
ON SOME CLASSES OF PRUDENT WALKS

ENRICA DUCHI∗

Abstract. In this paper we consider a class of walks introduced by Pascal Préa, that we call prudent walks:
they are self-avoiding because they never try to walk towards points that they already visited.

We write functional equations for counting three classes of such prudent walks with respect to their
length. The first one is algebraic and we give an object grammar decomposition that explains this fact
directly. For the second one we obtain the algebraic generating function but in an indirect way. Whether
the third class has an algebraic generating function remains an open problem.

Résumé. Dans cet article nous considérons une classe de chemins introduits par Pascal Préa, que nous
appelons les chemins prudents, qui sont auto-évitants parce qu’ils ne vont jamais dans la direction d’un
point qu’ils ont déjà visité.

Nous écrivons des équations fonctionnelles pour compter trois classes de chemins de ce type en fonction
de leur longueur. La première classe est algebrique et nous donnons une explication de ce résultat à l’aide
d’une grammaire. Pour la seconde nous obtenons aussi l’algébricité mais de manière indirecte. Le problème
de savoir si la troisième classe a une série génératrice algébrique reste ouvert.

1. Prudent walks

The term walk is used to denote a sequence of points s0, s1, . . . sn in the plane Z× Z. A couple (si, si+1)
is said to be a step of the walk and the number n of steps is called the length of the walk. Given si = (x, y)
then (si, si+1) is:

• an east (→) step if si+1 = (x+1, y)
• a west (←) step if si+1 = (x− 1, y)

• a north (↑) step if si+1 = (x, y +1)
• a south (↓) step if si+1 = (x, y − 1)

From now on all the walks will be on the lattice, that is, they are made of east, west, north, and south
steps only. We shall concentrate on some families of self-avoiding walks. A self-avoiding walk is a walk that
cannot cross itself, i.e. it never visits two times the same point. Counting self-avoiding walks is a well-known
open problem. See [5, 6] for some references. For this reason various subclasses of these walks have been
introduced and counted. Here we consider a subclass of self-avoiding walks that we call the class of prudent

walks. As we learned recently from Mireille Bousquet-Mélou, these walks were introduced by Pascal Préa
in [7], where he obtained some recurrences for their enumeration.

Definition 1. A prudent walk is a sequence of east, west, north, and south steps running from (0, 0) to

(n, m), with n, m ∈ Z, defined in the following manner:

• The empty walk starting from (0, 0) and ending in (0, 0) is a prudent walk.

• A prudent walk is obtained from another prudent walk by attaching a new step at its end in such a

manner that the extension of this step in the sense of its direction never encounters the walk itself.

In particular this definition implies that a prudent walk is a self-avoiding walk.

Definition 2. The prudent box of a prudent walk is the smallest rectangle including the walk. We remark

that for particular walks this rectangle reduces to a line or also to a point in the case of the empty walk.

In Figure 1 are given examples of prudent walks with their prudent box and of a non prudent walk.

Proposition 1. The last point of a prudent walk is always on the border of the prudent box.
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(a) (b) (c) (d)
Figure 1. Some prudent walks with their prudent boxes (a,c,d) and a walk that is not
prudent (b).

Remark that the converse is not true, as illustrated by walk (b) in Figure 1.
In this paper we write functional equations for the generating functions of several classes of prudent walks

using the recursive definition of these walks. These equations are equivalent to the recurrences independently
obtained by Pascal Préa. For some of these classes we are able to give explicit formulas for the generating
functions. First, we deal with prudent walks that can only end on the right side or on the top of their
prudent box. For this class, using the kernel method, [1, 2], we compute their generating function which is
algebraic. In order to give a direct explanation of this fact we also find an algebraic decomposition [8] (or
object grammar [3, 4]) for this class. Then we deal with another subclass of prudent walks, made of walks
that can end on the top, right, or bottom side of their prudent box. We show that the generating function
of these walks is also algebraic but this result is more complicated to derive. In particular we need several
applications of the kernel method and at the moment we do not know a direct algebraic decomposition for
this class. The paper is organized as follows: in Section 1 we introduce the first subclass of prudent walks
and we give their generating function. In Section 2 we present an object grammar for this class. In Section
3 we introduce the second class of prudent walks and we count them. To conclude, in Section 4 we write a
functional equation for the complete class of prudent walks and leave open the problem of knowing whether
they have an algebraic generating function.

