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Abstract

The Kronecker product of two Schur functions sλ and sµ, denoted sλ ∗sµ, is defined
as the Frobenius characteristic of the tensor product of the irreducible representa-
tions of the symmetric group indexed by partitions of n, λ and µ, respectively. The
coefficient, gλ,µ,ν , of sν in sλ ∗ sµ is equal to the multiplicity of the irreducible rep-
resentation indexed by ν in the tensor product. In this paper we give an algorithm
for expanding the Kronecker product s(n−p,p) ∗ sλ whenever λ1 − λ2 ≥ 2p. As a con-
sequence of this algorithm we obtain a formula for the coefficients gλ,µ,ν in terms of
Littlewood-Richardson coefficients which does not involve cancellations. We also show
that the coefficients in the expansion of s(n−p,p) ∗ sλ are stable. Moreover, we obtain
a simple combinatorial interpretation for gλ,(n−p,p),ν if λ is not a partition inside the
2(p− 1)× 2(p− 1) square.

Introduction

Let χλ and χµ be the irreducible characters of Sn (the symmetric group on n let-
ters) indexed by the partitions λ and µ of n. The Kronecker product χλχµ is defined by
(χλχµ)(w) = χλ(w)χµ(w) for all w ∈ Sn. Hence, χλχµ is the character that corresponds to
the diagonal action of Sn on the tensor product of the irreducible representations indexed
by λ and µ. Then we have

χλχµ =
∑

ν`n

gλ,µ,νχ
ν ,

where gλ,µ,ν is the multiplicity of χν in χλχµ. Hence the gλ,µ,ν are non-negative integers.
By means of the Frobenius map one can define the Kronecker (internal) product on the

Schur symmetric functions by

sλ ∗ sµ =
∑

ν`n

gλ,µ,νsν .

A reasonable formula for decomposing the Kronecker product is unavailable, although the
problem has been studied since the early twentieth century. In recent years Lascoux [La],
Remmel [R], Remmel and Whitehead [RWd] and Rosas [Ro] derived closed formulas for
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Kronecker products of Schur functions indexed by two row shapes or hook shapes. Gessel
[Ge] obtained a combinatorial interpretation for zigzag partitions.

More general results include a formula of Garsia and Remmel [GR-1] which decomposes
the product of homogeneous symmetric functions with a Schur function. Dvir [D] and
Clausen and Meier [CM] have found bounds for the largest part and the maximal number
of parts in a constituent of a product. Bessenrodt and Kleshchev [BK] have looked at the
problem of determining when the decomposition of the Kronecker product has one or two
constituents.

In 1937 Murnaghan [M] noticed that for large n the Kronecker product did not depend
on the first part of the partitions λ and µ. That is, if λ = (λ1, λ2, . . . , λ`(λ)) is a partition of n
(written λ ` n) and λ̄ = (λ2, . . . , λ`(λ)) denotes the partition obtained by removing the first
part of λ, then there exists an n such that g(n−|λ̄|,λ̄),(n−|µ̄|,µ̄),(n−|ν̄|,ν̄) = g(m−|λ̄|,λ̄),(m−|µ̄|,µ̄),(m−|ν̄|,ν̄)

for all m ≥ n. In this case we say that gλ,µ,ν is stable. Vallejo [V] has recently found a bound
for n for the stability of gλ,µ,ν . In this paper we show that g(n−p,p),λ,ν is stable for all ν if
λ1 − λ2 ≥ 2p.

There is a simple algorithm for the decomposition of s(n−1,1) ∗ sλ whenever λ1 − λ2 ≥ 2.
First Step: Everywhere possible delete zero or one box from λ̄ such that the resulting

diagram corresponds to a partition.
Second step: To each diagram β 6= λ̄ obtained in the first step, everywhere possible add

zero or one box so that the resulting diagram corresponds to a partition. And to β = λ̄ add
everywhere possible one box.

Finally, we complete the resulting diagrams ν̄ obtained in the second step such that
ν = (n − |ν̄|, ν̄) is a partition of n. Then s(n−1,1) ∗ sλ is equal to the sum of the Schur
functions corresponding to all diagrams ν obtained via the remove/add steps above.

