On the Kronecker Product $s_{(n-p,p)} * s_{\lambda}$

C.M. Ballantine College of the Holy Cross Worcester, MA cballant@holycross.edu

R.C. Orellana Dartmouth College Hanover, NH 03755 Rosa.C.Orellana@Dartmouth.edu

Abstract

The Kronecker product of two Schur functions s_{λ} and s_{μ} , denoted $s_{\lambda} * s_{\mu}$, is defined as the Frobenius characteristic of the tensor product of the irreducible representations of the symmetric group indexed by partitions of n, λ and μ , respectively. The coefficient, $g_{\lambda,\mu,\nu}$, of s_{ν} in $s_{\lambda} * s_{\mu}$ is equal to the multiplicity of the irreducible representation indexed by ν in the tensor product. In this paper we give an algorithm for expanding the Kronecker product $s_{(n-p,p)} * s_{\lambda}$ whenever $\lambda_1 - \lambda_2 \geq 2p$. As a consequence of this algorithm we obtain a formula for the coefficients $g_{\lambda,\mu,\nu}$ in terms of Littlewood-Richardson coefficients which does not involve cancellations. We also show that the coefficients in the expansion of $s_{(n-p,p)} * s_{\lambda}$ are stable. Moreover, we obtain a simple combinatorial interpretation for $g_{\lambda,(n-p,p),\nu}$ if λ is not a partition inside the $2(p-1) \times 2(p-1)$ square.

Introduction

Let χ^{λ} and χ^{μ} be the irreducible characters of S_n (the symmetric group on n letters) indexed by the partitions λ and μ of n. The Kronecker product $\chi^{\lambda}\chi^{\mu}$ is defined by $(\chi^{\lambda}\chi^{\mu})(w) = \chi^{\lambda}(w)\chi^{\mu}(w)$ for all $w \in S_n$. Hence, $\chi^{\lambda}\chi^{\mu}$ is the character that corresponds to the diagonal action of S_n on the tensor product of the irreducible representations indexed by λ and μ . Then we have

$$\chi^{\lambda}\chi^{\mu} = \sum_{\nu \vdash n} g_{\lambda,\mu,\nu}\chi^{\nu},$$

where $g_{\lambda,\mu,\nu}$ is the multiplicity of χ^{ν} in $\chi^{\lambda}\chi^{\mu}$. Hence the $g_{\lambda,\mu,\nu}$ are non-negative integers.

By means of the Frobenius map one can define the Kronecker (internal) product on the Schur symmetric functions by

$$s_{\lambda} * s_{\mu} = \sum_{\nu \vdash n} g_{\lambda,\mu,\nu} s_{\nu}.$$

A reasonable formula for decomposing the Kronecker product is unavailable, although the problem has been studied since the early twentieth century. In recent years Lascoux [La], Remmel [R], Remmel and Whitehead [RWd] and Rosas [Ro] derived closed formulas for

Kronecker products of Schur functions indexed by two row shapes or hook shapes. Gessel [Ge] obtained a combinatorial interpretation for zigzag partitions.

More general results include a formula of Garsia and Remmel [GR-1] which decomposes the product of homogeneous symmetric functions with a Schur function. Dvir [D] and Clausen and Meier [CM] have found bounds for the largest part and the maximal number of parts in a constituent of a product. Bessenrodt and Kleshchev [BK] have looked at the problem of determining when the decomposition of the Kronecker product has one or two constituents.

In 1937 Murnaghan [M] noticed that for large n the Kronecker product did not depend on the first part of the partitions λ and μ . That is, if $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_{\ell(\lambda)})$ is a partition of n(written $\lambda \vdash n$) and $\bar{\lambda} = (\lambda_2, \ldots, \lambda_{\ell(\lambda)})$ denotes the partition obtained by removing the first part of λ , then there exists an n such that $g_{(n-|\bar{\lambda}|,\bar{\lambda}),(n-|\bar{\mu}|,\bar{\nu})} = g_{(m-|\bar{\lambda}|,\bar{\lambda}),(m-|\bar{\mu}|,\bar{\mu}),(m-|\bar{\nu}|,\bar{\nu})}$ for all $m \geq n$. In this case we say that $g_{\lambda,\mu,\nu}$ is *stable*. Vallejo [V] has recently found a bound for n for the stability of $g_{\lambda,\mu,\nu}$. In this paper we show that $g_{(n-p,p),\lambda,\nu}$ is stable for all ν if $\lambda_1 - \lambda_2 \geq 2p$.

There is a simple algorithm for the decomposition of $s_{(n-1,1)} * s_{\lambda}$ whenever $\lambda_1 - \lambda_2 \geq 2$.

First Step: Everywhere possible delete zero or one box from $\overline{\lambda}$ such that the resulting diagram corresponds to a partition.

Second step: To each diagram $\beta \neq \overline{\lambda}$ obtained in the first step, everywhere possible add zero or one box so that the resulting diagram corresponds to a partition. And to $\beta = \overline{\lambda}$ add everywhere possible one box.

