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Abstract

We present a generalization of the Cayley-Hamilton Theorem using a collection
of immanants which naturally generalize the determinant.

For f : Sn → C, and x = (xij)1≤i,j≤n, define the f -immanant, Immf (x), by

Immf (x) =
∑

σ∈Sn
f(σ)x1,σ(1) · · ·xn,σ(n).

Given ξ ∈ C and a positive integer n, define the to be the nth Temperly-Lieb
algebra Tn(ξ) to be the multiplicative, associative C-algebra with unity 1 generated by
t1, t2, . . . , t(n−1) subject to the relations

titi = ξti, i ∈ [n− 1]
titjti = ti, |i− j| = 1
titj = tjti, |i− j| > 1.

It is well known that the multiplicative monoid generated by t1, t2, . . . t(n−1) is a basis
for Tn(ξ). We refer this basis as the standard basis and to its elements as the basis
elements of Tn(ξ). Given basis elements τ1 = ti1 . . . tik of Tr(ξ) and τ2 = tj1 . . . tjl

of Ts(ξ),
define τ1 ⊕ τ2 to be the basis element of Tr+s(ξ) given by τ1 ⊕ τ2 = ti1 . . . tiktj1+r . . . tjl+r

Let for i ∈ [n−1], let si denote the element of the symmetric group Sn written (i, i+1)
in cycle notation. Define a map θ : Sn → Tn(2) by mapping si into (ti − 1) for every
i ∈ [n − 1]. It is easy to check that this induces a well defined homomorphism from Sn

into the multiplicative monoid of Tn(2). (see, for example, [1]) For every basis element τ
of Tn(2), define a map fτ : Sn → C by sending σ to the coefficient of τ in the expansion
of θ(σ) in the standard basis. The immanants Immfτ (x) induced by the functions fτ are
called the Temperly-Lieb immanants.

In [3] and [4] Rhoades and Skandera show that the Temperly-Lieb immanants are to-
tally, monomial, and Schur nonnegative and may be used to study positivity properties of
linear combinations of products of matrix minors. In [2], Lam, Postnikov, and Pylavyskyy
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use these results to resolve several Schur positivity conjectures. In [3], Rhoades and Skan-
dera also give some generalizations of results from linear algebra using these immanants.
In this spirit, we give here a generalization of the Cayley-Hamilton theorem.

Let V be a n-dimensional vector space and let T ∈ End(V ). For any ordered basis γ
of V and any basis element τ of Tn(2), define the (τ, γ)-polynomial to be the polynomial
g(τ,γ)(X) ∈ C[X] given by

gτ,γ(X) = Immfτ (InX − [T ]γ),

where In is the n × n identity matrix. Let β be a rational canonical basis for V with
invariant factor degrees d1 ≤ d2 ≤ . . . ≤ dk. For j ∈ [k], call an ordered basis γ of V (β, j)-
respecting if the matrix [T ]γ is of the form diag(A, B, C), where A is a d1 + . . . + d(j−1)

matrix and B = [T |span(βj)]βj
, where βj is the subset of β corresponding to the jth

invariant factor.
We are now ready to state our result.

Theorem. Let V be a finite dimensional C-vector space and let T ∈ End(V). Let β be
a rational canonical basis for V and let the invariant factor degrees of T be d1 ≤ d2 ≤ . . . ≤
dk. Let j ∈ [k] and let γ be a (β, j)-respecting ordered basis of V. Set s = d1 + · · ·+ d(j−1)

and r = d(j+1) + · · ·+ dk. If τ1 and τ2 are basis elements of Ts(2) and Tr(2), respectively,
then

rank(gτ1⊕1⊕τ2,γ(T )) ≤ r.

Proof. Define a C[X]-module structure on V by linearly extending the action

X · v = T (v) for all v ∈ V .

This makes V into a module over a Principal Ideal Domain. Since V is finite dimen-
sional, we have the following isomorphism of C[X]-modules:

V ∼=
⊕k

i=1 C[X]/(pi(X)),

where p1|p2| . . . |pk. Recall that the polynomials p1(X), . . . , pk(X) are the invariant factors
of T . We now compute the (τ1 ⊕ 1⊕ τ2, γ)-polynomial of T .

Since γ is (β, j)-respecting, the matrix [T ]γ has the form diag(A, B, C), were A is
a square matrix of size s and B is the restriction of [T ]β to its jth diagonal block. By
Proposition 3.15 of Rhoades and Skandera [3], we have that

gτ1⊕ 1⊕τ2,γ(X) =
Immfτ1⊕1⊕τ2

(IX − [T ]γ) =
Immfτ1

(IX − A)Immf1(IX −B)Immfτ2
(IX − C).
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It is easy to check that for σ ∈ Sn, f1(σ) = (−1)inv(σ). That is, Immf1(x) = det(x). So,
the center factor in the above product is equal to pj(X), which implies that gτ1⊕ 1⊕τ2,γ(X)
lies in the ideal (pj(X)). However, since we have the chain of divisibilities, p1|p2| . . . |pk,
gτ1⊕ 1⊕τ2,γ(X) also lies in (pi(X)) for every i < k. This implies that gτ1⊕ 1⊕τ2,γ(T ) kills
every vector in the subspaces of V corresponding to C[X]/(pi(X)) for every i ≤ k. The
desired inequality follows.
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