Abstract

We will consider the realization of the Littlewood-Richardson rule
for the outer product of symmetric group characters using generating
functions. It allows to prove the rationality of multiplicity series of
some PlI-algebras.
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Introduction

The subject we will consider for the most part concerns the combinatorics of
Young diagrams and Young tableaus. As a combinatorial object Young dia-
grams have a wide application in various fields of mathematics, in particular
in the representation theory of symmetric groups ([10]) which is also actively
used. One of the field of applying of the symmetric group representation
theory is the PI-theory (see [4], [9], [12], [13]).

We will consider associative algebras over a field of zero characteristic.
Let F(X) be the free associative algebra over a field F' of zero characteris-
tic with a countable set of generators X = {x1,z2,...}. Let f(z1,...,2y,) €
F(X) be any associative noncommutative polynomial on variables x1, ..., z,.
They say an associative algebra A over a field F satisfies the polynomial iden-
tity f(x1,...,2n) = 0 if f(a1,...,a,) = 0 holds in A for any a; € A. The
algebra satisfying some nontrivial polynomial identity is called a PI-algebra.
For example, a commutative associative algebra is a Pl-algebra because it
satisfies the identity xy — yx = 0, also a nilpotent algebra is PI, it satisfies
the identity xj - - -z, = 0 for some natural n. It is well known ([4], [9], [12],
[13]) all polynomial identities of an associative PI-algebra A form a T-ideal
of the algebra F'(X) (i.e., an ideal invariant under all endomorphisms of
F(X)). We will denote by I' = T[A] the T-ideal of polynomial identities
of A and by Var(A) the variety of all associative algebras over the field F’
satisfying all polynomial identities of the algebra A.

*The work is partially supported by grants RFFI 04-01-00739



Let us consider the multilinear part P,(A4) = P,/(P,()T[A4]) of the
relatively free algebra F(X)/T[A] which is left F'S,- module ([4], [13]).
Here P, = (Ty(1) ** To(m)lo € Sp). The Sy-character of P,(A) xn(A) =
Y atn MaX ) is called the n-th cocharacter of A (respectively of T[A] or of
Var(A)). We will consider the multiplicity series for the algebra A

faltita,...)= > matft ek,

A=(A1,o0)

It is well known ([1]) in the case of a finitely generated algebra the height
of Young diagrams in the cocharacter decomposition formula is restricted.
It means in this case the number of variables ¢; of the multiplicity series fa
is finite. We will consider only this case to make the presentation of the
methods simpler.

Let A; and As be any finitely generated Pl-algebras over a field F' of
zero characteristic, I'y = T[A;] and T'y = T[As] be correspondingly their
ideals of polynomial identities. Let us consider the multiplicity series for
these algebras

f(l (t1,... Zm(l)t)‘1 . - the multiplicity series

for the algebra A1 and the T-ideal I'y,

FOty,. ) = Z mg\2)ti\1 .-t - the multiplicity series
A
for the algebra Ay and the T-ideal I's.

Let us denote

n(T1,T2) = Y xiM)&xn-i(T2) = Y xi(T1)x;(Ta).
n>0 =0
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Here x;(T'1)®x;(T2) = (xi(T'1)®x;(T'2)) 15+ is the outer product of charac-
ters and can be computed by the Littlewood-Richardson rule ([10, 11]). We
will present an algorithm counting the multiplicity series f, i, r,) (t1y. ey thopr)
for the character n(I'1,I's) if the multiplicity series f() and £ for the T-
ideals I'1 and I'y are given. The similar formulas for the case of two-variable
multiplicity series were introduced and applied in ([5, 6]).



1 The basic transformations.

Let us consider five basic transformations of multiplicity series used in the
algorithm.

