On the Kronecker Product $s_{(n-p, p)} * s_{\lambda}$

C.M. Ballantine
College of the Holy Cross
Worcester, MA
cballant@holycross.edu

R.C. Orellana
Dartmouth College
Hanover, NH 03755
Rosa.C.Orellana@Dartmouth.edu

Abstract

The Kronecker product of two Schur functions s_{λ} and s_{μ}, denoted $s_{\lambda} * s_{\mu}$, is defined as the Frobenius characteristic of the tensor product of the irreducible representations of the symmetric group indexed by partitions of n, λ and μ, respectively. The coefficient, $g_{\lambda, \mu \nu}$, of s_{ν} in $s_{\lambda} * s_{\mu}$ is equal to the multiplicity of the irreducible representation indexed by ν in the tensor product. In this paper we give an algorithm for expanding the Kronecker product $s_{(n-p, p)} * s_{\lambda}$ whenever $\lambda_{1}-\lambda_{2} \geq 2 p$. As a consequence of this algorithm we obtain a formula for the coefficients $g_{\lambda, \mu, \nu}$ in terms of Littlewood-Richardson coefficients which does not involve cancellations. We also show that the coefficients in the expansion of $s_{(n-p, p)} * s_{\lambda}$ are stable. Moreover, we obtain a simple combinatorial interpretation for $g_{\lambda,(n-p, p), \nu}$ if λ is not a partition inside the $2(p-1) \times 2(p-1)$ square.

Introduction

Let χ^{λ} and χ^{μ} be the irreducible characters of S_{n} (the symmetric group on n letters) indexed by the partitions λ and μ of n. The Kronecker product $\chi^{\lambda} \chi^{\mu}$ is defined by $\left(\chi^{\lambda} \chi^{\mu}\right)(w)=\chi^{\lambda}(w) \chi^{\mu}(w)$ for all $w \in S_{n}$. Hence, $\chi^{\lambda} \chi^{\mu}$ is the character that corresponds to the diagonal action of S_{n} on the tensor product of the irreducible representations indexed by λ and μ. Then we have

$$
\chi^{\lambda} \chi^{\mu}=\sum_{\nu \vdash n} g_{\lambda, \mu, \nu} \chi^{\nu},
$$

where $g_{\lambda, \mu, \nu}$ is the multiplicity of χ^{ν} in $\chi^{\lambda} \chi^{\mu}$. Hence the $g_{\lambda, \mu, \nu}$ are non-negative integers.
By means of the Frobenius map one can define the Kronecker (internal) product on the Schur symmetric functions by

$$
s_{\lambda} * s_{\mu}=\sum_{\nu \vdash n} g_{\lambda, \mu, \nu} s_{\nu} .
$$

A reasonable formula for decomposing the Kronecker product is unavailable, although the problem has been studied since the early twentieth century. In recent years Lascoux [La], Remmel [R], Remmel and Whitehead [RWd] and Rosas [Ro] derived closed formulas for

Kronecker products of Schur functions indexed by two row shapes or hook shapes. Gessel [Ge] obtained a combinatorial interpretation for zigzag partitions.

More general results include a formula of Garsia and Remmel [GR-1] which decomposes the product of homogeneous symmetric functions with a Schur function. Dvir [D] and Clausen and Meier [CM] have found bounds for the largest part and the maximal number of parts in a constituent of a product. Bessenrodt and Kleshchev [BK] have looked at the problem of determining when the decomposition of the Kronecker product has one or two constituents.

In 1937 Murnaghan $[\mathrm{M}]$ noticed that for large n the Kronecker product did not depend on the first part of the partitions λ and μ. That is, if $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell(\lambda)}\right)$ is a partition of n (written $\lambda \vdash n$) and $\bar{\lambda}=\left(\lambda_{2}, \ldots, \lambda_{\ell(\lambda)}\right)$ denotes the partition obtained by removing the first part of λ, then there exists an n such that $g_{(n-|\bar{\lambda}|, \bar{\lambda}),(n-|\bar{\mu}|, \bar{\mu}),(n-|\bar{\nu}|, \bar{\nu})}=g_{(m-|\bar{\lambda}|, \bar{\lambda}),(m-|\bar{\mu}|, \bar{\mu}),(m-|\bar{\nu}|, \bar{\nu})}$ for all $m \geq n$. In this case we say that $g_{\lambda, \mu, \nu}$ is stable. Vallejo $[\mathrm{V}]$ has recently found a bound for n for the stability of $g_{\lambda, \mu, \nu}$. In this paper we show that $g_{(n-p, p), \lambda, \nu}$ is stable for all ν if $\lambda_{1}-\lambda_{2} \geq 2 p$.

There is a simple algorithm for the decomposition of $s_{(n-1,1)} * s_{\lambda}$ whenever $\lambda_{1}-\lambda_{2} \geq 2$.
First Step: Everywhere possible delete zero or one box from $\bar{\lambda}$ such that the resulting diagram corresponds to a partition.

Second step: To each diagram $\beta \neq \bar{\lambda}$ obtained in the first step, everywhere possible add zero or one box so that the resulting diagram corresponds to a partition. And to $\beta=\bar{\lambda}$ add everywhere possible one box.

Finally, we complete the resulting diagrams $\bar{\nu}$ obtained in the second step such that $\nu=(n-|\bar{\nu}|, \bar{\nu})$ is a partition of n. Then $s_{(n-1,1)} * s_{\lambda}$ is equal to the sum of the Schur functions corresponding to all diagrams ν obtained via the remove/add steps above.