Finally, we complete the resulting diagrams $\bar{\nu}$ obtained in the second step such that $\nu = (n - |\bar{\nu}|, \bar{\nu})$ is a partition of n. Then $s_{(n-1,1)} * s_{\lambda}$ is equal to the sum of the Schur functions corresponding to all diagrams ν obtained via the remove/add steps above.

We generalize this algorithm for the Kronecker product $s_{(n-p,p)} * s_{\lambda}$ whenever $\lambda_1 - \lambda_2 \geq 2p$. We use the algorithm to obtain a close formula for $g_{\lambda,\mu,\nu}$ as well as bounds for the size of ν_1 and ν_2 . Our main tools are the Garsia-Remmel identity [GR-1, Lemma 6.3] and the Remmel-Whitney algorithm for multiplying Schur functions [RWy].

We also give a combinatorial interpretation for the coefficient of s_{ν} in $s_{(n-p,p)} * s_{\lambda}$, if $\lambda_1 \geq 2p-1$ or $\ell(\lambda) \geq 2p-1$, in terms of what we call *Kronecker Tableaux*. In particular, our combinatorial interpretation holds for all λ if $n > (2p-2)^2$. Our analysis involves studying the Schur positivity of the symmetric function $s_{\lambda/\alpha}s_{\alpha} - s_{\lambda/\beta}s_{\beta}$, where $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_{\ell(\alpha)})$ with $\alpha_1 > \alpha_2$ and $\beta = (\alpha_1 - 1, \alpha_2, \ldots, \alpha_{\ell(\alpha)})$. We prove that this symmetric function is Schur positive if and only if $\lambda_1 \geq 2\alpha_1 - 1$. This result is then used to give a combinatorial interpretation for $g_{(n-p,p),\lambda,\nu}$ whenever λ is not a partition that fits in the $(2p-2) \times (2p-2)$ square.

Summary of results

1) The (modified) Remmel-Whitney algorithms.

The reverse lexicographic filling of μ , $rl(\mu)$, is a filling of the Young diagram μ with the numbers $1, 2, \ldots, |\mu|$ so that the numbers are entered in order from right to left and top to bottom.

Definition: A tableau T is (λ, μ) -compatible if it contains $|\lambda|$ unlabelled boxes and $|\mu|$ labelled boxes (with labels $1, 2..., |\mu|$) and all of the following conditions are satisfied:

(a) T contains $|\lambda|$ unlabelled boxes in the shape λ . They are positioned in the upper-left corner of T.

(b) The labelled boxes in T are in increasing order in each row from left to right and in each column from top to bottom. If one box of T is labelled, so are all the boxes in the same row that are to the right of it.

(c) If a box labelled i + 1 occurs immediately to the left of the box labelled i in $rl(\mu)$, then in T the label i + 1 occurs weakly above and strictly to the right of i.

(d) If the box labelled y occurs immediately below the box labelled x in $rl(\mu)$, then in T the label y occurs strictly below and weakly to the left of x.

Remmel and Whitney showed that $c_{\lambda\mu}^{\nu}$ is the number of (λ, μ) -compatible tableaux of shape ν [RWy].

Multiplication: $s_{\lambda}s_{\mu}$ - Add $[\mu]$ to λ . Computing $s_{\lambda}s_{\mu} = \sum_{|\nu|=|\lambda|+|\mu|} c_{\lambda\mu}^{\nu}s_{\nu}$:

(1) To the Young diagram λ add a box labelled 1 everywhere possible so that the rows are weakly increasing in size.

(2) We add each subsequent number so that, at each step, the conditions of the definition of (λ, μ) -compatible tableau are satisfied.

In this way we obtain a tree. The leaves of this tree are the elements of the multi-set $Add[\mu]$ to λ . They are the summands in the decomposition of $s_{\lambda}s_{\mu}$.

Example: The decomposition of $s_{\lambda}s_{\mu}$, where $\lambda = (3, 1), \mu = (2, 1)$: $\lambda = \square$ and $rl(\mu) = \square$

Hence $s_{\lambda}s_{\mu} = s_{(5,2)} + s_{(5,1,1)} + s_{(4,3)} + 2s_{(4,2,1)} + s_{(3,3,1)} + s_{(4,1,1,1)} + s_{(3,2,2)} + s_{(3,2,1,1)}$.

Skew: $s_{\lambda/\mu}$ - Delete[μ] from λ . Computing $s_{\lambda/\mu} = \sum_{|\nu|=|\lambda|-|\mu|} c_{\mu\nu}^{\lambda} s_{\nu}$:

(1) Form the reverse lexicographic filling of μ .

(2) Starting with the Young diagram λ we will label its outermost boxes with the numbers $1, 2, \ldots, |\mu|$ in decreasing order, starting with $|\mu|$, in the following way. At every step, the diagram obtained from λ by deleting the labelled boxes must be a Young diagram. Suppose the position (i, j) in $rl(\mu)$ is labelled x. If j > 1, let x^- be the label in position (i, j - 1) in $rl(\mu)$. If $i < \ell(\mu)$, let x^+ be the label in position (i + 1, j) in $rl(\mu)$. In λ , x will be placed to the left and weakly below (to the SW) of x^- and above and weakly to the right (to the NE) of x^+ .

