A Generalization of the Cayley-Hamilton Theorem

Brendon Rhoades
University of Michigan
Ann Arbor, MI, USA
brhoades@umich.edu

April 28, 2005

Abstract

We present a generalization of the Cayley-Hamilton Theorem using a collection of immanants which naturally generalize the determinant.

For $f: S_{n} \rightarrow \mathbb{C}$, and $x=\left(x_{i j}\right)_{1 \leq i, j \leq n}$, define the f-immanant, $\operatorname{Imm}_{f}(x)$, by
$\operatorname{Imm}_{f}(x)=\sum_{\sigma \in S_{n}} f(\sigma) x_{1, \sigma(1)} \cdots x_{n, \sigma(n)}$.
Given $\xi \in \mathbb{C}$ and a positive integer n, define the to be the $n^{\text {th }}$ Temperly-Lieb algebra $T_{n}(\xi)$ to be the multiplicative, associative \mathbb{C}-algebra with unity 1 generated by $t_{1}, t_{2}, \ldots, t_{(n-1)}$ subject to the relations

$$
\left\{\begin{array}{l}
t_{i} t_{i}=\xi t_{i}, i \in[n-1] \\
t_{i} t_{j} t_{i}=t_{i},|i-j|=1 \\
t_{i} t_{j}=t_{j} t_{i},|i-j|>1 .
\end{array}\right.
$$

It is well known that the multiplicative monoid generated by $t_{1}, t_{2}, \ldots t_{(n-1)}$ is a basis for $T_{n}(\xi)$. We refer this basis as the standard basis and to its elements as the basis elements of $T_{n}(\xi)$. Given basis elements $\tau_{1}=t_{i_{1}} \ldots t_{i_{k}}$ of $T_{r}(\xi)$ and $\tau_{2}=t_{j_{1}} \ldots t_{j_{l}}$ of $T_{s}(\xi)$, define $\tau_{1} \oplus \tau_{2}$ to be the basis element of $T_{r+s}(\xi)$ given by $\tau_{1} \oplus \tau_{2}=t_{i_{1}} \ldots t_{i_{k}} t_{j_{1}+r} \ldots t_{j_{l}+r}$

Let for $i \in[n-1]$, let s_{i} denote the element of the symmetric group S_{n} written $(i, i+1)$ in cycle notation. Define a map $\theta: S_{n} \rightarrow T_{n}(2)$ by mapping s_{i} into $\left(t_{i}-1\right)$ for every $i \in[n-1]$. It is easy to check that this induces a well defined homomorphism from S_{n} into the multiplicative monoid of $T_{n}(2)$. (see, for example, [1]) For every basis element τ of $T_{n}(2)$, define a map $f_{\tau}: S_{n} \rightarrow \mathbb{C}$ by sending σ to the coefficient of τ in the expansion of $\theta(\sigma)$ in the standard basis. The immanants $\operatorname{Imm}_{f_{\tau}}(x)$ induced by the functions f_{τ} are called the Temperly-Lieb immanants.

In [3] and [4] Rhoades and Skandera show that the Temperly-Lieb immanants are totally, monomial, and Schur nonnegative and may be used to study positivity properties of linear combinations of products of matrix minors. In [2], Lam, Postnikov, and Pylavyskyy
use these results to resolve several Schur positivity conjectures. In [3], Rhoades and Skandera also give some generalizations of results from linear algebra using these immanants. In this spirit, we give here a generalization of the Cayley-Hamilton theorem.

Let V be a n-dimensional vector space and let $T \in \operatorname{End}(V)$. For any ordered basis γ of V and any basis element τ of $T_{n}(2)$, define the (τ, γ)-polynomial to be the polynomial $g_{(\tau, \gamma)}(X) \in \mathbb{C}[X]$ given by
$g_{\tau, \gamma}(X)=\operatorname{Imm}_{f_{\tau}}\left(I_{n} X-[T]_{\gamma}\right)$,
where I_{n} is the $n \times n$ identity matrix. Let β be a rational canonical basis for V with invariant factor degrees $d_{1} \leq d_{2} \leq \ldots \leq d_{k}$. For $j \in[k]$, call an ordered basis γ of $V(\beta, j)$ respecting if the matrix $[T]_{\gamma}$ is of the form $\operatorname{diag}(A, B, C)$, where A is a $d_{1}+\ldots+d_{(j-1)}$ matrix and $B=\left[T \mid \operatorname{span}\left(\beta_{j}\right)\right]_{\beta_{j}}$, where β_{j} is the subset of β corresponding to the $j^{\text {th }}$ invariant factor.

