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Abstract

The Kronecker product of two Schur functions sy and s, denoted sy s, is defined
as the Frobenius characteristic of the tensor product of the irreducible representa-
tions of the symmetric group indexed by partitions of n, A and u, respectively. The
coefficient, g ., of s, in sy * s, is equal to the multiplicity of the irreducible rep-
resentation indexed by v in the tensor product. In this paper we give an algorithm
for expanding the Kronecker product s(,_, ) * sx whenever A\; — Ay > 2p. As a con-
sequence of this algorithm we obtain a formula for the coefficients g ,, in terms of
Littlewood-Richardson coefficients which does not involve cancellations. We also show
that the coefficients in the expansion of s(,_, ) * s) are stable. Moreover, we obtain
a simple combinatorial interpretation for gy (,—p ., if A is not a partition inside the
2(p—1) x 2(p — 1) square.

Introduction

Let x* and x* be the irreducible characters of S, (the symmetric group on n let-
ters) indexed by the partitions A\ and p of n. The Kronecker product x*x* is defined by
(M) (w) = xMw)x*(w) for all w € S,. Hence, x*x* is the character that corresponds to
the diagonal action of S,, on the tensor product of the irreducible representations indexed
by A and p. Then we have

XX =" g’

vkn

where gy ,,,, is the multiplicity of x” in x*x*. Hence the g, ,, are non-negative integers.
By means of the Frobenius map one can define the Kronecker (internal) product on the
Schur symmetric functions by
S) * Sp = Zg)\“u’,jsl,.
vkn
A reasonable formula for decomposing the Kronecker product is unavailable, although the

problem has been studied since the early twentieth century. In recent years Lascoux [Lal,
Remmel [R], Remmel and Whitehead [RWd]| and Rosas [Ro] derived closed formulas for



Kronecker products of Schur functions indexed by two row shapes or hook shapes. Gessel
[Ge] obtained a combinatorial interpretation for zigzag partitions.

More general results include a formula of Garsia and Remmel [GR-1] which decomposes
the product of homogeneous symmetric functions with a Schur function. Dvir [D] and
Clausen and Meier [CM] have found bounds for the largest part and the maximal number
of parts in a constituent of a product. Bessenrodt and Kleshchev [BK] have looked at the
problem of determining when the decomposition of the Kronecker product has one or two
constituents.

In 1937 Murnaghan [M] noticed that for large n the Kronecker product did not depend
on the first part of the partitions A and p. That is, if X = (A1, Aa, ..., Ayn)) is a partition of n
(written A - n) and A = (X2, ..., Ayy)) denotes the partition obtained by removing the first
part of A, then there exists an n such that gq,_ 3| x),(n—|al),(0—|51,7) = Jim—|N,X),(m—Iil,5),(m—|7].7)
for all m > n. In this case we say that g ,, is stable. Vallejo [V] has recently found a bound
for n for the stability of gy,,. In this paper we show that g,—,,) 1. is stable for all v if
/\1 — )\2 Z 2p

There is a simple algorithm for the decomposition of s5;,_1 1) * sy whenever A\; — Ay > 2.

First Step: Everywhere possible delete zero or one box from X such that the resulting
diagram corresponds to a partition.

Second step: To each diagram 3 # X obtained in the first step, everywhere possible add
zero or one box so that the resulting diagram corresponds to a partition. And to 3 = A add
everywhere possible one box.

Finally, we complete the resulting diagrams v obtained in the second step such that
v = (n — |p|,7) is a partition of n. Then s(,_11) * s\ is equal to the sum of the Schur
functions corresponding to all diagrams v obtained via the remove/add steps above.

We generalize this algorithm for the Kronecker product s(,—, ) *sx whenever A\; — Ay > 2p.
We use the algorithm to obtain a close formula for gy ,, as well as bounds for the size of
v1 and v5. Our main tools are the Garsia-Remmel identity [GR-1, Lemma 6.3] and the
Remmel-Whitney algorithm for multiplying Schur functions [RWy].