We generalize this algorithm for the Kronecker product $s_{(n-p, p)} * s_{\lambda}$ whenever $\lambda_{1}-\lambda_{2} \geq 2 p$. We use the algorithm to obtain a close formula for $g_{\lambda, \mu, \nu}$ as well as bounds for the size of ν_{1} and ν_{2}. Our main tools are the Garsia-Remmel identity [GR-1, Lemma 6.3] and the Remmel-Whitney algorithm for multiplying Schur functions [RWy].

We also give a combinatorial interpretation for the coefficient of s_{ν} in $s_{(n-p, p)} * s_{\lambda}$, if $\lambda_{1} \geq 2 p-1$ or $\ell(\lambda) \geq 2 p-1$, in terms of what we call Kronecker Tableaux. In particular, our combinatorial interpretation holds for all λ if $n>(2 p-2)^{2}$. Our analysis involves studying the Schur positivity of the symmetric function $s_{\lambda / \alpha} s_{\alpha}-s_{\lambda / \beta} s_{\beta}$, where $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell(\alpha)}\right)$ with $\alpha_{1}>\alpha_{2}$ and $\beta=\left(\alpha_{1}-1, \alpha_{2}, \ldots, \alpha_{\ell(\alpha)}\right)$. We prove that this symmetric function is Schur positive if and only if $\lambda_{1} \geq 2 \alpha_{1}-1$. This result is then used to give a combinatorial interpretation for $g_{(n-p, p), \lambda, \nu}$ whenever λ is not a partition that fits in the $(2 p-2) \times(2 p-2)$ square.

Summary of results

1) The (modified) Remmel-Whitney algorithms.

The reverse lexicographic filling of $\mu \operatorname{rl}(\mu)$, is a filling of the Young diagram μ with the numbers $1,2, \ldots,|\mu|$ so that the numbers are entered in order from right to left and top to bottom.
Definition: A tableau T is (λ, μ)-compatible if it contains $|\lambda|$ unlabelled boxes and $|\mu|$ labelled boxes (with labels $1,2 \ldots,|\mu|$) and all of the following conditions are satisfied:
(a) T contains $|\lambda|$ unlabelled boxes in the shape λ. They are positioned in the upper-left corner of T.
(b) The labelled boxes in T are in increasing order in each row from left to right and in each column from top to bottom. If one box of T is labelled, so are all the boxes in the same row that are to the right of it.
(c) If a box labelled $i+1$ occurs immediately to the left of the box labelled i in $\operatorname{rl}(\mu)$, then in T the label $i+1$ occurs weakly above and strictly to the right of i.
(d) If the box labelled y occurs immediately below the box labelled x in $r l(\mu)$, then in T the label y occurs strictly below and weakly to the left of x.

Remmel and Whitney showed that $c_{\lambda \mu}^{\nu}$ is the number of (λ, μ)-compatible tableaux of shape $\nu[\mathrm{RWy}]$.

Multiplication: $s_{\lambda} s_{\mu}-\operatorname{Add}[\mu]$ to λ. Computing $s_{\lambda} s_{\mu}=\sum_{|\nu|=|\lambda|+|\mu|} c_{\lambda \mu}^{\nu} s_{\nu}$:
(1) To the Young diagram λ add a box labelled 1 everywhere possible so that the rows are weakly increasing in size.
(2) We add each subsequent number so that, at each step, the conditions of the definition of (λ, μ)-compatible tableau are satisfied.

In this way we obtain a tree. The leaves of this tree are the elements of the multi-set $\operatorname{Add}[\mu]$ to λ. They are the summands in the decomposition of $s_{\lambda} s_{\mu}$.
Example: The decomposition of $s_{\lambda} s_{\mu}$, where $\lambda=(3,1), \mu=(2,1): \lambda=\square \square$ and $r l(\mu)=\frac{211}{3}$.

Hence $s_{\lambda} s_{\mu}=s_{(5,2)}+s_{(5,1,1)}+s_{(4,3)}+2 s_{(4,2,1)}+s_{(3,3,1)}+s_{(4,1,1,1)}+s_{(3,2,2)}+s_{(3,2,1,1)}$.

Skew: $s_{\lambda / \mu}$ - Delete $[\mu]$ from λ. Computing $s_{\lambda / \mu}=\sum_{|\nu|=|\lambda|-|\mu|} c_{\mu \nu}^{\lambda} s_{\nu}$:
(1) Form the reverse lexicographic filling of μ.
(2) Starting with the Young diagram λ we will label its outermost boxes with the numbers $1,2, \ldots,|\mu|$ in decreasing order, starting with $|\mu|$, in the following way. At every step, the diagram obtained from λ by deleting the labelled boxes must be a Young diagram. Suppose the position (i, j) in $r l(\mu)$ is labelled x. If $j>1$, let x^{-}be the label in position $(i, j-1)$ in $r l(\mu)$. If $i<\ell(\mu)$, let x^{+}be the label in position $(i+1, j)$ in $r l(\mu)$. In λ, x will be placed to the left and weakly below (to the SW) of x^{-}and above and weakly to the right (to the NE) of x^{+}.

From each of the diagrams obtained (with $|\mu|$ labelled boxes) we remove all labelled boxes. The resulting diagrams are the elements in the multi-set Delete $[\mu]$ from λ. They are the summands in the decomposition of $s_{\lambda / \mu}$.

Hence $s_{\lambda / \mu}=s_{(2,2,1,1)}+s_{(3,2,1)}+s_{(3,3)}$.