We generalize this algorithm for the Kronecker product s(n−p,p)∗sλ whenever λ1−λ2 ≥ 2p.
We use the algorithm to obtain a close formula for gλ,µ,ν as well as bounds for the size of
ν1 and ν2. Our main tools are the Garsia-Remmel identity [GR-1, Lemma 6.3] and the
Remmel-Whitney algorithm for multiplying Schur functions [RWy].

We also give a combinatorial interpretation for the coefficient of sν in s(n−p,p) ∗ sλ, if
λ1 ≥ 2p−1 or `(λ) ≥ 2p−1, in terms of what we call Kronecker Tableaux. In particular, our
combinatorial interpretation holds for all λ if n > (2p− 2)2. Our analysis involves studying
the Schur positivity of the symmetric function sλ/αsα− sλ/βsβ, where α = (α1, α2, . . . , α`(α))
with α1 > α2 and β = (α1 − 1, α2, . . . , α`(α)). We prove that this symmetric function is
Schur positive if and only if λ1 ≥ 2α1 − 1. This result is then used to give a combinatorial
interpretation for g(n−p,p),λ,ν whenever λ is not a partition that fits in the (2p− 2)× (2p− 2)
square.
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Summary of results

1) The (modified) Remmel-Whitney algorithms.
The reverse lexicographic filling of µ, rl(µ), is a filling of the Young diagram µ with the

numbers 1, 2, . . . , |µ| so that the numbers are entered in order from right to left and top to
bottom.
Definition: A tableau T is (λ, µ)-compatible if it contains |λ| unlabelled boxes and |µ|
labelled boxes (with labels 1, 2 . . . , |µ|) and all of the following conditions are satisfied:

(a) T contains |λ| unlabelled boxes in the shape λ. They are positioned in the upper-left
corner of T .

(b) The labelled boxes in T are in increasing order in each row from left to right and in
each column from top to bottom. If one box of T is labelled, so are all the boxes in the same
row that are to the right of it.

(c) If a box labelled i + 1 occurs immediately to the left of the box labelled i in rl(µ),
then in T the label i + 1 occurs weakly above and strictly to the right of i.

(d) If the box labelled y occurs immediately below the box labelled x in rl(µ), then in T
the label y occurs strictly below and weakly to the left of x.

Remmel and Whitney showed that cν
λ µ is the number of (λ, µ)-compatible tableaux of

shape ν [RWy].

Multiplication: sλsµ - Add[µ] to λ. Computing sλsµ =
∑

|ν|=|λ|+|µ|
cν
λ µsν :

(1) To the Young diagram λ add a box labelled 1 everywhere possible so that the rows
are weakly increasing in size.

(2) We add each subsequent number so that, at each step, the conditions of the definition
of (λ, µ)-compatible tableau are satisfied.

In this way we obtain a tree. The leaves of this tree are the elements of the multi-set
Add[µ] to λ. They are the summands in the decomposition of sλsµ.

Example: The decomposition of sλsµ, where λ = (3, 1), µ = (2, 1): λ = and rl(µ) = 2 1
3

.

1 2
3

1 2

3

1 2

1

2
1 3

2
1

3

2
1

1 2
3

1 2

1

2
3

1

2

1
3

2

1

2
1 3

2
1
3

2
1

1

Hence sλsµ = s(5,2) + s(5,1,1) + s(4,3) + 2s(4,2,1) + s(3,3,1) + s(4,1,1,1) + s(3,2,2) + s(3,2,1,1).
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Skew: sλ/µ - Delete[µ] from λ. Computing sλ/µ =
∑

|ν|=|λ|−|µ|
cλ
µ νsν :

(1) Form the reverse lexicographic filling of µ.
(2) Starting with the Young diagram λ we will label its outermost boxes with the numbers

1, 2, . . . , |µ| in decreasing order, starting with |µ|, in the following way. At every step, the
diagram obtained from λ by deleting the labelled boxes must be a Young diagram. Suppose
the position (i, j) in rl(µ) is labelled x. If j > 1, let x− be the label in position (i, j − 1) in
rl(µ). If i < `(µ), let x+ be the label in position (i + 1, j) in rl(µ). In λ, x will be placed to
the left and weakly below (to the SW) of x− and above and weakly to the right (to the NE)
of x+.

From each of the diagrams obtained (with |µ| labelled boxes) we remove all labelled
boxes. The resulting diagrams are the elements in the multi-set Delete[µ] from λ. They are
the summands in the decomposition of sλ/µ.