We also give a combinatorial interpretation for the coefficient of s, in s@,—p,) * sy, if
A1 > 2p—1orl()\) > 2p—1, in terms of what we call Kronecker Tableauz. In particular, our
combinatorial interpretation holds for all A if n > (2p — 2)%. Our analysis involves studying
the Schur positivity of the symmetric function sy /454 — sx/353, where a = (a1, g, . .., g (a))
with ay > ag and 8 = (g — 1, o, . .. ,Oég(a)). We prove that this symmetric function is
Schur positive if and only if \; > 2a; — 1. This result is then used to give a combinatorial
interpretation for g(,—pp).n, Whenever X is not a partition that fits in the (2p —2) x (2p —2)
square.



Summary of results

1) The (modified) Remmel-Whitney algorithms.

The reverse lezicographic filling of p, rl(u), is a filling of the Young diagram p with the
numbers 1,2, ..., |u| so that the numbers are entered in order from right to left and top to
bottom.

Definition: A tableau T is (A, pu)-compatible if it contains |A| unlabelled boxes and |u|
labelled boxes (with labels 1,2...,|u|) and all of the following conditions are satisfied:

(a) T contains |A| unlabelled boxes in the shape A. They are positioned in the upper-left
corner of 7.

(b) The labelled boxes in T" are in increasing order in each row from left to right and in
each column from top to bottom. If one box of T' is labelled, so are all the boxes in the same
row that are to the right of it.

(c) If a box labelled i + 1 occurs immediately to the left of the box labelled i in 7i(pu),
then in T the label i 4+ 1 occurs weakly above and strictly to the right of <.

(d) If the box labelled y occurs immediately below the box labelled z in (), then in T
the label y occurs strictly below and weakly to the left of x.

Remmel and Whitney showed that cf , is the number of (A, u)-compatible tableaux of
shape v [RWy].

Multiplication: s)s, - Add[u] to A\. Computing s)s, = Z xS
|vl=[Al+ |l

(1) To the Young diagram A add a box labelled 1 everywhere possible so that the rows
are weakly increasing in size.

(2) We add each subsequent number so that, at each step, the conditions of the definition
of (A, u)-compatible tableau are satisfied.

In this way we obtain a tree. The leaves of this tree are the elements of the multi-set
Add[p] to A\. They are the summands in the decomposition of sys,,.

Example: The decomposition of sys,,, where A = (3,1), = (2,1): A = and ri(p) =Y.

__

[T I1] 1] [ ]
[] [ 1] [
‘ 1]
[T T1]2] [ [ 12] 1] \
L] []1] [ [1]2] [ 2] 73]
2
[1] [1]
[ [ I12] [ [1]2] [ ] [2] [ 2] [] /\
3 L] 1]3 | 1] 1[2]
3] 3] 3] [ 2] [ 2] | []
[ [3] [ [2] [ [2]
1] 113] 1

[eof=]

3]

Hence s)s, = s(52) + S(5,1,1) + S4,3) + 25(4,2,1) + 53,3,1) + S(4,1,1,1) + 53,2,2) + 53.2,1,1)-
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Skew: s/, - Delete[;] from A\. Computing s/, = Z cﬁys,,:
[I=Al=lul

(1) Form the reverse lexicographic filling of s.

(2) Starting with the Young diagram A we will label its outermost boxes with the numbers
1,2,...,|u| in decreasing order, starting with |u|, in the following way. At every step, the
diagram obtained from A by deleting the labelled boxes must be a Young diagram. Suppose
the position (4, 7) in rl(p) is labelled z. If j > 1, let = be the label in position (i,j — 1) in
ri(p). If ¢ < £(p), let 2t be the label in position (i + 1,7) in 7l(x). In A, 2 will be placed to
the left and weakly below (to the SW) of = and above and weakly to the right (to the NE)
of z™.

From each of the diagrams obtained (with |u| labelled boxes) we remove all labelled

boxes. The resulting diagrams are the elements in the multi-set Delete[y] from A. They are
the summands in the decomposition of sy /.

[]
Example: The decomposition of sy,,, A = (4,4,2,2), p = (3,3): A =-HL, rl(p) =2
[]
[
[]
[6]
/
[] []
5/6] 6]
[] HE
[] []
5/6] [6]
[4] [4]5
[3] [3]
5[6] [6]
[4] [4]5
/
2[3] [3] [3]
5/6] 2[6] l6]
R 0
4 A5 s
2[3] [3] [3]
5[6] 2[6] 6]
o I [
4 G5 [

Hence 55/, = s2,2,1,1) + 8(3,2,1) + 5(3,3)-



2) Algorithm for computing s(,_p ) * )

If = (g1, p2, . . ., pg), we denote by i the partition g = (po, . .., ug). We will follow the
philosophy of [M], and attempt to work with the partition & instead of p whenever possible.
Knowing that p F n, py is completely determined by ji.

