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Abstract

The shifted Schur measure is a measure on the set of all strict partitions, which is defined
by Schur Q-functions. We study distributions of parts of strict partitions. We prove that the
correlation function of the measure is given by a Pfaffian in two ways. In the first way, we
use commutation relations of operators on an exterior algebra. In the second way, the idea of
random point processes is used. As an application, we prove that limit distributions of parts
of random strict partitions with respect to specialized shifted Schur measures are given by the
Airy ensemble.
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1 Introduction

For a partition (or equivalently, a Young diagram) λ, we denote by fλ the number of standard
Young tableaux of shape λ. The Plancherel measure for the symmetric group SN assigns to each
partition λ of N the probability

PPlan,N (λ) =
(fλ)2

N !
.

It is closely related to Ulam’s problem for the length �(π) of the longest increasing subsequence of
a random permutation π with respect to the uniform measure Puniform,N on SN , see the survey
[AD]. Namely, via the Robinson correspondence (see e.g. [S]), we have

Puniform,N ({π ∈ SN : �(π) = h}) = PPlan,N ({λ ∈ PN : λ1 = h}),
where PN is the set of all partitions of N and λ1 is the largest part of a partition λ = (λ1, λ2, . . . ).
To other parts λj , we can also give combinatorial sense related with increasing sequences.

In order to see distributions of λj , the correlation function of the poissonized Plancherel measure
is calculated in [BOO]. This correlation function is expressed as a determinant. Via the determi-
nantal expression, it is proved in [BOO, Jo2, O1] (see also [BDJ, Jo1, O3, R]) that, as N → ∞,
limit distributions of scaled λj are described as the Airy ensemble (see §5). In particular, the limit
distribution of λ1 is expressed as the Tracy-Widom distribution FGUE for the Gaussian unitary
ensemble.

The Schur measure is the measure on all partitions, which gives each partition λ the proba-
bility sλ(x)sλ(y). Here sλ(x) (resp. sλ(y)) is the Schur function corresponding to λ in variables
x = (x1,x2, . . . ) (resp. y = (y1,y2, . . . )). The poissonized Plancherel measure is obtained as
a specialization of the Schur measure. In [O2], the correlation function of the Schur measure is
calculated and expressed as a determinant as similar as that of the poissonized Plancherel measure
is.
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In this note, we study random strict partitions. A strict partition is a partition with distinct
parts. The shifted Schur measure, introduced in [TW2], is a measure on the set of all strict
partitions, which is defined by Schur Q-functions instead of Schur functions (see Definition 1). We
prove that, with respect to the shifted Schur measure, the correlation function of random variables
λ1, λ2, . . . is expressed by a Pfaffian (see Theorem 1). The Pfaffian of a 2m by 2m skew-symmetric
matrix B = (bij)1≤i,j≤2m is defined by

pf(B) =
∑

σ∈�2m

sgn(σ)
m∏

j=1

bσ(2j−1)σ(2j),

where F2m is the subset of S2m given by

F2m = {σ = (σ(1), σ(2), . . . , σ(2m)) ∈ S2m :
σ(2j − 1) < σ(2j) (1 ≤ j ≤ m), σ(1) < σ(3) < · · · < σ(2m− 1)}.

The correlation function is calculated in two ways. First, it is obtained via a representation of a
Heisenberg algebra on an exterior algebra. We express the correlation function as a matrix element
of an operator on the exterior algebra by using annihilation and creation operators. This idea is
used by Okounkov [O2] for the Schur measure. Second, it is a more direct way and we use the
idea in [BR]. Since the Schur Q-function has a Pfaffian expression, we can regard the shifted Schur
measure as a Pfaffian point process on the set of all non-negative integers. Then our problem is
translated into the problem to calculate the inverse of a matrix explicitly. We state the outlines of
these proofs in §3 and §4, respectively.