From each of the diagrams obtained (with $|\mu|$ labelled boxes) we remove all labelled boxes. The resulting diagrams are the elements in the multi-set Delete[μ] from λ . They are the summands in the decomposition of $s_{\lambda/\mu}$.

Example: The decomposition of $s_{\lambda/\mu}$, $\lambda = (4, 4, 2, 2)$, $\mu = (3, 3)$: $\lambda = \underbrace{1}_{1, 1}$, $rl(\mu) = \underbrace{321}_{654}$.

Hence $s_{\lambda/\mu} = s_{(2,2,1,1)} + s_{(3,2,1)} + s_{(3,3)}$.

2) Algorithm for computing $s_{(n-p,p)} * s_{\lambda}$

If $\mu = (\mu_1, \mu_2, \dots, \mu_k)$, we denote by $\bar{\mu}$ the partition $\bar{\mu} = (\mu_2, \dots, \mu_k)$. We will follow the philosophy of [M], and attempt to work with the partition $\bar{\mu}$ instead of μ whenever possible. Knowing that $\mu \vdash n$, μ_1 is completely determined by $\bar{\mu}$.

Let p be a positive integer and λ a partition of n such that $\lambda_1 - \lambda_2 \ge 2p$. We consider the subset of partitions of p contained in λ : $S_{\lambda} = \{ \alpha \vdash p \mid \alpha \subseteq \lambda \}.$

Algorithm: For every $\alpha \in S_{\lambda}$ form the following set of Young diagrams:

 $Q(\alpha) = \bigcup_{i=0}^{\alpha_1} \{\nu \mid \nu \text{ is obtained by removing a horizontal strip with } j \text{ boxes from } \alpha \}$

 $= \bigcup_{j=0}^{\alpha_1}$ Delete [(j)] from α

For each $\alpha \in S_{\lambda}$ perform the following two steps:

(1) **Remove**[α]: For each $\delta \in Q(\alpha)$ perform $Delete[\delta]$ from $\overline{\lambda}$. Record all diagrams obtained from $Delete[\delta]$ from $\overline{\lambda}$, with multiplicity, in the multi-set $D(\alpha)$. Denote by $d_{\alpha\lambda\beta}$ the multiplicity of β in $D(\alpha)$. If $\alpha_1 > \alpha_2$, let $D'(\alpha)$ be the submulti-set of $D(\alpha)$ of diagrams obtained by performing $Delete[\delta]$ from $\overline{\lambda}$ whenever $\delta_1 = \alpha_1$. Denote the multiplicity of $\beta \in D'(\alpha)$ by $d'_{\alpha\lambda\beta}$. If $\alpha_1 = \alpha_2$, set $d'_{\alpha\lambda\beta} = 0$.

(2) Add[α]: For each (distinct) $\beta \in D(\alpha)$,

(a) If $d'_{\alpha\lambda\beta} = 0$, then for each $\gamma \in Q(\alpha)$ with $\gamma_1 = \alpha_1$ perform $Add[\gamma]$ to β . The multiplicity of each resulting diagram is multiplied by $d_{\alpha\lambda\beta}$.

(b) If $0 < d'_{\alpha\lambda\beta} = d_{\alpha\lambda\beta}$, then for each $\gamma \in Q(\alpha)$ perform $Add[\gamma]$ to β . The multiplicity of each resulting diagram is multiplied by $d_{\alpha\lambda\beta}$.

(c) If $0 < d'_{\alpha\lambda\beta} < d_{\alpha\lambda\beta}$, then for each $\gamma \in Q(\alpha)$ perform $Add[\gamma]$ to β . For each $\gamma \in Q(\alpha)$ with $\gamma_1 = \alpha_1$ the multiplicity of each resulting diagram is multiplied by $d_{\alpha\lambda\beta}$. And for each γ such that $\gamma_1 < \alpha_1$ the multiplicity of each resulting diagram is multiplied by $d'_{\alpha\lambda\beta}$. Finally, we record all diagrams obtained in step (2), for every β , in a multi-set R_{α} . **Note:** Whenever we perform $Delete[\eta]$ from η , the empty diagram, denoted ϵ , will be recorded. Thus, if $\alpha = (p)$, then $\epsilon \in Q(\alpha)$. Similarly, in the **Remove**[α] step, if $\delta = \overline{\lambda} \in Q(\alpha)$, then $\epsilon \in D(\alpha)$.