Let p be a positive integer and A a partition of n such that A\; — Ay > 2p. We consider
the subset of partitions of p contained in A: S\ = {a k- p|la C A}

Algorithm: For every a € S) form the following set of Young diagrams:

Q(a) = U;Lo{v| v is obtained by removing a horizontal strip with j boxes from a}

= U;L, Delete [(j)] from
For each o € Sy perform the following two steps:

(1) Remove[a]: For each § € Q(«) perform Delete/§] from A. Record all diagrams obtained
from Delete[5] from X, with multiplicity, in the multi-set D(«). Denote by dazs the multi-
plicity of 8 in D(«a). If ag > aq, let D'(«) be the submulti-set of D(«) of diagrams obtained
by performing Delete/§] from A whenever d; = ;. Denote the multiplicity of 3 € D'(«a) by
dng- If = g, set d,,5 = 0.

(2) Add[a]: For each (distinct) g € D(«),

(a) If di,\s = 0, then for each v € Q(a) with v1 = «a; perform Addfy] to 8. The
multiplicity of each resulting diagram is multiplied by dag.

(b) If 0 < d,55 = danrg, then for each v € Q(a) perform Add[y] to 3. The multiplicity of
each resulting diagram is multiplied by dqxgs-

(c) If 0 < d,\5 < danrg, then for each v € Q(«a) perform Add[y] to 3. For each v € Q(«)
with 73 = oy the multiplicity of each resulting diagram is multiplied by dyxg. And for each
7 such that 71 < a; the multiplicity of each resulting diagram is multiplied by d,, 5.
Finally, we record all diagrams obtained in step (2), for every f3, in a multi-set R,.

Note: Whenever we perform Delete/n] from n, the empty diagram, denoted e, will be
recorded. Thus, if @ = (p), then € € Q(«). Similarly, in the Removel|a] step, if § =
A € Q(a), then € € D().

Ifn=(m,....,00m) € Ra, let 7 = (1m0, 11, - .., M), where g =n — |n|. Thus 7 F n.
Theorem 1: Let p be a positive integer and A a partition of n such that \; — Ay > 2p. Then

S(n—pp) * S\ = E : § : Sij-
OéES)\ UERQ

Example: We will perform the algorithm for s(,_, ;) * s in the case when n = 12, p = 3 and
A= (8,2,1,1). Since Ay — Ay = 8 —2 =6 > 2p, the condition of the algorithm is satisfied.
The Young diagrams for A and \ are

[TTTTT] -
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WehaveSA:{al—?)|a§)\}={Djjvgja@}
o = [ [ [ | From a remove j boxes, 0 < j < 3, no two in the same column.
Qla)={om,m,0.€

(1) Remove[a]: For each § € Q(«) perform Delete[5] from .

Delete[snl], Delete[z1], Delete[x], and Delete[e] from Ej Then we have

{5@53@3} and  D'(a) = 0.

(2) Add[a]: Since D'(a) = 0, we have d;,,; = 0 for all 3 € D(a). We are in case (a). The
only v € Q(«) with v, = oy is v =117 For every 8 € D(«) we perform Add[1T1] to (3.

Add[sen) to H = {(4,1), (3,1, 1) };
={(4,1,1),(3,1,1,1)};
= {(57 1)7 (4’ 2)? (47 L, 1)7 (37 2, 1)};

={(5,1,1),(4,2,1),(4,1,1,1),(3,2,1,1)}.

Add[sra) to
Add[ra) to

Add[sra] to

HU[HHH

We take the union of these four multi-sets to get:

R =14,1),(3,1,1),2(4,1,1),(3,1,1,1),(5,1),(4,2),(3,2,1),(5,1,1), (4,2, 1),
(4,1,1,1),(3,2,1,1)}

a = : From a remove j boxes, 0 < j < 2, no two in the same column.

-{F.8 ™m0}
(1) Remove[a]: For each § € Q(a) perform Delete[5] from M.
Delete[2[1] from @j:{(l)}; Delete[[F]] from @j
Deleteler] from Ej:{(l, 1} Delete[d] from ﬁj:{ 2,1),(1,1,1)}.