Given a walk w we define the following parameters (see Figure 2):

• i(w) is the distance between the last point of w and the top of its prudent box;
• j(w) is the distance between the last point of w and the bottom of its prudent box;
• k(w) is the distance between the last point of w and the right side of its prudent box;
• l(w) is the distance between the last point of w and the left side of its prudent box.

k(w)=5

j(w)=11

l(w)=4

w

i(w)=5

j(w)=4

l(w)=11

w

Figure 2. The parameters i(w), j(w), k(w), l(w).
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2. Prudent walks of the first type

Definition 3. A prudent walk of the first type is a prudent walk avoiding the following subsequences of steps:

a west step followed by a south step ←↓ and a south step followed by a west step ↓
← .

Let us denote by P 1 the class of prudent walks of the first type. See Figure 1(c) for an example.

Remark 1. The set of prudent walks of the first type is symmetric with respect to the main diagonal. That

is, the set is invariant by the following transformation: (←) 7→ (↓), (↓) 7→ (←), (→) 7→ (↑), (↑) 7→ (→) for

the steps and Bottom 7→ Left, Right 7→ Top, Left 7→ Bottom, Top 7→ Right for the border of the prudent

box.

In order to count the number of walks of P 1 according to their length, the following proposition is useful:

Proposition 2. A prudent walk w of the first type always ends on the right side or on the top of its prudent

box B.

Counting prudent walks of the first type. We are interested in determining the generating function of
the walks of the first type according to their length. However we will need to count them also with respect
to i(w) and k(w). We denote by

p1(u, v; t) =
∑

w∈P 1

uk(w)vi(w)t|w|

such a generating function. In order to compute it we distinguish the following subclasses:

• Hn is the subclass of P 1 formed by the prudent walks ending with a ↑ step, and such that their
last step moved the top of the previous prudent box, i.e. the prudent box at the previous step. In
particular this means that i(w) = 0 for each w ∈ Hn. See Figure 3.

• Gn is the subclass of P 1 formed by the prudent walks ending with a ↑ step, and such that their
prudent box is the same as the one at the previous step. In particular this means that k(w) = 0 for
each w ∈ Gn. See Figure 3.

H
n n

G e
GH

e

Figure 3. The classes Hn, Gn, He and Ge.

• He is the subclass of P 1 formed by the prudent walks ending with a→ step, and such that their last
step → moved the right border of the previous prudent box. In particular this means that k(w) = 0
for each w ∈ He. See Figure 3.

• Ge is the subclass of P 1 formed by the prudent walks ending with a → step, and such that their
prudent box is the same as the one at the previous step. In particular this means that i(w) = 0 for
each w ∈ Ge. See Figure 3.

• Fo is the subclass of P 1 formed by the prudent walks having as last step a ← step, therefore ending
in the top of B. Then i(w) = 0 for each w ∈ Fo. See Figure 4.

• Fs is the subclass of P 1 formed by the prudent walks whose last step is a ↓ step, therefore ending in
the right side of B. Then k(w) = 0 for each w ∈ Fs. See Figure 4.

We respectively denote by hn(u; t), gn(v; t), he(v; t), ge(u; t), fo(u; t), fs(v; t) the generating functions of
the previous defined classes, where the variable u marks the parameter k(w), v marks i(w), and t marks the
length. Also note that the indices n, s, e, o consistently indicate the direction of the last step of the walks
(o stands for ovest).
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Figure 4. The classes Fo and Fs.

Lemma 1. The set S1 = {Hn, Gn, He, Ge, Fo, Fs} is a partition of the set P 1. Consequently p1(u, v; t) =
hn(u; t) + gn(v; t) + he(v; t) + ge(u; t) + fo(u; t) + fs(v; t).

Proof. Let us take a walk w in P 1. If it ends with a ↓(resp. ←) step then it belongs to Fs (resp. Fo). If it
ends with a ↑ (resp. →) step then it belongs to Hn or Gn (resp. He or Ge) if the walk obtained by removing
this step ends in the top (resp. right side) of its box or not. Hence the set S1 is a partition of P 1. The
equation for p1(u, v; t) is a direct consequence of this fact. �

Now, by using the recursive definition of prudent walk, we write equations for the previous generating
functions. We start from those depending only on the variables u and t. The others are obtained from these
ones by symmetry.