2) Algorithm for computing $s_{(n-p, p)} * s_{\lambda}$

If $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{k}\right)$, we denote by $\bar{\mu}$ the partition $\bar{\mu}=\left(\mu_{2}, \ldots, \mu_{k}\right)$. We will follow the philosophy of $[\mathrm{M}]$, and attempt to work with the partition $\bar{\mu}$ instead of μ whenever possible. Knowing that $\mu \vdash n, \mu_{1}$ is completely determined by $\bar{\mu}$.

Let p be a positive integer and λ a partition of n such that $\lambda_{1}-\lambda_{2} \geq 2 p$. We consider the subset of partitions of p contained in $\lambda: S_{\lambda}=\{\alpha \vdash p \mid \alpha \subseteq \lambda\}$.
Algorithm: For every $\alpha \in S_{\lambda}$ form the following set of Young diagrams:
$Q(\alpha)=\bigcup_{j=0}^{\alpha_{1}}\{\nu \mid \nu$ is obtained by removing a horizontal strip with j boxes from $\alpha\}$

$$
=\bigcup_{j=0}^{\alpha_{1}} \text { Delete }[(j)] \text { from } \alpha
$$

For each $\alpha \in S_{\lambda}$ perform the following two steps:
(1) Remove $[\alpha]$: For each $\delta \in Q(\alpha)$ perform Delete $[\delta]$ from $\bar{\lambda}$. Record all diagrams obtained from Delete $[\delta]$ from $\bar{\lambda}$, with multiplicity, in the multi-set $D(\alpha)$. Denote by $d_{\alpha \lambda \beta}$ the multiplicity of β in $D(\alpha)$. If $\alpha_{1}>\alpha_{2}$, let $D^{\prime}(\alpha)$ be the submulti-set of $D(\alpha)$ of diagrams obtained by performing Delete $[\delta]$ from $\bar{\lambda}$ whenever $\delta_{1}=\alpha_{1}$. Denote the multiplicity of $\beta \in D^{\prime}(\alpha)$ by $d_{\alpha \lambda \beta}^{\prime}$. If $\alpha_{1}=\alpha_{2}$, set $d_{\alpha \lambda \beta}^{\prime}=0$.
(2) $\operatorname{Add}[\alpha]:$ For each (distinct) $\beta \in D(\alpha)$,
(a) If $d_{\alpha \lambda \beta}^{\prime}=0$, then for each $\gamma \in Q(\alpha)$ with $\gamma_{1}=\alpha_{1}$ perform $\operatorname{Add}[\gamma]$ to β. The multiplicity of each resulting diagram is multiplied by $d_{\alpha \lambda \beta}$.
(b) If $0<d_{\alpha \lambda \beta}^{\prime}=d_{\alpha \lambda \beta}$, then for each $\gamma \in Q(\alpha)$ perform $A d d[\gamma]$ to β. The multiplicity of each resulting diagram is multiplied by $d_{\alpha \lambda \beta}$.
(c) If $0<d_{\alpha \lambda \beta}^{\prime}<d_{\alpha \lambda \beta}$, then for each $\gamma \in Q(\alpha)$ perform $A d d[\gamma]$ to β. For each $\gamma \in Q(\alpha)$ with $\gamma_{1}=\alpha_{1}$ the multiplicity of each resulting diagram is multiplied by $d_{\alpha \lambda \beta}$. And for each γ such that $\gamma_{1}<\alpha_{1}$ the multiplicity of each resulting diagram is multiplied by $d_{\alpha \lambda \beta}^{\prime}$.
Finally, we record all diagrams obtained in step (2), for every β, in a multi-set R_{α}.
Note: Whenever we perform Delete[η] from η, the empty diagram, denoted ϵ, will be recorded. Thus, if $\alpha=(p)$, then $\epsilon \in Q(\alpha)$. Similarly, in the Remove $[\alpha]$ step, if $\delta=$ $\bar{\lambda} \in Q(\alpha)$, then $\epsilon \in D(\alpha)$.

If $\eta=\left(\eta_{1}, \ldots, \eta_{\ell(\eta)}\right) \in R_{\alpha}$, let $\tilde{\eta}=\left(\eta_{0}, \eta_{1}, \ldots, \eta_{\ell(\eta)}\right)$, where $\eta_{0}=n-|\eta|$. Thus $\tilde{\eta} \vdash n$.
Theorem 1: Let p be a positive integer and λ a partition of n such that $\lambda_{1}-\lambda_{2} \geq 2 p$. Then

$$
s_{(n-p, p)} * s_{\lambda}=\sum_{\alpha \in S_{\lambda}} \sum_{\eta \in R_{\alpha}} s_{\tilde{\eta}} .
$$

Example: We will perform the algorithm for $s_{(n-p, p)} * s_{\lambda}$ in the case when $n=12, p=3$ and $\lambda=(8,2,1,1)$. Since $\lambda_{1}-\lambda_{2}=8-2=6 \geq 2 p$, the condition of the algorithm is satisfied. The Young diagrams for λ and $\bar{\lambda}$ are

$$
\lambda=\nabla \square \sqcap \square \quad \text { and } \bar{\lambda}=\square \text {. }
$$

We have $S_{\lambda}=\{\alpha \vdash 3 \mid \alpha \leq \lambda\}=\{\square, \square, \boxminus\}$
$\boldsymbol{\alpha}=\square \square$: From α remove j boxes, $0 \leq j \leq 3$, no two in the same column.

$$
Q(\alpha)=\{\square, \square, \square, \epsilon\}
$$

(1) Remove $[\alpha]$: For each $\delta \in Q(\alpha)$ perform Delete $[\delta]$ from $\bar{\lambda}$.