This yields:

D(a):{g,zg,m,gj,@} and  D( {D 5}.



(2) Add[a]: If 3 =3, then we have d,,; = 1 = daxg and we are in case (b). For each
v € Q) we perform Addfy] to .

AddE) to 1= {(3,1),(2,2), (2,1, 1) }; Add[f to 0 = {(2,1),(1,1,1) }
Addlern) to 0 = {(3),(2,1) }; Add[m] to 0 = {(2), (1,1)}.

If 8 =, then d},,5 =1 and daxg = 2. Thus we are in case (c).

For each v € Q(a) we perform Add[y] to H and if 71 =y count the resulting diagrams with
multiplicity da\g = 2.

2 x Add[z] to H {2 2(3,1,1),2(2,2,1),2(2,1,1,1)};
Add[] toH ), 2,1,1) (1,1,1,1)};

2 x Add[z] to H {2 2(2,1,1)};

Add|m toH 1,1,1)}.

If 8 =11, then dw\ﬁ = 0. We are in case (a). The only v € Q(a) with y1 = oy are v =
and v =17

Add[ZH) to 111 = {(4,1),(3,2), (3, 1,1), (2,2, 1) };

Addler to 10 = {(4),3.1), (2,2))

If 3 =}, then d;,,5 = 0. We are in case (a). As before, the only v € Q(a) with v = oy
are y = Bj and vy = [T

Add[g] to [ = ), (4,1,1),(3,3),2(3,2,1),(3,1,1,1),(2,2,2), (2,2, 1, 1) };

Add[zm toBﬂz ) (3,2),(3,1,1),(2,2,1)}.

If g = E, then d,,5 = 0 . We are in case (a). As before, the only v € Q(a) with v, = o
arefy:Bjandfy:Dj.

Add[Z] to @ =1{(3,2,1),(3,1,1,1),(2,2,1,1),(2,1,1,1,1)};

Add[z] to [ = {(3,1,1),(2,1,1, 1)}
We take the union of all the multi-sets above (from the Add step):
= {4(3,1),3(2,2),4(2, 1,1),3(2,1),2(1, 1,1), (3), (2), (1, 1), 4(3,2),
5(3,1,1),4(2,2,1),3(2,1,1,1), (1,1,1,1),2(4, 1), (4), (4,2), (4,1, 1),
(3,3),3(3,2,1),2(3,1,1,1),(2,2,2),2(2,2,1,1), (2,1,1,1,1)}



a = @: From o remove j boxes, 0 < 7 < 1, no two in the same column.

ORR(ERE
(1) Remove|a]: For each § € Q(«) perform Delete/5] from .
Delete[] from @3 ={()}; Delete[] from @3 ={(2),(1,1)}.

This yields:
D(a) = {0, [0}

(2) Add[a]: Since a; = ay, d;,,5 = 0 for all 8 € D(a). We are in case (a). For a = (1,1, 1),
all v € Q(«) satisfy v1 = a;. We perform Add[y] to § for all v € Q(«) and all § € D(«).

Add%} to={(2,1,1),(1,1,1,1)}; Add[i] too ={(2,1), (1,1, 1)};
Add@ tod=1{(2,2,1),(2,1,1,1),(1,1,1,1,1)};  Add[f] toH={(2,2),(2,1,1),(1,1,1,1)};
Add%} torm=4(3,1,1),(2,1,1,1)}; Add[if) torm = {(3,1),(2,1,1)}.

We take the union of all the multi-sets above:

={3(2,1,1),2(1,1,1,1),(2,1),(1,1,1), (2,2, 1),

2(2,1,1,1),(1,1,1,1,1),(2,2), (3,1,1), (3,1)}

Finally, we use Theorem 1 to obtain the decomposition of s(g3) * 58 21,1). Consider the
union of the multi-sets R, for all & € Sg21,1), and "complete” each shape to size 12.