Example: The decomposition of sλ/µ, λ = (4, 4, 2, 2), µ = (3, 3): λ = , rl(µ) = 3 2 1
6 5 4

.

2 3
5 6

1
4

2 3
5 6

4

3
5 6

4

5 6

4

5 6

3
2 6

1
4 5

3
2 6

4 5

3
6

1 2
4 5

3
6

2
4 5

3
6

4 5

6

4 5

6

5

6

Hence sλ/µ = s(2,2,1,1) + s(3,2,1) + s(3,3).
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2) Algorithm for computing s(n−p,p) ∗ sλ

If µ = (µ1, µ2, . . . , µk), we denote by µ̄ the partition µ̄ = (µ2, . . . , µk). We will follow the
philosophy of [M], and attempt to work with the partition µ̄ instead of µ whenever possible.
Knowing that µ ` n, µ1 is completely determined by µ̄.

Let p be a positive integer and λ a partition of n such that λ1 − λ2 ≥ 2p. We consider
the subset of partitions of p contained in λ: Sλ = {α ` p |α ⊆ λ}.
Algorithm: For every α ∈ Sλ form the following set of Young diagrams:

Q(α) =
⋃α1

j=0{ν| ν is obtained by removing a horizontal strip with j boxes from α}

=
⋃α1

j=0 Delete [(j)] from α

For each α ∈ Sλ perform the following two steps:

(1) Remove[α]: For each δ ∈ Q(α) perform Delete[δ] from λ̄. Record all diagrams obtained
from Delete[δ] from λ̄, with multiplicity, in the multi-set D(α). Denote by dαλβ the multi-
plicity of β in D(α). If α1 > α2, let D′(α) be the submulti-set of D(α) of diagrams obtained
by performing Delete[δ] from λ̄ whenever δ1 = α1. Denote the multiplicity of β ∈ D′(α) by
d′αλβ. If α1 = α2, set d′αλβ = 0.

(2) Add[α]: For each (distinct) β ∈ D(α),
(a) If d′αλβ = 0, then for each γ ∈ Q(α) with γ1 = α1 perform Add[γ] to β. The

multiplicity of each resulting diagram is multiplied by dαλβ.
(b) If 0 < d′αλβ = dαλβ, then for each γ ∈ Q(α) perform Add[γ] to β. The multiplicity of

each resulting diagram is multiplied by dαλβ.
(c) If 0 < d′αλβ < dαλβ, then for each γ ∈ Q(α) perform Add[γ] to β. For each γ ∈ Q(α)

with γ1 = α1 the multiplicity of each resulting diagram is multiplied by dαλβ. And for each
γ such that γ1 < α1 the multiplicity of each resulting diagram is multiplied by d′αλβ.
Finally, we record all diagrams obtained in step (2), for every β, in a multi-set Rα.
Note: Whenever we perform Delete[η] from η, the empty diagram, denoted ε, will be
recorded. Thus, if α = (p), then ε ∈ Q(α). Similarly, in the Remove[α] step, if δ =
λ̄ ∈ Q(α), then ε ∈ D(α).

If η = (η1, . . . , η`(η)) ∈ Rα, let η̃ = (η0, η1, . . . , η`(η)), where η0 = n− |η|. Thus η̃ ` n.
Theorem 1: Let p be a positive integer and λ a partition of n such that λ1−λ2 ≥ 2p. Then

s(n−p,p) ∗ sλ =
∑
α∈Sλ

∑
η∈Rα

sη̃.

Example: We will perform the algorithm for s(n−p,p)∗sλ in the case when n = 12, p = 3 and
λ = (8, 2, 1, 1). Since λ1 − λ2 = 8 − 2 = 6 ≥ 2p, the condition of the algorithm is satisfied.
The Young diagrams for λ and λ̄ are

λ = and λ̄ = .
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We have Sλ = {α ` 3 | α ≤ λ} =
{

, ,
}

α = : From α remove j boxes, 0 ≤ j ≤ 3, no two in the same column.

Q(α) = { , , , ε}

(1) Remove[α]: For each δ ∈ Q(α) perform Delete[δ] from λ̄.

Delete[ 3 2 1 ], Delete[ 2 1 ], Delete[ 1 ], and Delete[ε] from . Then we have

D(α) =
{

, , ,
}

and D′(α) = ∅.