Further, we are interested in limit distributions of λj . We see that a limit theorem of the
shifted Schur measure is also given by using the Airy ensemble as same as the Schur measure and
the Plancherel measure (see Theorem 9). The special case is closely related to the length of the
longest ascent pair for a permutation.

Throughout the paper, we denote the set of all positive integers and non-negative integers by
Z>0 and Z≥0, respectively.

2 Shifted Schur measure

Let x = (x1,x2, . . . ) and y = (y1,y2, . . . ) be variables. Let D be the set of all strict partitions;

D = {λ = (λ1, λ2, . . . , λl) : l ≥ 0, λj ∈ Z>0 (1 ≤ j ≤ l), λ1 > λ2 > · · · > λl > 0}

and �(λ) be the length of a partition λ ∈ D (see [Mac]). Set

Qx(z) =
∞∑

k=0

Q(k)(x)zk =
∞∏

j=1

1 + xjz

1 − xjz
= exp

 ∑
n=1,3,5,...

2pn(x)
n

zn

 ,(2.1)

where pn(x) = xn
1 + xn

2 + · · · . The Schur Q-function Qλ(x) associated with λ ∈ D is defined as the
coefficient of zλ1

1 · · · zλn
n in the formal series expansion of

Qx(z1) · · ·Qx(zn)
∏

1≤i<j≤n

zi − zj
zi + zj

,
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where n ≥ �(λ) and z−w
z+w = 1 + 2

∑∞
k=1(−1)kz−kwk. They satisfy the Cauchy-type identity

∑
λ∈D

2−�(λ)Qλ(x)Qλ(y) =
∞∏

i,j=1

1 + xiyj

1 − xiyj
.(2.2)

One can define a probability measure on D via this identity.

Definition 1 ([TW2]). We define the shifted Schur measure by

PSS(λ) =

 ∞∏
i,j=1

1 − xiyj

1 + xiyj

 2−�(λ)Qλ(x)Qλ(y) for λ ∈ D.

It follows from (2.2) that PSS is a formal probability measure on D;
∑

λ∈D PSS(λ) = 1.

Remark 1. The terminology “shifted Schur measure” is used in [TW2] because it is the measure
on “shifted” Young diagrams (see §5). However, since the terminology “shifted Schur functions”
are already been used in e.g. [OO], the name may confuse.

We are interested in distributions of parts λj of random strict partitions λ ∈ D with respect
to the shifted Schur measure PSS. In order to their distributions we study its correlation function.
We identify each strict partition λ = (λ1, λ2, . . . , λl) with a finite set {λ1, λ2, . . . , λl} of positive
integers. In this sense, we write as λ ⊃ X if the set {λ1, λ2, . . . , λl} contains X for a finite set X
of positive integers. Define the correlation function ρSS by

ρSS(X) = PSS ({λ ∈ D : λ ⊃ X}) for any finite subset X ⊂ Z>0.

The following theorem is our main result.

Theorem 1 ([M1, M2]). For any finite subset X = {x1, x2, . . . , xN} ⊂ Z>0, we have

ρSS(X) = pf(K(xi, xj))1≤i,j≤N ,

where K(r, s) is a 2 by 2 matrix given by

K(r, s) =
(K00(r, s) K01(r, s)
K10(r, s) K11(r, s)

)
for r, s ∈ Z>0.

The each entry is given as the coefficient of a formal power series as follows:

K00(r, s) = −K00(s, r) =
1
2
[zrws]

Qx(z)Qx(w)
Qy(z−1)Qy(w−1)

z −w

z +w
, if r < s,

where z−w
z+w = 1+2

∑∞
k=1(−1)kz−kwk and [zrws] stands for the coefficient of zrws, and K00(r, r) = 0.

K01(r, s) = −K10(s, r) =
1
2
[zrws]

Qx(z)Qy(w)
Qy(z−1)Qx(w−1)

zw + 1
zw − 1

, for any r and s,

where zw+1
zw−1 = 1 + 2

∑∞
k=1 z

−kw−k.