• The equation for hn(u; t). The walks of the class Hn end with a ↑ step which move the top of their
previous prudent box. Hence this class is formed by the step ↑ itself and by the walks obtained
by adding a ↑ step to walks ending on the top of their prudent box. The latter walks belong to
the following classes: Hn; the walks belonging to Gn and ending in the top right angle; the walks
belonging to He and ending in the top right angle; Ge; Fo. The addition of a ↑ step to these walks
increases their length by one. Therefore we have the following equation:

(1) hn(u; t) = t (hn(u; t) + gn(0; t) + he(0; t) + ge(u; t) + fo(u; t) + 1)

• The equation for ge(u; t). Ge is formed of walks obtained by adding a → step to walks ending in the
top side of their prudent box, with exclusion of the top right angle. The latter walks belong to the
following classes: Ge without the walks ending in the top right angle; Hn without the walks ending
in the top right angle. By adding a → step, the length of these walks increases by one and their
distance to the right side diminishes by one. Therefore we have the following equation:

(2) ge(u; t) =
t

u
( ge(u; t)− ge(0; t) + hn(u; t)− hn(0; t) )

• The equation for fo(u; t). This class is obtained by adding a ← step to walks ending in the leftmost
occupied position of the top of their prudent box (otherwise we would not respect the condition of
prudent walk). Then the equation for fo(u) involves: Hn; Fo; the empty walk. The operation of
adding a ← step increases both the length of these walks and their distance to the right side of their
prudent box by one. Therefore we have the following equation:

fo(u; t) = t u (hn(u; t) + fo(u; t) + 1)

In order to simplify the system formed of these three equations we replace the expression gn(0; t) + he(0; t)
by I(t) in (1) and (2). Then the system becomes:

hn(u; t) = t (hn(u; t) + I(t) + ge(u; t) + fo(u; t) + 1)

ge(u; t) = t
u

(ge(u; t) + hn(u; t)− I(t))

fo(u; t) = t u (hn(u; t) + fo(u; t) + 1)

4



By solving this system with respect to hn(u; t), ge(u; t), and fo(u; t) we obtain the following:

hn(u; t) = t
(I(t) (−2ut2+u2t−u+2t)−u+t)

K(u;t)

ge(u; t) = t
(I(t) (1−2t−ut+ut2)−t)

K(u;t)

fo(u; t) = −t u
(I(t)(−2t2+ut)+u−t2−t)

K(u;t) ,

with K(u; t) = −u + t + ut + u2t − ut2 − ut3. By symmetry we also have expressions for he(v; t), gn(v; t),
and fs(v; t), obtained respectively from hn(u; t), ge(u; t), and fo(u; t) by substituting u with v. By using
Lemma 1 we obtain the generating function of the class P 1 in terms of I(t):

(3) p1(1, 1; t) =
2 t (2 + t + t I(t))

1− 2t− t2

We apply the kernel method [1, 2], for instance on the equation for ge(u; t):

(4) ge(u; t)K(u; t) = t (I(t) (1− 2t− ut + ut2)− t).

The kernel K(u; t) has a unique root U0(t) which is a formal power series:

U0(t) =
1− t + t2 + t3 −

√

(1− t4)(1− 2t− t2)

2t

Substituting u = U0(t) in (4) the left hand side is canceled and we obtain I(t):

(5) I(t) =
t

(1− 2t− U0(t)t + U0(t)t2)

By using equation (5) and equation (3) we have

p1(1, 1; t) = t
(1− 2t− t2)(3 + 2t− 3t2) + (1− t)

√

(1− t4)(1− 2t− t2)

(1− 2t− t2)(1− 2t− 2t2 + 2t3)
= 4t+10t2+26t3+66t4+168t5+O(t6)

3. A grammar for prudent walks of the first type

We counted the number of prudent walks according to their length and we obtained an algebraic generating
function. Now we give a direct explanation of the algebraicity of this class by determining an algebraic
decomposition (or object grammar) for it. As before we denote classes of paths by capital letters and we
use the corresponding small letters for the generating functions with respect to the length. We start by
distinguishing four subclasses of prudent walks of the first type:

• The class W↑ of walks of the first type beginning with a ↑ step.
• The class W↓ of walks of the first type beginning with a ↓ step.
• The class W→ of walks of the first type beginning with a → step.
• The class W← of walks of the first type beginning with a ← step.