(2) Add[α]: Since D′(α) = ∅, we have d′αλβ = 0 for all β ∈ D(α). We are in case (a). The
only γ ∈ Q(α) with γ1 = α1 is γ = . For every β ∈ D(α) we perform Add[ ] to β.

Add[ 3 2 1 ] to = {(4, 1), (3, 1, 1)};
Add[ 3 2 1 ] to = {(4, 1, 1), (3, 1, 1, 1)};

Add[ 3 2 1 ] to = {(5, 1), (4, 2), (4, 1, 1), (3, 2, 1)};
Add[ 3 2 1 ] to = {(5, 1, 1), (4, 2, 1), (4, 1, 1, 1), (3, 2, 1, 1)}.
We take the union of these four multi-sets to get:

R = {(4, 1), (3, 1, 1), 2(4, 1, 1), (3, 1, 1, 1), (5, 1), (4, 2), (3, 2, 1), (5, 1, 1), (4, 2, 1),
(4, 1, 1, 1), (3, 2, 1, 1)}

α = : From α remove j boxes, 0 ≤ j ≤ 2, no two in the same column.

Q(α) =
{

, , ,
}

(1) Remove[α]: For each δ ∈ Q(α) perform Delete[δ] from λ̄.

Delete[ 2 1
3

] from ={(1)}; Delete[ 1
2
] from = {(1, 1), (2)};

Delete[ 2 1 ] from ={(1, 1)}; Delete[ 1 ] from ={(2, 1), (1, 1, 1)}.
This yields:

D(α) =
{

, 2 , , ,
}

and D′(α) =
{

,
}

.
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(2) Add[α]: If β = , then we have d′αλβ = 1 = dαλβ and we are in case (b). For each
γ ∈ Q(α) we perform Add[γ] to .

Add[ 2 1
3

] to = {(3, 1), (2, 2), (2, 1, 1)}; Add[ 1
2
] to = {(2, 1), (1, 1, 1)};

Add[ 2 1 ] to = {(3), (2, 1)}; Add[ 1 ] to = {(2), (1, 1)}.
If β = , then d′αλβ = 1 and dαλβ = 2. Thus we are in case (c).

For each γ ∈ Q(α) we perform Add[γ] to and if γ1 = α1 count the resulting diagrams with
multiplicity dαλβ = 2.

2× Add[ 2 1
3

] to = {2(3, 2), 2(3, 1, 1), 2(2, 2, 1), 2(2, 1, 1, 1)};
Add[ 1

2
] to = {(2, 2), (2, 1, 1), (1, 1, 1, 1)};

2× Add[ 2 1 ] to = {2(3, 1), 2(2, 1, 1)};
Add[ 1 ] to = {(2, 1), (1, 1, 1)}.
If β = , then d′αλβ = 0. We are in case (a). The only γ ∈ Q(α) with γ1 = α1 are γ =
and γ = .

Add[ 2 1
3

] to = {(4, 1), (3, 2), (3, 1, 1), (2, 2, 1)};
Add[ 2 1 ] to = {(4), (3, 1), (2, 2)};
If β = , then d′αλβ = 0. We are in case (a). As before, the only γ ∈ Q(α) with γ1 = α1

are γ = and γ = .

Add[ 2 1
3

] to = {(4, 2), (4, 1, 1), (3, 3), 2(3, 2, 1), (3, 1, 1, 1), (2, 2, 2), (2, 2, 1, 1)};
Add[ 2 1 ] to = {(4, 1), (3, 2), (3, 1, 1), (2, 2, 1)}.
If β = , then d′αλβ = 0 . We are in case (a). As before, the only γ ∈ Q(α) with γ1 = α1

are γ = and γ = .

Add[ 2 1
3

] to = {(3, 2, 1), (3, 1, 1, 1), (2, 2, 1, 1), (2, 1, 1, 1, 1)};

Add[ 2 1 ] to = {(3, 1, 1), (2, 1, 1, 1)}.

We take the union of all the multi-sets above (from the Add step):

R = {4(3, 1), 3(2, 2), 4(2, 1, 1), 3(2, 1), 2(1, 1, 1), (3), (2), (1, 1), 4(3, 2),

5(3, 1, 1), 4(2, 2, 1), 3(2, 1, 1, 1), (1, 1, 1, 1), 2(4, 1), (4), (4, 2), (4, 1, 1),

(3, 3), 3(3, 2, 1), 2(3, 1, 1, 1), (2, 2, 2), 2(2, 2, 1, 1), (2, 1, 1, 1, 1)}
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α = : From α remove j boxes, 0 ≤ j ≤ 1, no two in the same column.