K11(r, s) = −K11(s, r) =
1
2
[zrws]

Qy(z)Qy(w)
Qx(z−1)Qx(w−1)

w − z

w + z
, if r < s,

where w−z
w+z = 1 + 2

∑∞
k=1(−1)kzkw−k, and K11(r, r) = 0.
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This theorem is a generalization of the Cauchy-type identity (2.2)

∑
λ∈D, λ⊃X

2−�(λ)Qλ(x)Qλ(y) =

 ∞∏
i,j=1

1 + xiyj

1 − xiyj

 · pf(K(xi, xj))1≤i,j≤N ,(2.3)

where X = {x1, . . . , xN} ⊂ Z>0. The formula (2.3) is reduced to (2.2) if X = ∅.
Example 1. Let X = {x}. Then Theorem 1 says

∑
λ∈D, λ�x

2−�(λ)Qλ(x)Qλ(y) =

 ∞∏
i,j=1

1 + xiyj

1 − xiyj

 · K01(x, x)

summed over all strict partitions containing x, where K01(r, s) is given by

K01(r, s) =
1
2
Jr(x,y)Js(y,x) +

∞∑
n=1

Jr+n(x,y)Js+n(y,x)

with

Jr(x,y) = [zr]
Qx(z)
Qy(z−1)

=
∞∑

k=0

(−1)kQ(r+k)(x)Q(k)(y).

As a corollary of Theorem 1, we can obtain the distribution of the largest part λ1 of λ ∈ D.

Corollary 2. For a positive integer h, we have

PSS(λ1 < h) =
∑
λ1<h

PSS(λ) = pf(J −K){h,h+1,... }.

Here pf(J −K){h,h+1,...,} is the Fredholm pfaffian for the kernel K on {h, h + 1, . . . } defined by

pf(J −K){h,h+1,...,} =
∞∑

n=0

(−1)n
∑

h≤x1<x2<···<xn

pf(K(xi, xj))1≤i,j≤n.

3 First Proof of Theorem 1

We state the outline of the first proof of Theorem 1, obtained in [M1].
Let V be a module on C[x1,x2, . . . ,y1,y2, . . . ] spanned by ek (k = 1, 2, . . . ). The exterior

algebra
∧
V is spanned by vectors

vλ = eλ1 ∧ eλ2 ∧ · · · ∧ eλ�
,

where λ = (λ1, . . . , λ�) ∈ D (λ1 > · · · > λ� ≥ 1). In particular, we have v∅ = 1 for the empty
partition ∅. We give

∧
V the inner product

〈vλ,vµ〉 = δλ,µ2−�(λ) for λ, µ ∈ D.
Putting e∨

k = 2ek and v∨
λ = e∨

λ1
∧ · · · ∧e∨

λ�
= 2�vλ, the bases (vλ)λ∈D and (v∨

λ )λ∈D are dual to each
other. We define the operator ψk on

∧
V by

ψkvλ = ek ∧ vλ
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for k ≥ 1 and let ψ∗
k be the adjoint operator of ψk with respect to the inner product defined above.

The operator ψ∗
k is then explicitly given by

ψ∗
kvλ =

�(λ)∑
i=1

(−1)i−1

2
δk,λi

eλ1 ∧ · · · ∧ êλi
∧ · · · ∧ eλ�

,

where êk means that ek is omitted. Also we define the self-adjoint operator S by Svλ = (−1)�(λ)vλ

for any λ ∈ D. Put

ψ̃k =


ψk, for k ≥ 1,
S/2, for k = 0,
(−1)kψ∗

−k, for k ≤ −1.