Let f(t1,...,tx) be any function depending on k variables t1, ..., tx (no-
tice, it can also depend on another variables). To be short we will use

sometimes for a set of variables t1,...,t; a notation (¢)g.
1 ~
L. Dgt))k_)(z)k (f) = f(th ceey tk‘a Blyeves Zk) = f(tla s 7tk)|ti:ti'zi, i=1,k;

2. Dgf))k_)(z)k (f) = f(zl, cezk) = fty, ... ’tk’)’ti=zi/zi—1,20=1, =T
(t)kﬂ(z)k(f) = f_(zla s vzk) = f(tla e ’tk)’ti:zi"'zm i=1,k;

4. pW

O r—(2) k41

1<iy < <ipn <k
0<m<k . .
Zj41,7 € i1, im}

tj{l,j ¢ {1, .. im)

(L—22) (1= 2p41)

2 21

D. Dg))h(z)k(f) = (2;)k ({Off((s)ka(z)k)

sj=2€"%7,

R
zj=35€ J

Here and later for transformations the superscript enumerates the transfor-
mation and the subscript determines the set of variables which are modi-
fied.We will omit the subscripts if the sets of variables are not essential for
the understanding of a matter.

Examples.
Let us consider f(t1,t2, s1, 52, 83) = t1t3 + tass — %,
g(t1,t2,t3, 51, 82, 83,p1) = p1tatssass — 2pitatssy. Then

1
L fi(ti,t2, s1,52,83,p1,p2) = Dgt))zq(ph(f) = flti=tipr, = tip1(tap2)® +
ta=t2-p2

_ sitepa+2tipy .
tap253 1—-tip1si1s2

2
2. folt1,t2,t3) = DEs))3—>(t)3(f) = ft1,t2,51,52) 1=ty somta/ts, = L1153 +

s3=t3/t2

t1to+2t 2 t1to+2¢7 .
ta(ts/ta) — Gty = tatd + 15 — T



3
3. fa(t1,t2,21,22,23) = Dés))B_)(zh(f) = f(t1,t2,51,52,83)] s1=2122,

§2=2223,53=%23

2 21222324211 .
tltz -+ t2Z3 — 7%_215132122(%2%1,

4
4 gi(()s, (2)asp1) = D) .(9) = sy Glsimssmse=1 —

22 g| s1=z2, — *3° g‘ sa=z3, — R4 g‘ s3=z1, T 2223 g|81=22,52=237 +
sa=s3=1 s1=s3=1 s1=82=1 s3=1
Z2%4 - g|31=22,53=Z4, + 2324 - g|82=23,83=24, — R2%23%4 g|81=22,82=237) =
52:1 51:1 S83=2z4

(1_Z2).glf22t;).(1_z4) (—1— 20 +223 — 22 + 223 — 25 4+ 224 + 2025 — 22323+

222’2 — 22%24 + z%zz — 22324 — zgzgzz + 22%232’4) = pitats(—1 — 229 +
23 + z4 + 2324);

27 21
I [g - dprdpadps =
00 t]‘=2€up.j,

O e
sj=3ze J
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5. g2(p1) = DEt))g,,(s)g(g) - (271r)3

o
3

(4p1 eiSOZ €i993 . Llle_iWQ e_i‘Pii _2p1 .4ei¢2 eiw3 . %e_isol ) d(pl d(de(pg
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prdprdpadips — 4191(% / 671¢1d901) . (% [ G“”dcpg)x
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The transformations DM, D@ D®) are the simple substitutions of vari-
ables, and D) adds the new set of variables, while D@, D®) exchange the
old variables by the new ones. The transformation D™ also changes vari-
ables and their number increase by 1. The transformation D®) acts on two
sets of variables s1,...,s; and z1,..., 2.

2 The derived transformations.

We also will use some derived transformations.
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Here ”0” denotes the usual composition of maps.