Q(α) =
{

,
}

(1) Remove[α]: For each δ ∈ Q(α) perform Delete[δ] from λ̄.

Delete[
1
2
3
] from = {(1)}; Delete[ 1

2
] from = {(2), (1, 1)}.

This yields:

D(α) =
{

, ,
}

.

(2) Add[α]: Since α1 = α2, d′αλβ = 0 for all β ∈ D(α). We are in case (a). For α = (1, 1, 1),
all γ ∈ Q(α) satisfy γ1 = α1. We perform Add[γ] to β for all γ ∈ Q(α) and all β ∈ D(α).

Add[
1
2
3
] to = {(2, 1, 1), (1, 1, 1, 1)}; Add[ 1

2
] to = {(2, 1), (1, 1, 1)};

Add[
1
2
3
] to = {(2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1)}; Add[ 1

2
] to = {(2, 2), (2, 1, 1), (1, 1, 1, 1)};

Add[
1
2
3
] to = {(3, 1, 1), (2, 1, 1, 1)}; Add[ 1

2
] to = {(3, 1), (2, 1, 1)}.

We take the union of all the multi-sets above:

R = {3(2, 1, 1), 2(1, 1, 1, 1), (2, 1), (1, 1, 1), (2, 2, 1),

2(2, 1, 1, 1), (1, 1, 1, 1, 1), (2, 2), (3, 1, 1), (3, 1)}
Finally, we use Theorem 1 to obtain the decomposition of s(9,3) ∗ s(8,2,1,1). Consider the

union of the multi-sets Rα, for all α ∈ S(8,2,1,1), and ”complete” each shape to size 12.
Thus

s(9,3) ∗ s(8,2,1,1) = 3s(7,4,1) + 7s(7,3,1,1) + 3s(6,4,1,1) + 3s(6,3,1,1,1) + s(6,5,1) + 2s(6,4,2) + 4s(6,3,2,1) +
s(5,5,1,1) + s(5,4,2,1) + s(5,4,1,1,1) + s(5,3,2,1,1) + 5s(8,3,1) + 4s(8,2,2) + 7s(8,2,1,1) + 4s(9,2,1) + 3s(9,1,1,1) +
s(9,3) +s(10,2) +s(10,1,1) +4s(7,3,2) +5s(7,2,2,1) +5s(7,2,1,1,1) +3s(8,1,1,1,1) +s(8,4) +s(6,3,3) +s(6,2,2,2) +
2s(6,2,2,1,1) + s(6,2,1,1,1,1) + s(7,1,1,1,1,1).

3) Multiplicities in the Kronecker Product

Denote by cµ
ν η the Littlewood-Richardson coefficient. If we denote by T η

µ/ν the set of

the semistandard Young tableaux of shape µ/ν and type η whose reverse reading word is a
lattice permutation, then the cardinality of T η

µ/ν is equal to cµ
ν η. Let T η

µ/ν(i, j) be the subset

of T η
µ/ν of SSYTs of shape µ/ν and type η with label 1 in position (i, j). Note that this
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multi-subset could be empty. Define

aµ
ν η :=

{
|T η

µ/ν(2, ν1)|, if µ2 ≥ ν1 and ν1 > ν2,

0 otherwise.

If β = (β1, β2, . . . , β`(β)) ` m < n−p, let β̂ = (n−p−|β|, β1, β2, . . . , β`(β)) be the partition
of n− p obtained from β by adding a first row of the correct size.

Theorem 2: Let n and p be positive integers such that n ≥ 2p and let λ be a partition of
n with λ1 − λ2 ≥ 2p. The multiplicity of sν in s(n−p,p) ∗ sλ is equal to

∑

β⊆λ̄, β⊆ν̄

|β|≥n−λ1−p

∑
α`p

α⊆λ




∑

γ∈Q(α)
γ1=α1, γ⊆ν̄

|γ|=|ν̄|−|β|

cλ
αβ̂

cν̄
βγ +

∑

γ∈Q(α)
γ1<α1, γ⊆ν̄

|γ|=|ν̄|−|β|

aλ
αβ̂

cν̄
βγ




.