Then they satisfy the following commutation relation

ψ̃iψ̃j + ψ̃jψ̃i =
(−1)|i|

2
δi+j,0 for i, j ∈ Z

and give a projection

2ψkψ
∗
kvλ =

{
vλ, if k ∈ {λ1, . . . , λl},
0, otherwise

(3.1)

for k ≥ 1 and λ = (λ1, . . . , λl) ∈ D. Therefore (
∏

k∈X 2ψkψ
∗
k)vλ is equal to vλ if X ⊂ λ, or to 0

otherwise.
Define αn =

∑
k∈�(−1)kψ̃k−nψ̃−k for any odd integer n ∈ 2Z + 1. Then they satisfy the

Heisenberg relation

[αn, αm] = αnαm − αmαn =
n

2
δn+m,0.(3.2)

Put

Γ±(x) = exp

 ∑
n=1,3,5,...

2pn(x)
n

α±n

 .

It is not hard to obtain the following lemma from commutation relations above.

Lemma 3. We have

Γ+(x)v∅ = v∅, (Γ±(x))∗ = Γ∓(x), Γ+(x)Γ−(y) =

 ∞∏
i,j=1

1 + xiyj

1 − xjyj

Γ−(y)Γ+(x).

Further, when we put ψ(z) =
∑

k∈�z
kψ̃k, we have

[αn, ψ(z)] = znψ(z), 〈4ψ(z)ψ(w)v∅ ,v∅〉 =
z − w

z + w
, Γ±(x)ψ(z) = Qx(z±1)ψ(z)Γ±(x).

Using the lemma, we can express the Schur Q-function Qλ(x) as the matrix element of Γ−(x)
as follows.



6 S. MATSUMOTO

Proposition 4. For each λ ∈ D, we have 〈Γ−(x)v∅,v∨
λ 〉 = Qλ(x).

From (3.1), Lemma 3, and Proposition 4, the correlation function ρSS of the shifted Schur
measure is expressed as

ρSS(X) =
∞∏

i,j=1

(
1 − xiyj

1 + xiyj

)∑
λ⊃X

2−�(λ)Qλ(x)Qλ(y)

=
∞∏

i,j=1

(
1 − xiyj

1 + xiyj

)〈
Γ+(x)

(∏
k∈X

2ψkψ
∗
k

)
Γ−(y)v∅,v∅

〉

=

〈(∏
k∈X

2ΨkΨ∗
k

)
v∅,v∅

〉

with Ψk = GψkG
−1, Ψ∗

k = Gψ∗
kG

−1, and G = Γ+(x)Γ−(y)−1. Now we obtain

Proposition 5. We have ρSS(X) = pf(K̃(x, y))x,y∈X with

K̃(x, y) =

(
K̃00(x, y) K̃01(x, y)
K̃10(x, y) K̃11(x, y)

)
.

Here we put K̃00(x, y) = 〈2ΨxΨyv∅,v∅〉, K̃01(x, y) = −K̃10(y, x) = 〈2ΨxΨ∗
yv∅,v∅〉, and K̃11(x, y) =

〈2Ψ∗
xΨ∗

yv∅,v∅〉 for x, y ∈ Z>0.

Finally, by Lemma 3, we can prove K(x, y) = K̃(x, y) for all x, y ∈ Z>0. For example, putting
Ψ(z) = Gψ(z)G−1,

K̃00(x, y) = [zxwy]〈2Ψ(z)Ψ(w)v∅,v∅〉 = [zxwy]
1
2

Qx(z)Qx(w)
Qy(z−1)Qy(w−1)

z − w

z + w
= K00(x, y).

It completes the proof of Theorem 1.

Remark 2. The discussion of this section is very related to the fermion Fock space and vertex
operators. Proposition 5 is essentially obtained from the fermion Wick formula, see e.g. [Ji] and
[Y].