If $\eta = (\eta_1, \ldots, \eta_{\ell(\eta)}) \in R_{\alpha}$, let $\tilde{\eta} = (\eta_0, \eta_1, \ldots, \eta_{\ell(\eta)})$, where $\eta_0 = n - |\eta|$. Thus $\tilde{\eta} \vdash n$. **Theorem 1:** Let p be a positive integer and λ a partition of n such that $\lambda_1 - \lambda_2 \ge 2p$. Then

$$s_{(n-p,p)} * s_{\lambda} = \sum_{\alpha \in S_{\lambda}} \sum_{\eta \in R_{\alpha}} s_{\tilde{\eta}}.$$

Example: We will perform the algorithm for $s_{(n-p,p)} * s_{\lambda}$ in the case when n = 12, p = 3 and $\lambda = (8, 2, 1, 1)$. Since $\lambda_1 - \lambda_2 = 8 - 2 = 6 \ge 2p$, the condition of the algorithm is satisfied. The Young diagrams for λ and $\overline{\lambda}$ are

$$\lambda = \square$$
 and $\bar{\lambda} = \square$.

We have $S_{\lambda} = \{ \alpha \vdash 3 \mid \alpha \leq \lambda \} = \{ \Box \Box \Box, \Box \Box, \Box \Box \}$

 $\alpha =$ From α remove j boxes, $0 \le j \le 3$, no two in the same column.

$$Q(\alpha) = \{ ___, __, __, \epsilon \}$$

(1) **Remove**[α]: For each $\delta \in Q(\alpha)$ perform *Delete*[δ] from $\bar{\lambda}$.

 $Delete[321], Delete[21], Delete[1], and <math>Delete[\epsilon] from$. Then we have

$$D(\alpha) = \left\{ \square, \square, \square, \square \right\}$$
 and $D'(\alpha) = \emptyset$.

(2) Add[α]: Since $D'(\alpha) = \emptyset$, we have $d'_{\alpha\lambda\beta} = 0$ for all $\beta \in D(\alpha)$. We are in case (a). The only $\gamma \in Q(\alpha)$ with $\gamma_1 = \alpha_1$ is $\gamma = \Box$. For every $\beta \in D(\alpha)$ we perform $Add[\Box]$ to β . $Add[\exists \exists \exists 1 \ to = \{(4, 1), (3, 1, 1)\};$ $Add[\exists \exists 1 \ to = \{(4, 1, 1), (3, 1, 1, 1)\};$ $Add[\exists \exists 1 \ to = \{(5, 1), (4, 2), (4, 1, 1), (3, 2, 1)\};$ $Add[\exists \exists 1 \ to = \{(5, 1, 1), (4, 2, 1), (4, 1, 1, 1), (3, 2, 1, 1)\}.$ We take the union of these four multi-sets to get:

 $\begin{array}{l} R_{\boxed{1}} = \{(4,1),(3,1,1),2(4,1,1),(3,1,1,1),(5,1),(4,2),(3,2,1),(5,1,1),(4,2,1),(4,1,1,1),(3,2,1,1)\} \end{array}$

 $\alpha = \square$: From α remove j boxes, $0 \le j \le 2$, no two in the same column.

$$Q(\alpha) = \left\{ \square, \square, \square \right\}$$

(1) Remove[α]: For each $\delta \in Q(\alpha)$ perform $Delete[\delta]$ from $\overline{\lambda}$. $Delete[\underline{21}]$ from $\square = \{(1)\};$ $Delete[\underline{1}]$ from $\square = \{(1,1),(2)\};$ $Delete[\underline{21}]$ from $\square = \{(1,1)\};$ $Delete[\underline{1}]$ from $\square = \{(2,1),(1,1,1)\}.$ This yields:

$$D(\alpha) = \left\{ \Box, 2 \Box, \Box, \Box, \Box, \Box \right\} \text{ and } D'(\alpha) = \left\{ \Box, \Box \right\}.$$

(2) Add[α]: If $\beta = \Box$, then we have $d'_{\alpha\lambda\beta} = 1 = d_{\alpha\lambda\beta}$ and we are in case (b). For each $\gamma \in Q(\alpha)$ we perform $Add[\gamma]$ to \Box .

 $\begin{aligned} Add[\underline{21}] \ to \ \Box &= \{(3,1),(2,2),(2,1,1)\}; \\ Add[\underline{21}] \ to \ \Box &= \{(3),(2,1)\}; \\ Add[\underline{21}] \ to \ \Box &= \{(3),(2,1)\}; \\ \end{aligned}$

If $\beta = \square$, then $d'_{\alpha\lambda\beta} = 1$ and $d_{\alpha\lambda\beta} = 2$. Thus we are in case (c).

For each $\gamma \in Q(\alpha)$ we perform $Add[\gamma]$ to \Box and if $\gamma_1 = \alpha_1$ count the resulting diagrams with multiplicity $d_{\alpha\lambda\beta} = 2$.

$$2 \times Add[\frac{21}{3}]$$
 to $\Box = \{2(3,2), 2(3,1,1), 2(2,2,1), 2(2,1,1,1)\};$

 $Add[\underline{\underline{1}}] \ to \ \underline{\square} = \{(2,2), (2,1,1), (1,1,1,1)\};$

 $2 \times Add$ [21] to $\square = \{2(3,1), 2(2,1,1)\};$

 $Add[I] to = \{(2,1), (1,1,1)\}.$

If $\beta = \Box$, then $d'_{\alpha\lambda\beta} = 0$. We are in case (a). The only $\gamma \in Q(\alpha)$ with $\gamma_1 = \alpha_1$ are $\gamma = \Box$ and $\gamma = \Box$.