Then we have:

P 1 = W↑ + W↓ + W← + W→

Let us consider the class W→. It consists of the walk reduced to → and of all walks obtained by adding
a first initial → step to a prudent walk of the first type respectively beginning with a ↑, a ↓, or a → step.
Hence we can write the following grammar:

W→ = → ·W→ + → ·W↑ + → ·W↓ + →

By symmetry we have a similar decomposition for W↑, and we have the equalities w↑(t) = w→(t) and
w↓(t) = w←(t). This also implies that it is sufficient to find a decomposition for the class W← or for the
class W↓ to determine p1(t).
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Figure 5. The walks belonging to R ·W← (left) and to Q (right).

3.1. A decomposition for the class W↓. In order to define this grammar we distinguish the following
classes:

i. The class of walks that contain the subsequence made of a ↑ step followed by a ← step. We divide
each walk belonging to this class in two parts after the first ↑ followed by a ← (see Figure 5, left
hand side):

– The first part belongs to the class R: It is the class of prudent walks of the first type starting
with a ↓ step, not containing any ← step, ending in the top right angle of their prudent box
with a ↑ step, and such that they moved the top of their prudent box with this last step.

– The second part belongs to the class W←: It is the class of prudent walks of the first type
starting with a ← step.

ii. The class of walks of the first type that do not contain any ← step. We denote this class of walks by
Q (see Figure 5, right hand side).

Then the decomposition for W↓ is the following:

(6) W↓ = R ·W← + Q

3.2. A decomposition for the class R. We can decompose R in the following manner:

i. The class of walks of R that make a ↓ step at a later time when they are in the top right angle. In
other terms these are the walks of the form w0· ↓ ·w1 where w0 is a walk ending in the top right
angle of its box. The decomposition for these walks is the following:

↓ ·C · ↑ ·T · → ·R

where C is essentially the class of Motzkin paths that avoid the subsequences ↑↓ and ↓↑,

(7) C = ↓ ·C · ↑ + ↓ ·C · ↑ · → ·C + ↓ ·C· ↑ · → + → ·C + →

and T is the class of staircases,

(8) T = ↑ ·T + → ·T + ε

ii. The class of walks of R that after their first step never make anymore a ↓ step when they are in the
top right angle. The decomposition for these walks is the following:

↓ ·C · ↑ ·T · ↑

In summary the decomposition for R is the following (see Figure 6):

(9) R = ↓ ·C · ↑ ·T · → ·R + ↓ ·C · ↑ ·T · ↑
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Figure 6. The complete decomposition for R.

3.3. A decomposition for the class Q. The class Q contains all walks with steps ↑, ↓, and → that start
with a ↓ step and avoid the subsequences ↑↓ and ↓↑. This class satisfies:

Q = ↓ + ↓ ·Q→ + ↓ ·Q

Q→ = → + → ·Q→ + → ·Q + → ·Q↑

Q↑ = ↑ + ↑ ·Q→ + ↑ ·Q↑

3.4. Generating functions. By using the previous decompositions we obtain the following algebraic equa-
tions:

p1(t) = w→(t) + w↑(t) + w↓(t) + w←(t)

w→(t) = t w→(t) + t w↑(t) + t w↓(t) + t

w↓(t) = r(t)w←(t) + Q(t)

w←(t) = w↓(t)

w↑(t) = w→(t)

c(t) = t + t2c(t) + t3c(t)2 + t2c(t) + tc(t)

T (t) = 1 + 2tT (t)

r(t) = t3c(t) T (t) r(t) + t3c(t) T (t)

q(t) = t + tq→(t) + tq(t)

q→(t) = t + tq→(t) + 2tq(t)

From this system we can recover the expressions of the previous section.

4. Prudent walks of the second type

We are now interested in counting a wider class of prudent walks. As we saw in Section 2, prudent walks
of the first type can only end on the top or on the right side of their prudent box. We introduce a class of
prudent walks which can also end on the bottom of their prudent box.