4 Second Proof of Theorem 1

In this section, we give another proof of Theorem 1, which is obtained in [M2], via a random point
process. We recall some fundamental facts of the Pfaffian point process formulated in [BR]. Let X

be a countable set. Let L be a map

L : X × X → gl2(C) ; (x, y) �→ L(x, y) =
(
L00(x, y) L01(x, y)
L10(x, y) L11(x, y)

)
such that Lij(x, y) = −Lji(y, x) for any i, j ∈ {0, 1} and x, y ∈ X. Such L is called a skew-
symmetric matrix kernel on X, see [R, So]. We regard the map L as an operator on the Hilbert
space �2(X) ⊕ �2(X). Then L is a matrix whose blocks are indexed by elements in X × X. For
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any finite subset X = {x1, · · · , xn} ⊂ X, we denote by L[X] the 2n by 2n skew-symmetric matrix
(L(xi, xj))1≤i,j≤n. Let J be the skew-symmetric matrix kernel determined by

J(x, y) = δx,y

(
0 1
−1 0

)
.

Let P(X) be the set of all finite subsets in X. We define the Pfaffian point process πL on X

determined by L as the probability measure on P(X) given by

π(X) = πL(X) =
pf(L[X])
pf(J + L)

for X ∈ P(X).

Then its correlation function is expressed as ρL(X) =
∑

Y ∈�(�), Y ⊃X π(Y ) = pf(K[X]), where
K = J + (J + L)−1.

More generally, let Y be a subset in X such that Yc = X \ Y is finite. Then we can define the
conditional Pfaffian point process on Y by

πL,�(X) =
pf(L[X ∪ Yc])
pf(J [Y] + L)

for X ∈ P(Y).(4.1)

Here we identify J [Y] with the block matrix
(
J 0
0 0

)
, where the blocks correspond to the partition

X = Y � Yc. The correlation function is given by ρL,�(X) =
∑

Y ∈�(�), Y ⊃X πL,�(Y ) = pf(K[X])
for X ∈ P(Y), where

K = J [Y] + (J [Y] + L)−1
∣∣∣
�×�

.(4.2)

The shifted Schur measure is regarded as a conditional Pfaffian point process as follows. We
may assume that the number of variables x1,x2, . . . ,y1,y2, . . . is finite. Let x = (x1, . . . ,xn) and
y = (y1, . . . ,yn), where n is even. We define the bijective map φ from D to Peven(Z≥0) = {X ∈
P(Z≥0) : #X is even} by

φ(λ) =

{
{λ1, . . . , λ�(λ)}, if �(λ) is even,
{λ1, . . . , λ�(λ), 0}, if �(λ) is odd.

The following proposition is proved from the fact that the Schur Q-function is expressed as the
quotient of Pfaffians (see [N], also [Mac, III-8]).

Proposition 6. Define a skew-symmetric matrix kernel L on X = {1, 2, . . . , n} � Y by

L =

(
V Wη−

1
2

−η− 1
2 tW O

)
,

where Y = Z≥0, V = (V(i, j))1≤i,j≤n and W = (W(i, r))1≤i≤n, r∈�≥0
. Their blocks are given by

V(i, j) =

(
−xi−xj

xi+xj
0

0 yi−yj

yi+yj

)
, W(i, r) =

(−xr
i 0

0 yr
i

)
.
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Further η is the matrix whose block is given by

η(r, s) = δrs

(
η(r) 0
0 η(r)

)
for r, s ∈ Z≥0,

where η(r) is equal to 1 if r = 0, or to 1
2 if r ≥ 1. Then the conditional Pfaffian point process on

Y is agree with the shifted Schur measure on D via the bijection φ. Namely,

πL,�(φ(λ)) =
pf(L[{1, . . . , n} � φ(λ)]

pf(J [Y] + L)
= PSS(λ)

for any λ ∈ D.

By (4.2), we have to obtain the explicit expression of the correlation kernel K = J [Y]+(J [Y]+
L)−1

∣∣∣
�×�

. For that purpose, we employ the following lemma.