 $Add[\underline{21}]$ to $\Box = \{(4,1), (3,2), (3,1,1), (2,2,1)\};$

Add[21] to $\Box = \{(4), (3, 1), (2, 2)\};$

If $\beta = \square$, then $d'_{\alpha\lambda\beta} = 0$. We are in case (a). As before, the only $\gamma \in Q(\alpha)$ with $\gamma_1 = \alpha_1$ are $\gamma = \square$ and $\gamma = \square$.

 $Add[\underline{21}] to = \{(4,2), (4,1,1), (3,3), 2(3,2,1), (3,1,1,1), (2,2,2), (2,2,1,1)\};$

 $Add [\texttt{PI}] \ to = \{(4,1), (3,2), (3,1,1), (2,2,1)\}.$

If $\beta = \Box$, then $d'_{\alpha\lambda\beta} = 0$. We are in case (a). As before, the only $\gamma \in Q(\alpha)$ with $\gamma_1 = \alpha_1$ are $\gamma = \Box$ and $\gamma = \Box$.

$$Add[\underline{21}]_{3} to = \{(3,2,1), (3,1,1,1), (2,2,1,1), (2,1,1,1,1)\};$$

 $Add [\texttt{II}] \ to = \{(3,1,1), (2,1,1,1)\}.$

We take the union of all the multi-sets above (from the Add step):

$$R_{\square} = \{4(3,1), 3(2,2), 4(2,1,1), 3(2,1), 2(1,1,1), (3), (2), (1,1), 4(3,2), \\5(3,1,1), 4(2,2,1), 3(2,1,1,1), (1,1,1,1), 2(4,1), (4), (4,2), (4,1,1), \\(3,3), 3(3,2,1), 2(3,1,1,1), (2,2,2), 2(2,2,1,1), (2,1,1,1,1)\}$$

 $\boldsymbol{\alpha} =$: From α remove j boxes, $0 \le j \le 1$, no two in the same column.

$$Q(\alpha) = \left\{ \square, \square \right\}$$

(1) **Remove**[α]: For each $\delta \in Q(\alpha)$ perform *Delete*[δ] from $\overline{\lambda}$.

$$\begin{split} Delete[\frac{1}{2}] \ from = \{(1)\}; & Delete[\frac{1}{2}] \ from = \{(2), (1, 1)\}. \end{split} \\ This yields: & D(\alpha) = \left\{ \Box, \Box \right\}. \end{split}$$

(2) Add[α]: Since $\alpha_1 = \alpha_2$, $d'_{\alpha\lambda\beta} = 0$ for all $\beta \in D(\alpha)$. We are in case (a). For $\alpha = (1, 1, 1)$, all $\gamma \in Q(\alpha)$ satisfy $\gamma_1 = \alpha_1$. We perform $Add[\gamma]$ to β for all $\gamma \in Q(\alpha)$ and all $\beta \in D(\alpha)$. $Add\begin{bmatrix} 1\\2\\3\\3\end{bmatrix}$ to $\Box = \{(2, 1, 1), (1, 1, 1, 1)\};$ $Add\begin{bmatrix} 1\\2\\2\\3\end{bmatrix}$ to $\Box = \{(2, 2, 1), (2, 1, 1, 1), (1, 1, 1, 1, 1)\};$ $Add\begin{bmatrix} 1\\2\\2\\3\end{bmatrix}$ to $\Box = \{(2, 2), (2, 1, 1), (1, 1, 1, 1, 1)\};$ $Add\begin{bmatrix} 1\\2\\2\\3\end{bmatrix}$ to $\Box = \{(3, 1, 1), (2, 1, 1, 1)\};$ $Add\begin{bmatrix} 1\\2\\2\\3\end{bmatrix}$ to $\Box = \{(3, 1), (2, 1, 1)\};$ $Add\begin{bmatrix} 1\\2\\2\\3\end{bmatrix}$ to $\Box = \{(3, 1), (2, 1, 1)\};$

We take the union of all the multi-sets above:

$$R_{\square} = \{3(2,1,1), 2(1,1,1,1), (2,1), (1,1,1), (2,2,1), \\2(2,1,1,1), (1,1,1,1), (2,2), (3,1,1), (3,1)\}$$