Definition 4. A prudent walk of the second type is a prudent walk avoiding the following subsequences of

steps when the prudent box is not a line: a west step followed by a south step ←↓ when the walk visits the top

of its current prudent box and a west step followed by a north step ↑
← when the walk visits the bottom of its

current prudent box.

In Figure 1(d) there is an example of prudent walk of the second type with its prudent box.
We want to count the number of these walks according to their length. Similarly to the previous section

we have the following:

Proposition 3. A prudent walk w of the second type always ends on the top, right, or bottom side of its

prudent box B.

Counting prudent walks of the second type. Let us call P 2 the class of prudent walks of the second
type. We are interested in determining their generating function according to their length and their distances
i(w), j(w), and k(w). We denote by p2(u, v, w; t) =

∑

w∈P 2 uk(w)vi(w)wj(w)t|w| this generating function. In
order to compute it we distinguish the following subclasses:
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• Hn is the subclass of P 2 formed by the prudent walks ending with a ↑ step, and such that their last
step ↑ moved the top of the previous prudent box, i.e. the prudent box at the previous step. In
particular this means that i(w) = 0 for each w ∈ Hn (See Figure 7).

• Gn is the subclass of P 2 formed by the prudent walks ending with a ↑ step, and such that their
prudent box is the same as the one at the previous step. In particular this means that k(w) = 0 for
each w ∈ Gn (See Figure 7).

• Hs is the subclass of P 2 formed by the prudent walks ending with a ↓ step, and such that their last
step ↓ moved the bottom of the previous prudent box. In particular this means that j(w) = 0 for
each w ∈ Hs. (See Figure 7).

• Gs is the subclass of P 2 formed by the prudent walks ending with a ↓ step, and such that their
prudent box is the same as the one at the previous step. In particular this means that k(w) = 0 for
each w ∈ Gs (See Figure 7).

H
n

G
n

H
s

G
s

Figure 7. The classes Hn, Gn, Hs, and Gs.

• He is the subclass of P 2 formed by the prudent walks ending with a→ step, and such that their last
step → moved the right side of the previous prudent box. In particular this means that k(w) = 0
for each w ∈ He (See Figure 8).

• GTe is the subclass of P 2 formed by the prudent walks ending with a → step on the top of their
prudent box, and such that this box is the same as the one at the previous step. In particular this
means that i(w) = 0 for each w ∈ GTe (See Figure 8).

• GBe is the subclass of P 2 formed by the prudent walks ending with a→ step on the bottom of their
prudent box and such that this box is the same as the one at the previous step. In particular this
means that j(w) = 0 for each w ∈ GBe (See Figure 8).

H eGTee GB

Figure 8. The classes He, GTe, and GBe.

• FTo is the subclass of P 2 formed by the prudent walks having as last step a ← step, ending in the
top of B and such that B is not reduced to a line. Then i(w) = 0 for each w ∈ FTo (See Figure 9).

• FBo is the subclass of P 2 formed by the prudent walks having as last step a ← step, ending in
the bottom of B and such that B is not reduced to a line. Then j(w) = 0 for each w ∈ FBo (See
Figure 9).

• Fo is the subclass of P 2 whose prudent walks are made up just by ← steps (See Figure 9).

We respectively denote by hn(u, w; t), gn(v, w; t), hs(u, v; t), gs(v, w; t), he(v, w; t), gte(u, w; t), gbe(u, v; t),
fto(u, w; t), fbo(u, v; t), fo(u; t) the generating functions of the previous defined classes with the variables
marking as for p2(u, v, w; t).
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Figure 9. The classes FTo, FBo, and Fo.

Lemma 2. The set S2 = {Hn, Gn, Hs, Gs, He, GTe, GBe, FTo, FBo, F} is a partition of the set P 2. Conse-

quently p2(u, v, w; t) = hn(u, w; t)+gn(v, w; t)+hs(u, v; t)+gs(v, w; t)+he(v, w; t)+gte(u, w; t)+gbe(u, v; t)+
fto(u, w; t) + fbo(u, v; t) + fo(u; t).