Thus
59,3) * S(8.2,1,1) = 38(74,1) + 1873,1,1) T 35(6,4,1,1) T 35(6,3,1,1,1) T 5(6,5,1) T 256,4,2) T 45(6,3,2,1) +
S$(5,5,1,1) T 8(5,4,2,1) T 8(5,4,1,1,1) T 8(5,3,2,1,1) T 98(8,3,1) +45(8,2,2) T 7S(82,1,1) T 48(9,2,1) +35(9,1,1,1) +
5(9,3) T 8(10,2) T 8(10,1,1) +45(7,32) +55(7.2,2,1) +55(7,2,1,1,1) T35(8,1,1,1,1) + S(8,4) + 5(6,3,3) + 5(6,2,2,2) T
25(6,2,2,1,1) T S(6,2,1,1,1,1) + S(7,1,1,1,1,1)-

3) Multiplicities in the Kronecker Product

Denote by ¢, the Littlewood-Richardson coefficient. If we denote by T’ ZZ/V the set of

the semistandard Young tableaux of shape u/v and type n whose reverse reading word is a
lattice permutation, then the cardinality of T;Z/V is equal to ¢}, . Let TZZ/V(L j) be the subset

of TZZ/V of SSYTs of shape u/v and type n with label 1 in position (i,j). Note that this



multi-subset could be empty. Define

" 1T, 2, v1)],  if pe > 11 and v1 > 1y,
at =
. 0 otherwise.

Ifﬁ = (517527 S 76@(ﬁ)) Fm < n—p, let /@ = (n_p_ |/6|7ﬁ17/627 cee aﬁ@(ﬁ)) be the partition
of n — p obtained from 3 by adding a first row of the correct size.

Theorem 2: Let n and p be positive integers such that n > 2p and let A be a partition of
n with A\; — Ay > 2p. The multiplicity of s, in 54, ) * s) is equal to

> 2| X st X s

BCA, BCr  abp yEQ(a) ~EQ(a)
|B|>n—A1—p aC y1=ay,vCw y1<ay,vCo
IvI=I7]-18] lvI=I71-18]

Example: We use the above theorem to determine the multiplicity of s(134.2) in the Kro-
necker product 8(15’4) * 8(11’372’271).

We have n =19, p =4, A = (3,2,2,1) and v = (4,2), i.e

A=, =D

Since n — Ay —p =19 — 11 — 4 = 4, the first summation in the formula of Theorem 2 runs
over all Young diagrams [ such that |3| > 4, § C XA and § C v. Thus  has at most two
rows: 3 = (01, 32) with §; < 3 and (5 < 2. The possible ’s in the first summation are

0, B, |

The second summation runs over all Young diagrams « of size p = 4 with a C \. They are

the elements of
S)\:{D:‘j:‘7 Hjja B}? @:‘7 E}

(1) If = H-L, then 8= (11,3,1) F n — p = 15. For each «, the inner sums will run
over all v € Q(a) with |y| = |7| = || =6 —4=2.

N
If a =FH, then the only SSYT of shape A/« and type 8 = (11,3,1) is F2 . Thus

[1]1
[2]2
CiB = 1 and, since a; = ag, ai@ = 0. The only v € Q(«) with |y| = 2 is y =CTJ. There is



A

one SSYT of shape v/ and type v = (2): . Therefore cj., = 1. Hence, cchg @ =1

This contributes 1 to the multiplicity.
. 1
If o :Ej, then the only SSYT of shape A/« and type § = (11,3,1)is |3 . Thus

[1]3

cAB = a = 1. The only v € Q(«) with [y| =2 is v =[. There is one SSYT of shape /{3

and type v=(1,1):

(1, Therefore cg7 = 1. Hence, 02[502(1,1) = 1. This contributes 1 to

(2]

the multiplicity.
For all other a € S\ we have ci 5= ai 5= 0. Hence, they do not contribute to the
multiplicity.

(2) If = , then 3 = (10,3,2) F n — p = 15. For each «, the inner sums will run
over all v € Q(%ith vl =17|— |8l =6—-5=1.
If o =1T1T11 thencg/@:aiézo.

[[a]afafe]afa]1]

If o =[], %éz is the only SSYT of shape A/a and type § = (10,3,2). Thus

3
c’\leanda 5=0. Since o = 3, there is no v € Q(«) with 73 = a3 and |y| = 1.

Ifoa=H, a @j or o = E, there is no v € Q(a) with |y| = 1.

(3) Finally, if § = > then B = (11,2,2) = n — p = 15. For each «, the inner sums will
run over all v € Q(«a) with |y| = |p| — |B| =6 —4 = 2.