Finally, we use Theorem 1 to obtain the decomposition of $s_{(9,3)} * s_{(8,2,1,1)}$. Consider the union of the multi-sets R_{α} , for all $\alpha \in S_{(8,2,1,1)}$, and "complete" each shape to size 12. Thus

$$\begin{split} s_{(9,3)} * s_{(8,2,1,1)} &= 3s_{(7,4,1)} + 7s_{(7,3,1,1)} + 3s_{(6,4,1,1)} + 3s_{(6,3,1,1,1)} + s_{(6,5,1)} + 2s_{(6,4,2)} + 4s_{(6,3,2,1)} + s_{(5,5,1,1)} + s_{(5,4,2,1)} + s_{(5,3,2,1,1)} + 5s_{(8,3,1)} + 4s_{(8,2,2)} + 7s_{(8,2,1,1)} + 4s_{(9,2,1)} + 3s_{(9,1,1,1)} + s_{(9,3)} + s_{(10,2)} + s_{(10,1,1)} + 4s_{(7,3,2)} + 5s_{(7,2,2,1)} + 5s_{(7,2,1,1,1)} + 3s_{(8,1,1,1,1)} + s_{(8,4)} + s_{(6,3,3)} + s_{(6,2,2,2)} + 2s_{(6,2,2,1,1)} + s_{(6,2,1,1,1,1)} + s_{(7,1,1,1,1,1)}. \end{split}$$

3) Multiplicities in the Kronecker Product

Denote by $c^{\mu}_{\nu\eta}$ the Littlewood-Richardson coefficient. If we denote by $T^{\eta}_{\mu/\nu}$ the set of the semistandard Young tableaux of shape μ/ν and type η whose reverse reading word is a lattice permutation, then the cardinality of $T^{\eta}_{\mu/\nu}$ is equal to $c^{\mu}_{\nu\eta}$. Let $T^{\eta}_{\mu/\nu}(i,j)$ be the subset of $T^{\eta}_{\mu/\nu}$ of SSYTs of shape μ/ν and type η with label 1 in position (i,j). Note that this multi-subset could be empty. Define

$$a^{\mu}_{\nu\eta} := \begin{cases} |T^{\eta}_{\mu/\nu}(2,\nu_1)|, & \text{if } \mu_2 \ge \nu_1 \text{ and } \nu_1 > \nu_2, \\ 0 & \text{otherwise.} \end{cases}$$

If $\beta = (\beta_1, \beta_2, \dots, \beta_{\ell(\beta)}) \vdash m < n-p$, let $\hat{\beta} = (n-p-|\beta|, \beta_1, \beta_2, \dots, \beta_{\ell(\beta)})$ be the partition of n-p obtained from β by adding a first row of the correct size.

Theorem 2: Let *n* and *p* be positive integers such that $n \ge 2p$ and let λ be a partition of *n* with $\lambda_1 - \lambda_2 \ge 2p$. The multiplicity of s_{ν} in $s_{(n-p,p)} * s_{\lambda}$ is equal to

$$\sum_{\substack{\beta \subseteq \bar{\lambda}, \beta \subseteq \bar{\nu} \\ |\beta| \ge n - \bar{\lambda}_1 - p}} \sum_{\substack{\alpha \vdash p \\ \alpha \subseteq \lambda}} \left(\sum_{\substack{\gamma \in Q(\alpha) \\ \gamma_1 = \alpha_1, \gamma \subseteq \bar{\nu} \\ |\gamma| = |\bar{\nu}| - |\beta|}} c_{\alpha \beta}^{\lambda} c_{\beta \gamma}^{\bar{\nu}} + \sum_{\substack{\gamma \in Q(\alpha) \\ \gamma_1 < \alpha_1, \gamma \subseteq \bar{\nu} \\ |\gamma| = |\bar{\nu}| - |\beta|}} a_{\alpha \beta}^{\lambda} c_{\beta \gamma}^{\bar{\nu}} \right).$$

Example: We use the above theorem to determine the multiplicity of $s_{(13,4,2)}$ in the Kronecker product $s_{(15,4)} * s_{(11,3,2,2,1)}$.

We have $n = 19, p = 4, \bar{\lambda} = (3, 2, 2, 1)$ and $\bar{\nu} = (4, 2)$, i.e

$$\bar{\lambda} = \prod_{\nu}, \quad \bar{\nu} = \prod_{\nu}.$$

Since $n - \lambda_1 - p = 19 - 11 - 4 = 4$, the first summation in the formula of Theorem 2 runs over all Young diagrams β such that $|\beta| \ge 4$, $\beta \subseteq \overline{\lambda}$ and $\beta \subseteq \overline{\nu}$. Thus β has at most two rows: $\beta = (\beta_1, \beta_2)$ with $\beta_1 \le 3$ and $\beta_2 \le 2$. The possible β 's in the first summation are

$$\blacksquare, \blacksquare, \blacksquare.$$

The second summation runs over all Young diagrams α of size p = 4 with $\alpha \subseteq \lambda$. They are the elements of

$$S_{\lambda} = \left\{ \square \square \square, \square \square, \square, \square, \square, \square \right\}$$

(1) If $\beta = \square$, then $\hat{\beta} = (11, 3, 1) \vdash n - p = 15$. For each α , the inner sums will run over all $\gamma \in Q(\alpha)$ with $|\gamma| = |\bar{\nu}| - |\beta| = 6 - 4 = 2$.