Delete $[32 \mid 1]$, Delete[2[1] , Delete[[1] , and Delete[$\epsilon]$ from \forall. Then we have

$$
D(\alpha)=\{\boxminus, \forall, \boxminus, \boxminus\} \quad \text { and } \quad D^{\prime}(\alpha)=\emptyset \text {. }
$$

(2) $\operatorname{Add}[\alpha]:$ Since $D^{\prime}(\alpha)=\emptyset$, we have $d_{\alpha \lambda \beta}^{\prime}=0$ for all $\beta \in D(\alpha)$. We are in case (a). The only $\gamma \in Q(\alpha)$ with $\gamma_{1}=\alpha_{1}$ is $\gamma=\square \square$. For every $\beta \in D(\alpha)$ we perform $A d d[\square \square]$ to β.
Add[32ा1] to $\quad=\{(4,1),(3,1,1)\}$;
Add [32|1] to $\boxminus=\{(4,1,1),(3,1,1,1)\} ;$
Add $[32[1]$ to $\square=\{(5,1),(4,2),(4,1,1),(3,2,1)\}$;
Add [32|1] to $\forall=\{(5,1,1),(4,2,1),(4,1,1,1),(3,2,1,1)\}$.
We take the union of these four multi-sets to get:
$R_{\square \square}=\{(4,1),(3,1,1), 2(4,1,1),(3,1,1,1),(5,1),(4,2),(3,2,1),(5,1,1),(4,2,1)$, $(4,1,1,1),(3,2,1,1)\}$
$\boldsymbol{\alpha}=\square$: From α remove j boxes, $0 \leq j \leq 2$, no two in the same column.

$$
Q(\alpha)=\{\square, \boxminus, \square, \square\}
$$

(1) Remove $[\alpha]$: For each $\delta \in Q(\alpha)$ perform Delete $[\delta]$ from $\bar{\lambda}$.

Delete $\left[\frac{2211}{3}\right]$ from $\forall=\{(1)\} ;$	Delete $\left[\begin{array}{c}1 \\ 2\end{array}\right]$ from $\forall=\{(1,1),(2)\} ;$
Delete $[2 \mid 1]$ from $\forall=\{(1,1)\} ;$	Delete $[1]$ from $\forall=\{(2,1),(1,1,1)\}$.

This yields:

$$
D(\alpha)=\{\square, 2 \boxminus, \square, \square, \boxminus\} \quad \text { and } \quad D^{\prime}(\alpha)=\{\square, \boxminus\}
$$

(2) $\operatorname{Add}[\alpha]:$ If $\beta=\square$, then we have $d_{\alpha \lambda \beta}^{\prime}=1=d_{\alpha \lambda \beta}$ and we are in case (b). For each $\gamma \in Q(\alpha)$ we perform $A d d[\gamma]$ to \square.

Add [$\left.\frac{2}{3} 11\right]$ to $\square=\{(3,1),(2,2),(2,1,1)\} ; \quad$ Add $\left[\frac{1}{2}\right]$ to $\square=\{(2,1),(1,1,1)\} ;$
Add[[211] $t o \square=\{(3),(2,1)\}$;
Add[$\square]$ to $\square=\{(2),(1,1)\}$.
If $\beta=日$, then $d_{\alpha \lambda \beta}^{\prime}=1$ and $d_{\alpha \lambda \beta}=2$. Thus we are in case (c).
For each $\gamma \in Q(\alpha)$ we perform $A d d[\gamma]$ to \boxminus and if $\gamma_{1}=\alpha_{1}$ count the resulting diagrams with multiplicity $d_{\alpha \lambda \beta}=2$.
$2 \times \operatorname{Add}\left[\begin{array}{l}{\left[\begin{array}{l}21\end{array}\right] \text { to } \boxminus=\{2(3,2), 2(3,1,1), 2(2,2,1), 2(2,1,1,1)\} ; ~ ; ~}\end{array}\right.$
Add [[1 $\left.\frac{1}{2}\right]$ to $\boxminus=\{(2,2),(2,1,1),(1,1,1,1)\}$;
$2 \times \operatorname{Add}[[211]$ to $\square=\{2(3,1), 2(2,1,1)\} ;$
Add[回] to $\boxminus=\{(2,1),(1,1,1)\}$.
If $\beta=$, then $d_{\alpha \lambda \beta}^{\prime}=0$. We are in case (a). The only $\gamma \in Q(\alpha)$ with $\gamma_{1}=\alpha_{1}$ are $\gamma=$ \qquad and $\gamma=$ \square.