Proof. A prudent walk w in P 2 can finish with a ↓, ←, ↑, → step. If it ends with a ← step then we have
the following cases: its prudent box is a line, then it belongs to Fo; it ends on the top of its prudent box,
then it belongs to belongs to FTo; it ends on the bottom of its prudent box, then it belongs to FBo. If it
ends with an ↑ step then it belongs to Hn or Gn (resp. Hs or Gs) if the ending point at the previous step
was in the top (resp. bottom) of the box or not. If it ends with a → step then it belongs to He if the ending
point at the previous step was in the right side of its prudent box. Otherwise it belongs to GTe(resp. GBe)
if its last step is on the top (resp. bottom) of its prudent box. Then the set S2 is a partition of P 2 and the
result on p2(u, v, w; t) is a direct consequence of this fact. �

Now we can write equations for the generating functions of elements of S2 by using the recursive definition
of a prudent walk. Let us write the equations for hn(u, w; t), gn(v, w; t), he(v, w; t), gte(u, w; t), fto(u, w; t),
fo(u; t). The others are obtained from these ones by symmetry.

• The equation for hn(u, w; t). These walks, ending with a ↑ step, moved the top of the previous
prudent box. Therefore this class is formed by ↑ itself and by the walks obtained by adding a ↑ step
to walks ending in the top of their prudent box. Such walks belong to the following classes: Hn; the
walks belonging to Gn and ending on the top right angle; the walks belonging to He and ending on
the top right angle; GTe; FTo; Fo. Adding a ↑ step to these walks increases their length by one and
their distance from the bottom of the prudent box by one. Then we have the following equation:

hn(u, w; t) = tw (hn(u, w; t) + gn(0, w; t) + he(0, w; t) + gte(u, w; t) + fto(u, w; t) + fo(u; t) + 1)

• The equation for gn(v, w; t). Gn is formed of walks obtained by adding a ↑ step to walks ending
in the right side of their prudent box, with exclusion of the top right angle. Such walks belong to
the following classes: Gn, with the exclusion of walks ending in the top right angle; He, with the
exclusion of walks ending in the top right angle. With the addition of a ↑ step the length of the
walks increases by one, their distance to the top of the prudent box diminishes by one, and their
distance to the bottom of the prudent box increases by one. Then we have the following equation:

gn(v, w; t) =
tw

v
(gn(v, w; t)− gn(0, w; t) + he(v, w; t)− he(0, w; t))

• The equation for he(u, w; t). These walks, ending with a→ step, moved the right side of the previous
prudent box. Therefore this class is formed by → itself and by the walks obtained by adding a →
step to walks ending in the right of their prudent box. Such walks belong to the following classes:
He; the walks belonging to GTe and ending on the top right angle; the walks belonging to GBe and
ending on the bottom right angle; the walks belonging to Hn and ending on the top right angle; Gn;
the walks belonging to Hs and ending on the bottom right angle; the walks belonging to Gs. Adding
a → step to these walks increases their length by one. Then we have the following equation:

he(v, w; t) = t (he(v, w; t) + gte(0, w; t) + gbe(0, v; t) + hn(0, w; t) + gn(v, w; t) + hs(0, v; t) + gs(v, w; t) + 1)

• The equation for gte(u, w; t). GTe is formed of walks obtained by adding a → step to walks ending
in the top side of their prudent box, with exclusion of the top right angle. Such walks belong to
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the following classes: GTe, with the exclusion of walks ending in the top right angle; Hn, with the
exclusion of walks ending in the top right angle. With the addition of a → step the length of the
walks increases by one and their distance to the right of the prudent box diminishes by one. Then
we have the following equation:

gte(u, w; t) =
t

u
(gte(v, w; t)− gte(0, w; t) + hn(u, w; t)− hn(0, w; t))

• The equation for fto(u, w) This class is formed by the walks obtained by adding a ← step to walks
ending on the top of their prudent box. Observe that by adding a← step to walks Gn ending in the
top right angle we do not respect the condition of prudent walk. Then the classes involved in the
equation for fto(u) are the following: Hn; FTo. By adding a ← step both the length of the walks
and their distance to the right of the prudent box increase by one. Therefore we have the following
equation:

fto(u, w; t) = t u (hn(u, w; t) + fto(u, w; t))