If
$$\alpha = \square$$
, then the only SSYT of shape λ/α and type $\hat{\beta} = (11, 3, 1)$ is $\frac{1}{2} \frac{1}{2} \frac{1}{2$

one SSYT of shape $\bar{\nu}/\beta$ and type $\gamma = (2)$: \square \square . Therefore $c^{\bar{\nu}}_{\beta\gamma} = 1$. Hence, $c^{\lambda}_{\alpha\hat{\beta}}c^{\bar{\nu}}_{\beta(2)} = 1$. This contributes 1 to the multiplicity.

If $\alpha = \Box$, then the only SSYT of shape λ/α and type $\hat{\beta} = (11, 3, 1)$ is $\frac{12}{2}$. Thus $c_{\alpha\hat{\beta}}^{\lambda} = a_{\alpha\hat{\beta}}^{\lambda} = 1$. The only $\gamma \in Q(\alpha)$ with $|\gamma| = 2$ is $\gamma = \Box$. There is one SSYT of shape $\bar{\nu}/\beta$ and type $\gamma = (1, 1)$: \Box Therefore $c_{\beta\gamma}^{\bar{\nu}} = 1$. Hence, $c_{\alpha\hat{\beta}}^{\lambda}c_{\beta(1,1)}^{\bar{\nu}} = 1$. This contributes 1 to the multiplicity. For all other $\alpha \in S$, we have $c_{\alpha\beta}^{\lambda} = a_{\alpha\beta}^{\lambda} = 0$. Hence, they do not contribute to the

For all other $\alpha \in S_{\lambda}$ we have $c_{\alpha\beta}^{\lambda} = a_{\alpha\beta}^{\lambda} = 0$. Hence, they do not contribute to the multiplicity.

(2) If $\beta = \square$, then $\hat{\beta} = (10, 3, 2) \vdash n - p = 15$. For each α , the inner sums will run over all $\gamma \in Q(\alpha)$ with $|\gamma| = |\bar{\nu}| - |\beta| = 6 - 5 = 1$. If $\alpha = \square$ then $c^{\lambda}_{\alpha\hat{\beta}} = a^{\lambda}_{\alpha\hat{\beta}} = 0$. If $\alpha = \square$, $\frac{12}{\frac{12}{23}}$ is the only SSYT of shape λ/α and type $\hat{\beta} = (10, 3, 2)$. Thus $c^{\lambda}_{\alpha\hat{\beta}} = 1$ and $a^{\lambda}_{\alpha\hat{\beta}} = 0$. Since $\alpha_1 = 3$, there is no $\gamma \in Q(\alpha)$ with $\gamma_1 = \alpha_1$ and $|\gamma| = 1$. If $\alpha = \square$, $\alpha = \square$ or $\alpha = \square$, there is no $\gamma \in Q(\alpha)$ with $|\gamma| = 1$.

Therefore the multiplicity of $s_{(13,4,2)}$ in $s_{(15,4)} * s_{(11,3,2,2,1)}$ equals 4.

Proposition 3: Let *n* and *p* be positive integers with $n \ge 2p$ and let $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_{\ell(\lambda)})$ be a partition of *n* with $\lambda_1 - \lambda_2 \ge 2p$. Consider the partition $\nu = (\nu_1, \nu_2, \ldots, \nu_{\ell(\nu)})$ of *n*. If the multiplicity $g_{(n-p,p),\lambda,\nu}$ of s_{ν} in $s_{(n-p,p)} * s_{\lambda}$ is non-zero, then $\lambda_1 - p \le \nu_1 \le \lambda_1 + p$. Moreover, if $\lambda_2 < p$ and $g_{(n-p,p),\lambda,\nu} \ne 0$, then $\lambda_1 - p \le \nu_1 \le \lambda_1 + \lambda_2$.

Proposition 4: Let *n* and *p* and $\lambda \vdash n$ be as in the previous proposition, i.e. $\lambda_1 - \lambda_2 \geq 2p$. Consider the partition $\nu = (\nu_1, \nu_2, \dots, \nu_{\ell(\nu)})$ of *n*. If $\nu_2 > \lambda_2 + p$, then the multiplicity $g_{(n-p,p),\lambda,\nu}$ of s_{ν} in $s_{(n-p,p)} * s_{\lambda}$ is equal to zero. Moreover, if $\nu = (\lambda_1 - p, \lambda_2 + p, \lambda_3, \dots, \lambda_{\ell(\lambda)})$, then $g_{(n-p,p),\lambda,\nu} = 1$.

If $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_{\ell(\lambda)}) \vdash n$ and $\mu = (\mu_1, \mu_2, \dots, \mu_{\ell(\mu)}) \vdash m$, we say that λ is less than μ in lexicographic order, and write $\lambda <_l \mu$, if there is a non-negative integer k such that $\lambda_i = \mu_i$ for all $i = 1, 2, \dots, k$ and $\lambda_{k+1} < \mu_{k+1}$. Note that the lexicographic order is a total order on the set of all partitions.