Add $\left[\frac{211}{3}\right]$ to $\square=\{(4,1),(3,2),(3,1,1),(2,2,1)\}$;
Add[[21] $]$ to $\square=\{(4),(3,1),(2,2)\}$;
If $\beta=\square$, then $d_{\alpha \lambda \beta}^{\prime}=0$. We are in case (a). As before, the only $\gamma \in Q(\alpha)$ with $\gamma_{1}=\alpha_{1}$ are $\gamma=\square$ and $\gamma=\square$.
Add $\left[\frac{21}{2}{ }_{3}^{2}\right]$ to $\square=\{(4,2),(4,1,1),(3,3), 2(3,2,1),(3,1,1,1),(2,2,2),(2,2,1,1)\}$;
Add [211] to $\square=\{(4,1),(3,2),(3,1,1),(2,2,1)\}$.
If $\beta=\boxminus$, then $d_{\alpha \lambda \beta}^{\prime}=0$. We are in case (a). As before, the only $\gamma \in Q(\alpha)$ with $\gamma_{1}=\alpha_{1}$ are $\gamma=\square$ and $\gamma=\square$.
$\operatorname{Add}\left[\begin{array}{c}{\left[\begin{array}{l}211 \\ 3\end{array}\right]}\end{array}\right.$ to $\boxminus=\{(3,2,1),(3,1,1,1),(2,2,1,1),(2,1,1,1,1)\} ;$
Add[[211] to $\forall=\{(3,1,1),(2,1,1,1)\}$.
We take the union of all the multi-sets above (from the Add step):

$$
\begin{aligned}
R_{\square}= & \{4(3,1), 3(2,2), 4(2,1,1), 3(2,1), 2(1,1,1),(3),(2),(1,1), 4(3,2), \\
& 5(3,1,1), 4(2,2,1), 3(2,1,1,1),(1,1,1,1), 2(4,1),(4),(4,2),(4,1,1), \\
& (3,3), 3(3,2,1), 2(3,1,1,1),(2,2,2), 2(2,2,1,1),(2,1,1,1,1)\}
\end{aligned}
$$

$\boldsymbol{\alpha}=\boxminus$: From α remove j boxes, $0 \leq j \leq 1$, no two in the same column.

$$
Q(\alpha)=\{\boxminus, \boxminus\}
$$

(1) Remove $[\alpha]$: For each $\delta \in Q(\alpha)$ perform Delete $[\delta]$ from $\bar{\lambda}$.

Delete $\left[\frac{1}{2}\left[\frac{1}{3}\right]\right.$ from $\boxminus=\{(1)\} ; \quad$ Delete $\left[\frac{1}{2}\right]$ from $\boxminus=\{(2),(1,1)\}$.
This yields:

$$
D(\alpha)=\{\square, \boxminus, \square\} .
$$

(2) $\operatorname{Add}[\alpha]$: Since $\alpha_{1}=\alpha_{2}, d_{\alpha \lambda \beta}^{\prime}=0$ for all $\beta \in D(\alpha)$. We are in case (a). For $\alpha=(1,1,1)$, all $\gamma \in Q(\alpha)$ satisfy $\gamma_{1}=\alpha_{1}$. We perform $A d d[\gamma]$ to β for all $\gamma \in Q(\alpha)$ and all $\beta \in D(\alpha)$.
$\operatorname{Add}\left[\frac{[}{\frac{1}{2}}\right]$ to $\square=\{(2,1,1),(1,1,1,1)\} ; \quad$ Add $\left[\frac{1}{2}\right]$ to $\square=\{(2,1),(1,1,1)\}$;
$\operatorname{Add}\left[\begin{array}{c}{\left[\frac{1}{3}\right]}\end{array}\right]$ to $\boxminus=\{(2,2,1),(2,1,1,1),(1,1,1,1,1)\} ; \quad$ Add $\left[\frac{1}{2}\right]$ to $\boxminus=\{(2,2),(2,1,1),(1,1,1,1)\}$;
$\operatorname{Add}\left[\frac{1}{\frac{1}{3}}\right]$ to $\square=\{(3,1,1),(2,1,1,1)\} ; \quad$ Add $\left[\frac{1}{2}\right]$ to $\square=\{(3,1),(2,1,1)\}$.
We take the union of all the multi-sets above:
$R_{\square}=\{3(2,1,1), 2(1,1,1,1),(2,1),(1,1,1),(2,2,1)$,

$$
2(2,1,1,1),(1,1,1,1,1),(2,2),(3,1,1),(3,1)\}
$$

Finally, we use Theorem 1 to obtain the decomposition of $s_{(9,3)} * s_{(8,2,1,1)}$. Consider the union of the multi-sets R_{α}, for all $\alpha \in S_{(8,2,1,1)}$, and "complete" each shape to size 12 .

Thus
$s_{(9,3)} * s_{(8,2,1,1)}=3 s_{(7,4,1)}+7 s_{(7,3,1,1)}+3 s_{(6,4,1,1)}+3 s_{(6,3,1,1,1)}+s_{(6,5,1)}+2 s_{(6,4,2)}+4 s_{(6,3,2,1)}+$ $s_{(5,5,1,1)}+s_{(5,4,2,1)}+s_{(5,4,1,1,1)}+s_{(5,3,2,1,1)}+5 s_{(8,3,1)}+4 s_{(8,2,2)}+7 s_{(8,2,1,1)}+4 s_{(9,2,1)}+3 s_{(9,1,1,1)}+$ $s_{(9,3)}+s_{(10,2)}+s_{(10,1,1)}+4 s_{(7,3,2)}+5 s_{(7,2,2,1)}+5 s_{(7,2,1,1,1)}+3 s_{(8,1,1,1,1)}+s_{(8,4)}+s_{(6,3,3)}+s_{(6,2,2,2)}+$ $s_{(6,2,2,1,1)}+s_{(6,2,1,1,1,1)}+s_{(7,1,1,1,1,1)}$.