We are now ready to state our result.
Theorem. Let V be a finite dimensional \mathbb{C}-vector space and let $T \in \operatorname{End}(V)$. Let β be a rational canonical basis for V and let the invariant factor degrees of T be $d_{1} \leq d_{2} \leq \ldots \leq$ d_{k}. Let $j \in[k]$ and let γ be a (β, j)-respecting ordered basis of V. Set $s=d_{1}+\cdots+d_{(j-1)}$ and $r=d_{(j+1)}+\cdots+d_{k}$. If τ_{1} and τ_{2} are basis elements of $T_{s}(2)$ and $T_{r}(2)$, respectively, then

$$
\operatorname{rank}\left(g_{\tau_{1} \oplus 1 \oplus \tau_{2}, \gamma}(T)\right) \leq r
$$

Proof. Define a $\mathbb{C}[X]$-module structure on V by linearly extending the action
$X \cdot v=T(v)$ for all $v \in V$.
This makes V into a module over a Principal Ideal Domain. Since V is finite dimensional, we have the following isomorphism of $\mathbb{C}[X]$-modules:
$V \cong \bigoplus_{i=1}^{k} \mathbb{C}[X] /\left(p_{i}(X)\right)$,
where $p_{1}\left|p_{2}\right| \ldots \mid p_{k}$. Recall that the polynomials $p_{1}(X), \ldots, p_{k}(X)$ are the invariant factors of T. We now compute the $\left(\tau_{1} \oplus 1 \oplus \tau_{2}, \gamma\right)$-polynomial of T.

Since γ is (β, \mathbf{j})-respecting, the matrix $[T]_{\gamma}$ has the form $\operatorname{diag}(A, B, C)$, were A is a square matrix of size s and B is the restriction of $[T]_{\beta}$ to its $j^{\text {th }}$ diagonal block. By Proposition 3.15 of Rhoades and Skandera [3], we have that

```
\(g_{\tau_{1} \oplus 1 \oplus \tau_{2}, \gamma}(X)=\)
\(\operatorname{Imm}_{f_{\tau_{1} \oplus 1 \oplus \tau_{2}}}\left(I X-[T]_{\gamma}\right)=\)
\(\operatorname{Imm}_{f_{\tau_{1}}}(I X-A) \operatorname{Imm}_{f_{1}}(I X-B) \operatorname{Imm}_{f_{\tau_{2}}}(I X-C)\).
```

It is easy to check that for $\sigma \in S_{n}, f_{1}(\sigma)=(-1)^{\operatorname{inv}(\sigma)}$. That is, $\operatorname{Imm}_{f_{1}}(x)=\operatorname{det}(x)$. So, the center factor in the above product is equal to $p_{j}(X)$, which implies that $g_{\tau_{1} \oplus 1 \oplus \tau_{2}, \gamma}(X)$ lies in the ideal $\left(p_{j}(X)\right)$. However, since we have the chain of divisibilities, $p_{1}\left|p_{2}\right| \ldots \mid p_{k}$, $g_{\tau_{1} \oplus 1 \oplus \tau_{2}, \gamma}(X)$ also lies in $\left(p_{i}(X)\right)$ for every $i<k$. This implies that $g_{\tau_{1} \oplus 1 \oplus \tau_{2}, \gamma}(T)$ kills every vector in the subspaces of V corresponding to $\mathbb{C}[X] /\left(p_{i}(X)\right)$ for every $i \leq k$. The desired inequality follows.

Aknowledgements

The author is grateful to Mark Skandera for many helpful conversations.

References

1. J. Humphreys. Reflection Groups and Coxeter Groups. Cambridge University Press, 1990.
2. Lam, Postnikov, Pylavyskyy. Schur Positivity Conjectures : 2 1/2 Are No More!. Preprint available on ArXiV: http://arxiv.org/pdf/math.CO/0502446.
3. B. Rhoades, M. Skandera. Temperly-Lieb Immanants. To appear, Ann. Comb. Preprint available at http://www.math.dartmouth.edu/~skan/papers.htm.
4. B. Rhoades, M. Skandera. Kazhdan-Lusztig Immanants. Preprint available at http://www.math.dartmouth.edu/~skan/papers.htm.