Corollary 5: Let *n* and *p* be positive integers such that $n \ge 2p$ and let $\lambda \vdash n$ such that $\lambda_1 - \lambda_2 \ge 2p$. The smallest partition in lexicographic order $\nu \vdash n$ such that s_{ν} appears in the decomposition of $s_{(n-p,p)} * s_{\lambda}$ is the partition whose parts are $\lambda_1 - p, \lambda_2, \ldots, \lambda_{\ell(\lambda)}, p$, reordered to form a partition. Moreover, this s_{ν} appears with multiplicity 1.

4) Stability of Kronecker coefficients

Theorem 6: Given an arbitrary partition $\overline{\lambda} = (\lambda_2, \lambda_3, \dots, \lambda_{\ell(\lambda)})$, let *n* be a positive integer such that $n \geq 2p + |\overline{\lambda}| + \lambda_2$. Then $g_{(n-p,p),(n-|\overline{\lambda}|,\overline{\lambda}),(n-|\overline{\nu}|,\overline{\nu})} = g_{(m-p,p),(m-|\overline{\lambda}|,\overline{\lambda}),(m-|\overline{\nu}|,\overline{\nu})}$ for all $m \geq n$ and all partitions $\nu \vdash n$.

5) Combinatorial interpretation of the Kronecker coefficients

A SSYT T of shape λ/α and type $\nu-\alpha$ whose reverse reading word is an α -lattice permutation (i.e. in any initial factor $a_1a_2\cdots a_j$, $1 \leq j \leq n$, the number of $i's + \alpha_i \geq$ the number of $(i+1)'s + \alpha_{i+1}$) is called a *Kronecker Tableau* of shape λ/α and type $(\nu - \alpha)$ if

(I)
$$\alpha_1 = \alpha_2$$
 or

- (II) $\alpha_1 > \alpha_2$ and any one of the following two conditions is satisfied:
 - (i) The number of 1's in the second row of λ/α is exactly $\alpha_1 \alpha_2$.
 - (ii) The number of 2's in the first row of λ/α is exactly $\alpha_1 \alpha_2$.

Denote by $k_{\alpha\nu}^{\lambda}$ the number of Kronecker tableaux of shape λ/α and type $\nu - \alpha$.

Theorem 7: Let n and p be positive integers such that $n \ge 2p-1$. Let $\lambda = (\lambda_1, \ldots, \lambda_{\ell(\lambda)}) \vdash n$

such that $\lambda_1 \geq 2p-1$. If ν is a partition of n, the multiplicity of s_{ν} in $s_{(n-p,p)} * s_{\lambda}$ equals

$$\sum_{\substack{\alpha\vdash p\\\alpha\subset\lambda}}k_{\alpha\nu}^{\lambda},$$

where $\alpha \subseteq \lambda$ means $\ell(\alpha) \leq \ell(\lambda)$ and $\alpha_i \leq \lambda_i$ for all $1 \leq i \leq \ell(\alpha)$.

References

- [BK] Bessenrodt, C., Keleshchev, A.; "On Kronecker products of Complex Representations of the Symmetric and Alternating groups", Pacific J. of Math. Vol 190 2, 1999.
- [CM] Clausen, M., Meier, H.; "Extreme irreduzible Konstituenten in Tensordarstelhungen symmetrischer Gruppen", Bayreuther Math. Schriften. 45 (1993), 1-17.
- [D] Dvir, Y.; "On the Kronecker product of S_n characters", J. Algebra 154 (1993), 125-140.
- [GR-1] Garsia, A.M., Remmel, J., "Shuffles of Permutations and the Kronecker Product", Graphs and Combinatorics 1, 217-263 (1985).
- [Ge] Gessel, I.M; "Multipartite P-partitions and inner products of Schur functions", Contemp. Math. 1984, pp. 289-302.
- [La] Lascoux, A.; "Produit de Kronecker des representations du group symmetrique", Lecture Notes in Mathematics 1980, 795, Springer Verlag pp. 319-329.
- [M] Murnaghan, F.D., "The Analysis of the Kronecker Product of Irreducible Representation of the Symmetric Group", American Journal of Mathematics, Vol. 60. No. 3, 761-784 (1938).
- [R] Remmel, J., "A Formula for the Kronecker Products of Schur Functions of Hook Shapes", Jornal of Algebra 120, 100-118 (1989).
- [RWd] Remmel, J., Whitehead, T.; "On the Kronecker product of Schur functions of two row shapes", Bull. Belg. Math. Soc. 1, 1994, pp. 649-683.
- [RWy] Remmel, J., Whitney, R. "Multiplying Schur functions", J. Algorithms, 5, 471-487, (1984).
- [Ro] Rosas, M. H.; "The Kronecker product of Schur functions indexed by two-row shapes or hook shapes", J. Algebraic Combin. 14 (2001), no. 2, 153–173.
- [V] Vallejo, E.; "Stability of the Kronecker products or irreducible characters of the symmetric group" The Elec. J. of Comb. 6 (1999).