Lemma 7. We have(
A B
C D

)−1

=
( −M−1 M−1BD−1

D−1CM−1 D−1 −D−1CM−1BD−1

)
,

where M = BD−1C −A, if D and M are invertible.

By this lemma, the kernelK = J [Y]+(J [Y]+L)−1
∣∣∣
�×�

is equal to J [Y]η−
1
2 tWM−1Wη−

1
2J [Y],

with M = Wη−
1
2J [Y]η−

1
2 tW−V. We may replaceK with −η− 1

2 tWM−1Wη−
1
2 because pf(−JBJ) =

pf(B) for a skew-symmetric matrix B. The explicit expression of entries of the inverse M−1 is ob-
tained by a linear algebraic discussion.

Proposition 8. Write the skew-symmetric matrix kernel M−1 on {1, 2, . . . , n} as

M−1(k, l) =
(M−1

00 (k, l) M−1
01 (k, l)

M−1
10 (k, l) M−1

11 (k, l)

)
for 1 ≤ k, l ≤ n.

Then we have

M−1
00 (k, l) =

n∏
j=1

(
1 − xkyj

1 + xkyj

1 − xlyj

1 + xlyj

) ∏
1≤i≤n,

i�=k

(
xk + xi

xk − xi

) ∏
1≤j≤n,

j �=l

(
xl + xj

xl − xj

)
xk − xl

xk + xl
;

M−1
01 (k, l) = −M−1

10 (l, k)

=
n∏

j=1

(
1 − xkyj

1 + xkyj

1 − xjyl

1 + xjyl

) ∏
1≤i≤n,

i�=k

(
xk + xi

xk − xi

) ∏
1≤j≤n,

j �=l

(
yl + yj

yl − yj

)
1 + xkyl

1 − xkyl
;

M−1
11 (k, l) = −

n∏
j=1

(
1 − xjyk

1 + xjyk

1 − xjyl

1 + xjyl

) ∏
1≤i≤n,

i�=k

(
yk + yi

yk − yi

) ∏
1≤j≤n,

j �=l

(
yl + yj

yl − yj

)
yk − yl

yk + yl
.
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Finally, we must prove K(r, s) = K(r, s). Now we assume x1, . . . ,xn,y1, . . . ,yn are 2n distinct
complex numbers in the unit open disc. Then by changing variables and the residue theorem we
obtain

K00(r, s) =
1
2

1
(2π

√−1)2

∫∫
|z|>|w|>1

Qx(z)Qx(w)
Qy(z−1)Qy(w−1)

z −w

z +w

dzdw

zr+1ws+1

= − 2
n∑

k,l=1

xr
kx

s
l

n∏
j=1

(
1 − xkyj

1 + xkyj

1 − xlyj

1 + xlyj

) ∏
1≤i≤n,

i�=k

(
xk + xi

xk − xi

) ∏
1≤j≤n,

j �=l

(
xl + xj

xl − xj

)
xk − xl

xk + xl

= − 2
n∑

k,l=1

xr
kM−1

00 (k, l)xs
l = K00(r, s).

Here the contour in the integral above is {z : |z| = r1}×{w : |w| = r2}, where 1+ε > r1 > r2 > 1
and ε > 0 is very small. Similarly, we can prove K01(r, s) = K01(r, s) and K11(r, s) = K11(r, s).
Though we have assumed that xi, yj belong to the unit open disc, it is in fact unnecessary, see e.g.
[BR]. It completes the proof of Theorem 1 again.

5 Limit Distribution

We study limit distributions of λj on special conditions.
We consider the random point process on R (see the Appendix in [BOO]) whose correla-

tion functions ρAiry(X) = PAiry({Y ⊂ R : #Y < ∞, X ⊂ Y }) are given by ρAiry(X) =
det(KAiry(xi, xj))1≤i,j≤k for any finite subset X = {x1, . . . , xk} ⊂ R. Here KAiry is the Airy kernel
defined by

KAiry(x, y) =
∫ ∞

0
Ai(x+ z)Ai(y + z)dz,

where Ai(x) is the Airy function

Ai(x) =
1

2π
√−1

∫ ∞eπ
√−1/3

∞e−π
√−1/3

exp
(
z3

3
− xz

)
dz.