• The equation for fo(u) This is the class {←}+, therefore:

fo(u; t) =
tu

1− tu

The other equations are obtained by symmetry with respect to the horizontal axis. In order to simplify the
system of these equations, we introduce the following series:

L(w; t) = hn(0, w; t) + gte(0, w; t), or equivalently, L(v; t) = hs(0, v; t) + gbe(0, v; t)

M(w; t) = he(0, w; t) + gn(0, w; t), or equivalently, M(v; t) = he(v, 0; t) + gs(v, 0; t)

Then the system becomes:

hn(u, w; t) = tw (hn(u, w; t) + gte(u, w; t) + fto(u, w; t) + fo(u; t) + M(w; t) + 1)

gn(v, w; t) = tw
v

(he(v, w; t) + gn(v, w; t)−M(w; t))

he(v, w; t) = t (he(v, w; t) + gs(v, w; t) + gn(v, w; t) + L(w; t) + L(v; t) + 1)

gte(u, w; t) = t
u

(hn(u, w; t) + gte(u, w; t)− L(w; t))

gbe(u, v; t) = t
u

(hs(u, v; t) + gbe(u, v; t)− L(v; t))

hs(u, v; t) = tv (hs(u, v; t) + gbe(u, v; t) + fbo(u, v; t) + fo(u; t) + M(v; t) + 1)

gs(v, w; t) = tv
w

(he(v, w; t) + gs(v, w; t)−M(v; t))

fto(u, w; t) = tu(hn(u, w; t) + fto(u, w; t))

fbo(u, v; t) = tu(hs(u, v; t) + fbo(u, v; t))

fo(u; t) = tu
1−tu

Observe that in this system of linear equations all the series can be expressed in terms of L(w; t), L(v; t),
M(w; t), M(v; t). In particular we have:

fto(u, w; t) =
t2 u w((1− tu)(1− t)M(w; t) − t(1 − ut)L(w; t)− t + u)

(1− tu)(−tu2 + t2u + u + t3 w u− u t w − t)

and

gn(v, w; t) =
t w (t2v − t w + t (tv − w) (L(w; t) + L(v; t)) + (w − t w − t v) M(w; t) + t2v M(v; t))

−w v + t w2 + w t v + t v2 − t2 v w − t3 v w
10



In order to compute p2(1, 1, 1; t) it is sufficient to determine L(1; t) and M(1; t). We first apply the kernel
method to the equation for fto(u, w; t). The kernel is (−tu2 + t2u + u + t3 w u− u t w− t). It has two roots
and we denote by U0(w, t) the one which is a formal power series in t. Then

U0(w, t) =
1− t w + t2 + t3 w −

√

(1− t2)(1− t− wt− wt2)(1 + t− wt + wt2)

2t

Canceling the kernel by substituting u = U0(w; t) implies that:

(10) (1− tU0(w, t))(1 − t)M(w; t)− t(1 − tU0(w, t))L(w; t) − t + U0(w, t) = 0

Now, by setting respectively v = 1 and w = 1 in gn(v, w; t) we obtain the following system:

gn(1, w; t) =
t w (t2 − t w + t (t − w) (L(w; t) + L(1; t)) + (w − t w − t) M(w; t) + t2 M(1; t))

−w + t w2 + w t + t− t2 w − t3 w

gn(v, 1; t) =
t (t2v − t + t (tv − 1) (L(1; t) + L(v; t)) + (1− t − t v) M(1; t) + t2v M(v; t))

−v + t + t v + t v2 − t2 v − t3 v

Observe that the two equations have the same denominator up to substituting w = v. Then they have a
common kernel K(v; t) = −v + t + t v + t v2 − t2 v − t3 v.

We apply the kernel method to gn(1, w; t) and gn(v, 1; t), taking the unique formal power series V0(t) that
is solution of K(v; t):

(11) V0(t) =
1− t + t2 + t3 −

√

(1− t4)(1− 2t− t2)

2t

Observe that U0(1; t) = V0(t) (remark that it is also equal to the U0(t) of Section 2). Then, by canceling the
kernel in the expressions of gn(1, w; t) and gn(v, 1; t) we get

t2 − tV0(t) + t (t− V0(t)) (L(V0(t); t) + L(1; t)) + (V0(t)− tV0(t)− t) M(V0(t); t) + t2 M(1; t) = 0(12)

t2V0(t)− t + t (tV0(t)− 1) (L(1; t) + L(V0(t); t)) + (1− t− tV0(t)) M(1; t) + t2V0(t)M(V0(t); t) = 0(13)