3) Multiplicities in the Kronecker Product

Denote by $c_{\nu \eta}^{\mu}$ the Littlewood-Richardson coefficient. If we denote by $T_{\mu / \nu}^{\eta}$ the set of the semistandard Young tableaux of shape μ / ν and type η whose reverse reading word is a lattice permutation, then the cardinality of $T_{\mu / \nu}^{\eta}$ is equal to $c_{\nu \eta}^{\mu}$. Let $T_{\mu / \nu}^{\eta}(i, j)$ be the subset of $T_{\mu / \nu}^{\eta}$ of SSYTs of shape μ / ν and type η with label 1 in position (i, j). Note that this
multi-subset could be empty. Define

$$
a_{\nu \eta}^{\mu}:= \begin{cases}\left|T_{\mu / \nu}^{\eta}\left(2, \nu_{1}\right)\right|, & \text { if } \mu_{2} \geq \nu_{1} \text { and } \nu_{1}>\nu_{2} \\ 0 & \text { otherwise }\end{cases}
$$

If $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{\ell(\beta)}\right) \vdash m<n-p$, let $\hat{\beta}=\left(n-p-|\beta|, \beta_{1}, \beta_{2}, \ldots, \beta_{\ell(\beta)}\right)$ be the partition of $n-p$ obtained from β by adding a first row of the correct size.

Theorem 2: Let n and p be positive integers such that $n \geq 2 p$ and let λ be a partition of n with $\lambda_{1}-\lambda_{2} \geq 2 p$. The multiplicity of s_{ν} in $s_{(n-p, p)} * s_{\lambda}$ is equal to

$$
\left.\sum_{\substack{\beta \subseteq \bar{\lambda}, \beta \subseteq \bar{\nu} \\|\beta| \geq n-\lambda_{1}-p}} \sum_{\substack{\alpha \vdash p \\ \alpha \subseteq \lambda}} \sum_{\substack{\gamma \in Q(\alpha) \\ \gamma_{1}=\alpha_{1}, \gamma \subseteq \bar{\nu} \\|\gamma|=|\bar{\nu}|-|\beta|}} c_{\alpha \hat{\beta}}^{\lambda} c_{\beta \gamma}^{\bar{\nu}}+\sum_{\substack{\gamma \in Q(\alpha) \\ \gamma_{1}<\alpha_{1}, \gamma \subseteq \bar{\nu} \\|\gamma|=|\bar{\nu}|-|\beta|}} a_{\alpha \hat{\beta}}^{\lambda} c_{\beta \gamma} \bar{\nu}_{\beta \gamma}\right)
$$

Example: We use the above theorem to determine the multiplicity of $s_{(13,4,2)}$ in the Kronecker product $s_{(15,4)} * s_{(11,3,2,2,1)}$.

We have $n=19, p=4, \bar{\lambda}=(3,2,2,1)$ and $\bar{\nu}=(4,2)$, i.e

$$
\bar{\lambda}=\square, \quad \bar{\nu}=\square \square .
$$

Since $n-\lambda_{1}-p=19-11-4=4$, the first summation in the formula of Theorem 2 runs over all Young diagrams β such that $|\beta| \geq 4, \beta \subseteq \bar{\lambda}$ and $\beta \subseteq \bar{\nu}$. Thus β has at most two rows: $\beta=\left(\beta_{1}, \beta_{2}\right)$ with $\beta_{1} \leq 3$ and $\beta_{2} \leq 2$. The possible β 's in the first summation are

The second summation runs over all Young diagrams α of size $p=4$ with $\alpha \subseteq \lambda$. They are the elements of

$$
S_{\lambda}=\{\varpi, \square, \square, \boxminus, \boxminus\}
$$

(1) If $\beta=\square \square$, then $\hat{\beta}=(11,3,1) \vdash n-p=15$. For each α, the inner sums will run over all $\gamma \in Q(\alpha)$ with $|\gamma|=|\bar{\nu}|-|\beta|=6-4=2$.
If $\alpha=\square$, then the only SSYT of shape λ / α and type $\hat{\beta}=(11,3,1)$ is \square $c_{\alpha \hat{\beta}}^{\lambda}=1$ and, since $\alpha_{1}=\alpha_{2}, a_{\alpha \hat{\beta}}^{\lambda}=0$. The only $\gamma \in Q(\alpha)$ with $|\gamma|=2$ is $\gamma=$ \qquad . There is
one SSYT of shape $\bar{\nu} / \beta$ and type $\gamma=(2)$:
凹 ${ }^{\text {1. }}$. Therefore $c_{\beta \gamma \gamma}^{\bar{\nu}}=1$. Hence, $c_{\alpha \hat{\beta}}^{\lambda} \bar{c}_{\beta(2)}^{\bar{\nu}}=1$ This contributes 1 to the multiplicity.
If $\alpha=\boxminus$, then the only SSYT of shape λ / α and type $\hat{\beta}=(11,3,1)$ is $\frac{\frac{1}{\frac{1}{2}} \frac{\sqrt{2} 11111111111}{\left[\frac{1}{2}\right.}}{\frac{1}{2}}$. Thus $c_{\alpha \hat{\beta}}^{\lambda}=a_{\alpha \hat{\beta}}^{\lambda}=1$. The only $\gamma \in Q(\alpha)$ with $|\gamma|=2$ is $\gamma=\square$. There is one SSYT of shape $\bar{\nu} / \beta$ and type $\gamma=(1,1)$: [2]. Therefore $c_{\beta \gamma}^{\bar{\nu}}=1$. Hence, $c_{\alpha \hat{\beta}}^{\lambda} c_{\beta(1,1)}^{\bar{\nu}}=1$. This contributes 1 to the multiplicity.
For all other $\alpha \in S_{\lambda}$ we have $c_{\alpha \hat{\beta}}^{\lambda}=a_{\alpha \hat{\beta}}^{\lambda}=0$. Hence, they do not contribute to the multiplicity.
(2) If $\beta=\square$, then $\hat{\beta}=(10,3,2) \vdash n-p=15$. For each α, the inner sums will run over all $\gamma \in Q(\alpha)$ with $|\gamma|=|\bar{\nu}|-|\beta|=6-5=1$.
If $\alpha=\square \square$ then $c_{\alpha \hat{\beta}}^{\lambda}=a_{\alpha \hat{\beta}}^{\lambda}=0$.
If $\alpha=$ \qquad