[A[aTa]a]a]afa]1] .
If o =1, E il is the only SSYT of shape A/« and type # = (11,2,2). Thus
2

ciﬁ = aig = 1. The shapes v € Q(a) with |y| = 2 are v =11 and v =[. There is exactly
one SSYT of shape 7/ and type v = (2). Thus, for v = (2), ¢j., = 1. Hence, ¢ N Chz) = 1-

RNE

This contributes 1 to the multiplicity. We also have Cz(m) 0

N
If o =1, then is the only SSYT of shape A/a and type § = (11,2,2). Thus
[2]3
c’\B = 1 and, since oy = o, a aﬁ = 0. The only v € Q(«) with |y| =2 (and 71 = ay) is

v =[T1. As before, there is one SSYT of shape 7/ and type v = (2). Therefore ¢/
Hence, c)‘ cﬁ @ = = 1. This contributes 1 to the multiplicity.

B(2) —

........ R
If o —Ej then ; is the only SSYT of shape A/a and type § = (11,2,2). Thus
3

ciﬂ = a =1 The only v € Q(a) with |y| =2 is v =[]. However, cf, ;) = 0.
For all other a € Sy we have 025 aiﬁ = 0.

Therefore the multiplicity of s(134.2) in S(15.4) * S(11,3,2,2,1) equals 4.
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Proposition 3: Let n and p be positive integers with n > 2p and let A = (A, A2, ..., Agn)
be a partition of n with Ay — Ay > 2p. Consider the partition v = (11, 15,..., V) of n.
If the multiplicity gum—pp)ap Of S, I S4_py) * sy is non-zero, then Ay —p < v < Ay +p.
Moreover, if Ay < p and gm—pp)ry 7 0, then Ay —p < vy <A+ Ao

Proposition 4: Let n and p and A F n be as in the previous proposition, i.e. Ay — Ay > 2p.
Consider the partition v = (v1,10,...,v)) of n. If v, > Ay 4 p, then the multiplicity
Gn—pp)rw Of Su 1N S(n_p ) * Sx Is equal to zero. Moreover, if v = (A —p, Ao+, A3, ..., Aen),
then gom—ppyay = 1.

A= (A, Ao, Aen) Fnoand o= (p, pia, - - -, pequy) = m, we say that A is less than g
in lexicographic order, and write A <; pu, if there is a non-negative integer k£ such that \; = y;
forall e =1,2,...,k and Agy1 < pgsr1. Note that the lexicographic order is a total order on
the set of all partitions.

Corollary 5: Let n and p be positive integers such that n > 2p and let A = n such that
A1 — Ao > 2p. The smallest partition in lexicographic order v = n such that s, appears in the
decomposition of s¢,_, ;) * sy is the partition whose parts are Ay —p, Ao, ..., Ay, p, reordered
to form a partition. Moreover, this s, appears with multiplicity 1.

4) Stability of Kronecker coefficients

Theorem 6: Given an arbitrary partition A= (A2, A3, .., ), let n be a positive integer
such that n > 2p + |>\| + )\2. Then G(n—p,p),(n=|XN),(n—|o|,5) — g(m—p,p),(m—\Xl,jx),(m—|l7|,l7) for all
m > n and all partitions v F n.

5) Combinatorial interpretation of the Kronecker coefficients

A SSYT T of shape A/« and type v—a whose reverse reading word is an a-lattice permutation
(i.e. in any initial factor ajas---a;, 1 < j < n, the number of ¢'s + a; > the number of
(i +1)s + ;1) is called a Kronecker Tableau of shape A\/a and type (v — ) if

(I) a3 = ay or
(IT) a1 > a5 and any one of the following two conditions is satisfied:

(i) The number of 1’s in the second row of A/« is exactly a; — as.

(ii) The number of 2’s in the first row of A/« is exactly oy — ao.

Denote by k), the number of Kronecker tableaux of shape A\/a and type v — a.

Theorem 7: Let n and p be positive integers such that n > 2p—1. Let A = (Ar,..., Agy) F 1

11



such that Ay > 2p — 1. If v is a partition of n, the multiplicity of s, in s(,—p ) * s) equals

> ko

alp
aCA

where o« C X means £(«) < ¢(A) and a; < \; for all 1 < i < /{(a).
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