Example: We use the above theorem to determine the multiplicity of s(13,4,2) in the Kro-
necker product s(15,4) ∗ s(11,3,2,2,1).

We have n = 19, p = 4, λ̄ = (3, 2, 2, 1) and ν̄ = (4, 2), i.e

λ̄ = , ν̄ = .

Since n− λ1 − p = 19 − 11 − 4 = 4, the first summation in the formula of Theorem 2 runs
over all Young diagrams β such that |β| ≥ 4, β ⊆ λ̄ and β ⊆ ν̄. Thus β has at most two
rows: β = (β1, β2) with β1 ≤ 3 and β2 ≤ 2. The possible β’s in the first summation are

, , .

The second summation runs over all Young diagrams α of size p = 4 with α ⊆ λ. They are
the elements of

Sλ =

{
, , , ,

}
.

(1) If β = , then β̂ = (11, 3, 1) ` n − p = 15. For each α, the inner sums will run
over all γ ∈ Q(α) with |γ| = |ν̄| − |β| = 6− 4 = 2.

If α = , then the only SSYT of shape λ/α and type β̂ = (11, 3, 1) is
1 1 1 1 1 1 1 1 1
2

1 1
2 2
3

. Thus

cλ
α β̂

= 1 and, since α1 = α2, aλ
α β̂

= 0. The only γ ∈ Q(α) with |γ| = 2 is γ = . There is
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one SSYT of shape ν̄/β and type γ = (2): 1
1

. Therefore cν̄
β γ = 1. Hence, cλ

α β̂
cν̄
β (2) = 1

This contributes 1 to the multiplicity.

If α = , then the only SSYT of shape λ/α and type β̂ = (11, 3, 1) is
1 1 1 1 1 1 1 1 1

1 2
2

1 3
2

. Thus

cλ
α β̂

= aλ
α β̂

= 1. The only γ ∈ Q(α) with |γ| = 2 is γ = . There is one SSYT of shape ν̄/β

and type γ = (1, 1): 1
2

. Therefore cν̄
β γ = 1. Hence, cλ

α β̂
cν̄
β (1,1) = 1. This contributes 1 to

the multiplicity.
For all other α ∈ Sλ we have cλ

α β̂
= aλ

α β̂
= 0. Hence, they do not contribute to the

multiplicity.

(2) If β = , then β̂ = (10, 3, 2) ` n − p = 15. For each α, the inner sums will run
over all γ ∈ Q(α) with |γ| = |ν̄| − |β| = 6− 5 = 1.
If α = then cλ

α β̂
= aλ

α β̂
= 0.

If α = ,
1 1 1 1 1 1 1 1

1 2
1 2
2 3
3

is the only SSYT of shape λ/α and type β̂ = (10, 3, 2). Thus

cλ
α β̂

= 1 and aλ
α β̂

= 0. Since α1 = 3, there is no γ ∈ Q(α) with γ1 = α1 and |γ| = 1.

If α = , α = or α = , there is no γ ∈ Q(α) with |γ| = 1.

(3) Finally, if β = , then β̂ = (11, 2, 2) ` n− p = 15. For each α, the inner sums will
run over all γ ∈ Q(α) with |γ| = |ν̄| − |β| = 6− 4 = 2.

If α = ,
1 1 1 1 1 1 1 1

1 1
1 2
2 3
3

is the only SSYT of shape λ/α and type β̂ = (11, 2, 2). Thus

cλ
α β̂

= aλ
α β̂

= 1. The shapes γ ∈ Q(α) with |γ| = 2 are γ = and γ = . There is exactly

one SSYT of shape ν̄/β and type γ = (2). Thus, for γ = (2), cν̄
β γ = 1. Hence, cλ

α β̂
cν̄
β (2) = 1.

This contributes 1 to the multiplicity. We also have cν̄
β (1,1) = 0

If α = , then
1 1 1 1 1 1 1 1 1
2

1 1
2 3
3

is the only SSYT of shape λ/α and type β̂ = (11, 2, 2). Thus

cλ
α β̂

= 1 and, since α1 = α2, aλ
α β̂

= 0. The only γ ∈ Q(α) with |γ| = 2 (and γ1 = α1) is

γ = . As before, there is one SSYT of shape ν̄/β and type γ = (2). Therefore cν̄
β (2) = 1.