is the only SSYT of shape λ / α and type $\hat{\beta}=(10,3,2)$. Thus $c_{\alpha \hat{\beta}}^{\lambda}=1$ and ${\underset{\alpha \hat{\beta}}{\frac{3}{\lambda}}}_{\frac{3}{\lambda}}$. Since $\alpha_{1}=3$, there is no $\gamma \in Q(\alpha)$ with $\gamma_{1}=\alpha_{1}$ and $|\gamma|=1$. If $\alpha=\square, \alpha=\boxminus$ or $\alpha=\sharp$, there is no $\gamma \in Q(\alpha)$ with $|\gamma|=1$.
(3) Finally, if $\beta=\sharp$, then $\hat{\beta}=(11,2,2) \vdash n-p=15$. For each α, the inner sums will run over all $\gamma \in Q(\alpha)$ with $|\gamma|=|\bar{\nu}|-|\beta|=6-4=2$.
If $\alpha=\square \square$, $\underbrace{\frac{\sqrt{1,}}{\frac{1}{2}} 3^{3}}$ $1_{1}^{1111|1| 1|1| 11}$ $c_{\alpha \hat{\beta}}^{\lambda}=a_{\alpha \hat{\beta}}^{\lambda}=\stackrel{\frac{3}{1}}{1}$. The shapes $\gamma \in Q(\alpha)$ with $|\gamma|=2$ are $\gamma=\square$ and $\gamma=\square$. There is exactly one SSYT of shape $\bar{\nu} / \beta$ and type $\gamma=(2)$. Thus, for $\gamma=(2), c_{\beta \gamma}^{\bar{\nu}}=1$. Hence, $c_{\alpha \hat{\beta}}^{\lambda} c_{\beta(2)}^{\bar{\nu}}=1$. This contributes 1 to the multiplicity. We also have $c_{\beta(1,1)}^{\bar{\nu}}=0$
If $\alpha=\square$, then $\frac{\frac{11}{2} 1111|1| 1|1| 111}{\frac{1-1}{3}}$ is the only SSYT of shape λ / α and type $\hat{\beta}=(11,2,2)$. Thus $c_{\alpha \hat{\beta}}^{\lambda}=1$ and, since $\alpha_{1}=\alpha_{2}, a_{\alpha \hat{\beta}}^{\lambda}=0$. The only $\gamma \in Q(\alpha)$ with $|\gamma|=2\left(\right.$ and $\left.\gamma_{1}=\alpha_{1}\right)$ is $\gamma=\square$. As before, there is one SSYT of shape $\bar{\nu} / \beta$ and type $\gamma=(2)$. Therefore $c_{\beta(2)}^{\bar{\nu}}=1$. Hence, $c_{\alpha \hat{\beta}}^{\lambda} \hat{c}_{\beta(2)}^{\bar{\nu}}=1$. This contributes 1 to the multiplicity.
 $c_{\alpha \hat{\beta}}^{\lambda}=a_{\alpha \hat{\beta}}^{\lambda}=1$. The only $\gamma \in Q(\alpha)$ with $|\gamma|=2$ is $\gamma=\square$. However, $c_{\beta(1,1)}^{\bar{\nu}}=0$.
For all other $\alpha \in S_{\lambda}$ we have $c_{\alpha \hat{\beta}}^{\lambda}=a_{\alpha \hat{\beta}}^{\lambda}=0$.
Therefore the multiplicity of $s_{(13,4,2)}$ in $s_{(15,4)} * s_{(11,3,2,2,1)}$ equals 4 .

Proposition 3: Let n and p be positive integers with $n \geq 2 p$ and let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell(\lambda)}\right)$ be a partition of n with $\lambda_{1}-\lambda_{2} \geq 2 p$. Consider the partition $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{\ell(\nu)}\right)$ of n. If the multiplicity $g_{(n-p, p), \lambda, \nu}$ of s_{ν} in $s_{(n-p, p)} * s_{\lambda}$ is non-zero, then $\lambda_{1}-p \leq \nu_{1} \leq \lambda_{1}+p$. Moreover, if $\lambda_{2}<p$ and $g_{(n-p, p), \lambda, \nu} \neq 0$, then $\lambda_{1}-p \leq \nu_{1} \leq \lambda_{1}+\lambda_{2}$.

Proposition 4: Let n and p and $\lambda \vdash n$ be as in the previous proposition, i.e. $\lambda_{1}-\lambda_{2} \geq 2 p$. Consider the partition $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{\ell(\nu)}\right)$ of n. If $\nu_{2}>\lambda_{2}+p$, then the multiplicity $g_{(n-p, p), \lambda, \nu}$ of s_{ν} in $s_{(n-p, p)} * s_{\lambda}$ is equal to zero. Moreover, if $\nu=\left(\lambda_{1}-p, \lambda_{2}+p, \lambda_{3}, \ldots, \lambda_{\ell(\lambda)}\right)$, then $g_{(n-p, p), \lambda, \nu}=1$.