Let ζAi = (ζAi
1 > ζAi

2 > · · · ) ∈ R
∞ be its random configuration. The random variables ζAi

j are
called the Airy ensemble. It is known that the Airy ensemble describes the behavior of the scaled
eigenvalues of a large hermitian matrix from the Gaussian unitary ensemble, see [TW1].

We consider the specializations of the shifted Schur measure satisfying the following analytic
assumptions.

(0) Let θ > 0. We specialize power-sum symmetric functions as pk(x) = pk(y) = pθ
k, where

k = 1, 3, 5, . . . and pθ
k ∈ R satisfies limθ→+∞ pθ

k/θ = dk ≥ 0.

(1) There exists an ε = ε(θ) > 0 such that the power series gθ(z) := 2
∑

k≥1:odd
pθ

k
k z

k is holomor-
phic on |z| < 1 + ε.

(2) Put g(z) := 2
∑

k≥1:odd
dk
k z

k. Then the series g(1) = 2
∑

k≥1:odd
dk
k converges. Further g(z)

can be extended as a holomorphic function around z = 1.

Then we have the following theorem.
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Theorem 9 ([M1]). Let Pθ
SS be the shifted Schur measure obtained by the specialization such that

satisfies assumptions (0), (1) and (2). Put b1 = 2g′(1) and b2 = g′′′(1) + 3g′′(1) + g′(1). Then, as
θ → ∞, random variables

λj − b1θ

(b2θ)1/3
, j = 1, 2, . . . ,

converge to the Airy ensemble, in joint distribution.

This limit theorem is obtained in [TW2] for only λ1 and a specialization pθ
k = θαk with 0 <

α < 1. We now give the simplest example of this theorem. Specialize as pk(x) = pk(y) = δ1,k

√
ξ
2

with ξ > 0. Then the shifted Schur measure provides (see [M1])

Pξ
PSP(λ) = e−ξξ|λ|2|λ|−�(λ)

(
gλ

|λ|!
)2

for λ ∈ D,(5.1)

where |λ| stands for the weight |λ| =
∑

j≥1 λj, and gλ is the number of the standard shifted tableaux
of shifted shape Sh(λ). Here Sh(λ) is the shifted Young diagram associated with a strict partition
λ, which is obtained by replacing the i-th row to the right by i− 1 boxes for i ≥ 1 from the Young
diagram corresponding to λ. A standard shifted tableau T of shifted shape Sh(λ) is an assignment
of 1, 2, . . . , |λ| to each box in Sh(λ) such that entries in T are increasing across rows and down
columns. For example,

1 2 4 6
3 5 8

7

is a standard shifted tableau of shape λ = (4, 3, 1). Then we have the

Corollary 10. With respect to the probability measure Pξ
PSP defined in (5.1), random variables

λj − 2
√

2ξ

(2ξ)
1
6

, j = 1, 2, . . . ,

converge to the Airy ensemble as ξ → ∞. In particular, the limit distribution of λ1 is given by

lim
ξ→∞

Pξ
PSP

(
λ1 − 2

√
2ξ

(2ξ)
1
6

< s

)
= PAiry(ζ1 < s) =: FGUE(s) for s ∈ R.

The distribution function FGUE(s) is called the Tracy-Widom distribution, see e.g. [BOO, Jo1,
Jo2]. By Corollary 10, we have λ1 ∼ 2

√
2ξ as ξ → ∞. Now the largest part λ1 describes the length

of the longest ascent pair (see [HH]) for random permutations with respect to the uniform measure
of symmetric groups. Therefore we give a solution of an analogue of Ulam’s problem.
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