳn be a homogeneous generating set
for grD, where Ȳn ⊂ grn F . Let HX(Ȳ , t) =

∑∞
n=1 |Ȳn|tn, then we have an analogue of

Schreier’s formula [23]:

HX(Ȳ , t)− 1 = (kt− 1) E(HX(F/grD, t)), where (2)

HX(F/grD, t) =
∑∞
n=1 cnt

n is a polynomial, because
∑
n cn = dimF/grD = dimF/D =

N . We consider the chain of subspaces F ⊇ D ⊇ G ⊇ D(q). We observe that grD/D(q) ∼=
F (Aq, Ȳ ). Suppose that H(F (Aq, Ȳ ), t) =

∑∞
n=1 dnt

n, denote d̄n = d1 + · · ·+ dn for n ∈ N.
We get the following bound on the growth of L: γL(n) ≤ N + d̄n, n ∈ N.

We apply Theorem 4.2 and (2) to algebra F (Aq, Ȳ ).

g1(t) = HX(Ȳ , t) = 1 + (kt− 1)
∏

n≥1

1
(1− tn)cn

=
A+ o(1)
(1− t)N , t→ 1− o;

gi(t) ≤ gi−1(t) + g1(t) · E(gi−1(t)), 0 ≤ t < 1; i = 2, . . . , q.

We apply facts on the growth of functions analytic in the unit circle [19] and obtain the
following asymptotics

gp(t) = exp(p−1)

(
Aζ(N + 1) + o(1)

(1− t)N
)
, t→ 1− o; p = 2, . . . , q.

By Theorem 4.2, H(F (Aq, Ȳ ), t) = gq(t). We use this asympotics along with properties of
functions analytic in the unit circle [19] and conclude that Dimq+1 L ≤ N .
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[5] W. Borho and H. Kraft, Über die Gelfand-Kirillov-Dimension, Math. Ann. 220, no 1, (1976), 1–24.
[6] G. P. Egorychev, Integral representation and the computation of combinatorial sums, Transl. Math.

Monogr. vol. 59, Amer. Math. Soc., Providence, RI, 1984.
[7] I. M. Gelfand and A. A. Kirillov, Sur les corps lies aux algèbres enveloppantes des algèbres de Lie, Inst.
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