If $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell(\lambda)}\right) \vdash n$ and $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{\ell(\mu)}\right) \vdash m$, we say that λ is less than μ in lexicographic order, and write $\lambda<_{l} \mu$, if there is a non-negative integer k such that $\lambda_{i}=\mu_{i}$ for all $i=1,2, \ldots, k$ and $\lambda_{k+1}<\mu_{k+1}$. Note that the lexicographic order is a total order on the set of all partitions.

Corollary 5: Let n and p be positive integers such that $n \geq 2 p$ and let $\lambda \vdash n$ such that $\lambda_{1}-\lambda_{2} \geq 2 p$. The smallest partition in lexicographic order $\nu \vdash n$ such that s_{ν} appears in the decomposition of $s_{(n-p, p)} * s_{\lambda}$ is the partition whose parts are $\lambda_{1}-p, \lambda_{2}, \ldots, \lambda_{\ell(\lambda)}, p$, reordered to form a partition. Moreover, this s_{ν} appears with multiplicity 1.

4) Stability of Kronecker coefficients

Theorem 6: Given an arbitrary partition $\bar{\lambda}=\left(\lambda_{2}, \lambda_{3}, \ldots, \lambda_{\ell(\lambda)}\right)$, let n be a positive integer such that $n \geq 2 p+|\bar{\lambda}|+\lambda_{2}$. Then $g_{(n-p, p),(n-|\bar{\lambda}|, \bar{\lambda}),(n-|\bar{\nu}|, \bar{\nu})}=g_{(m-p, p),(m-|\bar{\lambda}|, \bar{\lambda}),(m-|\bar{\nu}|, \bar{\nu})}$ for all $m \geq n$ and all partitions $\nu \vdash n$.
5) Combinatorial interpretation of the Kronecker coefficients

A SSYT T of shape λ / α and type $\nu-\alpha$ whose reverse reading word is an α-lattice permutation (i.e. in any initial factor $a_{1} a_{2} \cdots a_{j}, 1 \leq j \leq n$, the number of $i^{\prime} s+\alpha_{i} \geq$ the number of $\left.(i+1)^{\prime} s+\alpha_{i+1}\right)$ is called a Kronecker Tableau of shape λ / α and type $(\nu-\alpha)$ if
(I) $\alpha_{1}=\alpha_{2}$ or
(II) $\alpha_{1}>\alpha_{2}$ and any one of the following two conditions is satisfied:
(i) The number of 1's in the second row of λ / α is exactly $\alpha_{1}-\alpha_{2}$.
(ii) The number of 2's in the first row of λ / α is exactly $\alpha_{1}-\alpha_{2}$.

Denote by $k_{\alpha \nu}^{\lambda}$ the number of Kronecker tableaux of shape λ / α and type $\nu-\alpha$.
Theorem 7: Let n and p be positive integers such that $n \geq 2 p-1$. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell(\lambda)}\right) \vdash n$
such that $\lambda_{1} \geq 2 p-1$. If ν is a partition of n, the multiplicity of s_{ν} in $s_{(n-p, p)} * s_{\lambda}$ equals

$$
\sum_{\substack{\alpha \vdash p \\ \alpha \subseteq \lambda}} k_{\alpha \nu}^{\lambda},
$$

where $\alpha \subseteq \lambda$ means $\ell(\alpha) \leq \ell(\lambda)$ and $\alpha_{i} \leq \lambda_{i}$ for all $1 \leq i \leq \ell(\alpha)$.

References

[BK] Bessenrodt, C., Keleshchev, A.; "On Kronecker products of Complex Representations of the Symmetric and Alternating groups", Pacific J. of Math. Vol 190 2, 1999.
[CM] Clausen, M., Meier, H.; "Extreme irreduzible Konstituenten in Tensordarstelhungen symmetrischer Gruppen", Bayreuther Math. Schriften. 45 (1993), 1-17.
[D] Dvir, Y.; "On the Kronecker product of S_{n} characters", J. Algebra 154 (1993), 125-140.
[GR-1] Garsia, A.M., Remmel, J., "Shuffles of Permutations and the Kronecker Product", Graphs and Combinatorics 1, 217-263 (1985).
[Ge] Gessel, I.M; "Multipartite P-partitions and inner products of Schur functions", Contemp. Math. 1984, pp. 289-302.
[La] Lascoux, A.; "Produit de Kronecker des representations du group symmetrique", Lecture Notes in Mathematics 1980, 795, Springer Verlag pp. 319-329.
[M] Murnaghan, F.D., "The Analysis of the Kronecker Product of Irreducible Representation of the Symmetric Group", American Journal of Mathematics, Vol. 60. No. 3, 761-784 (1938).
[R] Remmel, J., "A Formula for the Kronecker Products of Schur Functions of Hook Shapes", Jornal of Algebra 120, 100-118 (1989).
[RWd] Remmel, J.,Whitehead, T.; "On the Kronecker product of Schur functions of two row shapes", Bull. Belg. Math. Soc. 1, 1994, pp. 649-683.
[RWy] Remmel, J., Whitney, R. "Multiplying Schur functions", J. Algorithms, 5, 471-487, (1984).
[Ro] Rosas, M. H.; "The Kronecker product of Schur functions indexed by two-row shapes or hook shapes", J. Algebraic Combin. 14 (2001), no. 2, 153-173.
[V] Vallejo, E.; "Stability of the Kronecker products or irreducible characters of the symmetric group" The Elec. J. of Comb. 6 (1999).