Hence, cλ
α β̂

cν̄
β (2) = 1. This contributes 1 to the multiplicity.

If α = , then
1 1 1 1 1 1 1 1 1

1 2
2

1 3
3

is the only SSYT of shape λ/α and type β̂ = (11, 2, 2). Thus

cλ
α β̂

= aλ
α β̂

= 1. The only γ ∈ Q(α) with |γ| = 2 is γ = . However, cν̄
β (1,1) = 0.

For all other α ∈ Sλ we have cλ
α β̂

= aλ
α β̂

= 0.

Therefore the multiplicity of s(13,4,2) in s(15,4) ∗ s(11,3,2,2,1) equals 4.
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Proposition 3: Let n and p be positive integers with n ≥ 2p and let λ = (λ1, λ2, . . . , λ`(λ))
be a partition of n with λ1 − λ2 ≥ 2p. Consider the partition ν = (ν1, ν2, . . . , ν`(ν)) of n.
If the multiplicity g(n−p,p),λ,ν of sν in s(n−p,p) ∗ sλ is non-zero, then λ1 − p ≤ ν1 ≤ λ1 + p.
Moreover, if λ2 < p and g(n−p,p),λ,ν 6= 0, then λ1 − p ≤ ν1 ≤ λ1 + λ2.

Proposition 4: Let n and p and λ ` n be as in the previous proposition, i.e. λ1− λ2 ≥ 2p.
Consider the partition ν = (ν1, ν2, . . . , ν`(ν)) of n. If ν2 > λ2 + p, then the multiplicity
g(n−p,p),λ,ν of sν in s(n−p,p) ∗ sλ is equal to zero. Moreover, if ν = (λ1− p, λ2 + p, λ3, . . . , λ`(λ)),
then g(n−p,p),λ,ν = 1.

If λ = (λ1, λ2, . . . , λ`(λ)) ` n and µ = (µ1, µ2, . . . , µ`(µ)) ` m, we say that λ is less than µ
in lexicographic order, and write λ <l µ, if there is a non-negative integer k such that λi = µi

for all i = 1, 2, . . . , k and λk+1 < µk+1. Note that the lexicographic order is a total order on
the set of all partitions.

Corollary 5: Let n and p be positive integers such that n ≥ 2p and let λ ` n such that
λ1−λ2 ≥ 2p. The smallest partition in lexicographic order ν ` n such that sν appears in the
decomposition of s(n−p,p)∗sλ is the partition whose parts are λ1−p, λ2, . . . , λ`(λ), p, reordered
to form a partition. Moreover, this sν appears with multiplicity 1.

4) Stability of Kronecker coefficients

Theorem 6: Given an arbitrary partition λ̄ = (λ2, λ3, . . . , λ`(λ)), let n be a positive integer
such that n ≥ 2p + |λ̄| + λ2. Then g(n−p,p),(n−|λ̄|,λ̄),(n−|ν̄|,ν̄) = g(m−p,p),(m−|λ̄|,λ̄),(m−|ν̄|,ν̄) for all
m ≥ n and all partitions ν ` n.

5) Combinatorial interpretation of the Kronecker coefficients

A SSYT T of shape λ/α and type ν−α whose reverse reading word is an α-lattice permutation
(i.e. in any initial factor a1a2 · · · aj, 1 ≤ j ≤ n, the number of i′s + αi ≥ the number of
(i + 1)′s + αi+1) is called a Kronecker Tableau of shape λ/α and type (ν − α) if

(I) α1 = α2 or

(II) α1 > α2 and any one of the following two conditions is satisfied:

(i) The number of 1’s in the second row of λ/α is exactly α1 − α2.

(ii) The number of 2’s in the first row of λ/α is exactly α1 − α2.

Denote by kλ
αν the number of Kronecker tableaux of shape λ/α and type ν − α.

Theorem 7: Let n and p be positive integers such that n ≥ 2p−1. Let λ = (λ1, . . . , λ`(λ)) ` n
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such that λ1 ≥ 2p− 1. If ν is a partition of n, the multiplicity of sν in s(n−p,p) ∗ sλ equals
∑
α`p

α⊆λ

kλ
αν ,

where α ⊆ λ means `(α) ≤ `(λ) and αi ≤ λi for all 1 ≤ i ≤ `(α).
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