Equations (12), (13), equation (10) with w = 1, and equation (10) with w = V0(t) form a system of
linear equations that determines L(1; t), M(1; t), L(V0(t); t), M(V0(t); t). Finally, by substituting L(1; t) and
M(1; t) in the equation for p2(1, 1, 1; t) (see Lemma 2) we obtain the following expression for p2(1, 1, 1; t):

p2(1, 1, 1; t) =

2 (−4 t4+2 t3−2 t2−t+2 t6−3 t5+t7+1) t U0(1) U0(V0)−2 (t4+2 t3−4 t−2 t2+1) t U0(1)−2 t3 (t2+t3−1−3 t) U0(V0)+2 (t+2) (−1+t) t

(t2+2 t−1) (t U0(t)−1) (t U0(V0)−1) (t−U0(V0)+1−U0(1))

where U0(1) = U0(1; t) and U0(V0) = U0(V0(t); t). In particular p2(1, 1, 1; t) is algebraic of degree 4. The
first terms of this series are 4t + 12t2 + 34t3 + 90t4 + 236t5 + 612t6 + 1580t7 + O(t8)

5. The class of prudent walks

Now we consider the complete class of prudent walks, i.e. prudent walks without restrictions on the
subsequences of steps (see Figure 2). Let

p(u, u′, v, w; t) =
∑

w∈P

uk(w)u′l(w)vi(w)wj(w)t|w|

be the generating function of P with respect to the distances and the length.
Observe that these prudent walks are symmetric with respect to all directions. Then, in order to count

the walks of the class P , we just need to know the generating functions for the following classes:
11



• Hn is the subclass of P formed by the prudent walks ending with a ↑ step, and such that their last
step moved the top of the previous prudent box. In particular, this means that i(w) = 0 for each
w ∈ Hn.

• GRn is the subclass of P formed by the prudent walks ending with a ↑ step on the right side of
their prudent box, and such that their prudent box is the same as the one at the previous step. In
particular, this means that k(w) = 0 for each w ∈ Gn.

In order to write equations for Hn and GRn we need to introduce some other classes, as we did for walks of
first and second types. However these classes are all symmetric to Hn or GRn, so we omit their definition.
The equations for the associated generating functions hn(u, u′, w) and grn(u′, v, w) are obtained by using
the same arguments as for walks of the first and second types:

hn(u, u′, w; t) = t w (1 + hn(u, u′, w; t) + grn(u′, 0, w; t) + , gln(u, 0, w; t)
+ ho(u, 0, w; t) + gto(u, u′, w; t) + he(u

′, 0, w; t) + gte(u, u′, w; t))

grn(u′, v, w; t) = t w
v

(grn(u′, v, w; t)− grn(u′, 0, w; t) + he(u
′, v, w; t) − he(u

′, 0, w; t))

Equations for all other classes could be obtained by symmetry from these two ones. Alternatively, by using
directly the symmetries to express all generating functions in terms of hn and grn, the two previous equations
can be rewritten:

(14)

hn(u, u′, w; t) = t w (1 + hn(u, u′, w; t) + grn(u′, 0, w; t) + grn(u, 0, w; t)
+ hn(0, w, u; t) + grn(w, u′, u; t) + hn(w, 0, u′; t) + grn(w, u, u′; t))

grn(u′, v, w; t) = t w
v

(grn(u′, v, w; t)− grn(u′, 0, w; t) + hn(w, v, u′; t)− hn(w, 0, u′; t))

This system entirely define the series hn(u, u′, w; t) and grn(u′, v, w; t). We also have that:

p(1, 1, 1, 1; t) = 4 hn(1, 1, 1; t) + 8 grn(1, 1, 1; t)

Then, by using this equation and (14) we can compute the first terms of p(1, 1, 1, 1; t):

4t + 12 t2 + 36 t3 + 100 t4 + 276 t5 + 748 t6 + 2012 t7 + 5356 t8 + O(t9)

However, we were not able to find a solution for system (14) by similar methods to those in the previous
sections.
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