Examples.
Let us take f(s1,s2,83) = 25152 + s283, then

L fuls1, 82,88, 21,22,28) = S0, (F) = F(51,52,88)lamss(eumr) =
i=1,3, zo=1

22 P
2s121(52(22/21))% + s2(22/21)53(23/ 22) = 251552 + 595322
2. fo((2)a, (D)a) = S, _ oy, (F (51,52, 53)) =

(=1)™(TT 20 s1ti 1) F((5)s)

1<i1 < <im <3 r=1
0<m<3

17J¢{Zl7vlm}
Sj=
Zjy1tir1,0€{01,.im}

(1 — thl)(l — ZQtQ) cee (1 — Z4t4)
—L (Z4t4(1 —+ Z3t3) + 222t2(1 + 23t3 + Z%t%) + 3+ 3z3t3 + 2232’75%);

1—2z1t1

3. fs(s1,52,83,21,22,23) = 5((3))3_,(Z)3(f((5)3)) = f(s1,52,53)|s;=s:25-23 =
i=1,3

2(s1212023)(522223)2 + (s522023)(8323) = 251532125’23 + 8283222%.

3 The algorithm.

Before counting the multiplicity series f, i, r,) we need to modify the first

generating function f()(t1, ..., ;).
The 1-st stage.
On the entrance we have a function Fj; = f(l) (t1y. .. tx).

_ s
L Fiz = Sy, (o), (Fin);

_ 5@
2 Fo1 = 80— (F12):

The j-th stage (2 < j <r).
On the entrance we have a function Fji((¢)x4j—1; (€)j—2; (@)ryj—1) (Fo1
does not depend on ¢).

- _ o ,
L Fjz =8 oy Fi)s

o .
2. Fjs = S(a)kJrjle(y)kH*l(FJﬂ’
4)

3. Fj4 = D(S)k+j—1—>(17)k+j (Fj?))’



4. Fj5 = 5(3) (Fj4)a

(Pl (k45
5. Fjo = Défl;knLjfl_’(z)kJrj(FjB)’
6. Fy7 = Dgi))kﬂv(z)kﬂ(Fjﬁ)’
7. Fis = DE;§k+j—>(t)k+j (Fyr),
8. Fjo = Fjg((t)k+j; (€)j—2501, -+ oy k=15 (P kg lar = =aps;_1=; 15

9. Fip11((0)k+js (€)j=1: () r+j) = Fjo((t)kt43 (€)j=1501, - - - s Phitj) | pi=cvs -

Now we can go to the next (j + 1)-th stage.
When we have finished the last r-th stage and obtain the function
Fri11((8)kar; (€)r—1, (@) g4r) we can find the multiplicity series fyr, r,)-

F*((t)k—i—r; (5)7") = Fr+11((t)k+r; (5)7"71; Qp,y ..., ak+r)|a1:---:ak+T=€r7

Farrry (-t = DO (F (ks (2)0) - FP((5)))- (1)

4 On the rationality of some multiplicity series.

The next statement is obvious.

Lemma 1 The algebra of rational functions is closed under the basic trans-
formations DY, D@ DG DA,

We will call such transformations by rational transformations.

Corollary 2 The compositions S, S@ SG) of rational transformations
are also rational.

Definition 3 We will call a rational function f = g, (P, Q are polynomi-
als) specific on variables (8)y, and (z)n, if the denominator Q has a form

d
Q = ][ (1—wj), where allw; are words on variables and for anyi=1,...,m
j=1
and for all j =1,...,d deg, w;+deg, w; <1.

Lemma 4 The image of the transformation DE?))m ()m of a rational func-

tion specific on variables (8)m, (2)m is also a rational function.



Theorem 5 If fa,, fa, are rational functions specific on all variables then
Jn(r1,rs) 18 also a rational function, specific on all variables.

Evidently it is enough to be sure that all functions on the entrance of the
transformation D° (on the 6-th step of any stage and in (1)) remain specific
on all corresponding variables.

Theorem 6 If the multiplicity series fr,, fr, for T-ideals I'y and I'y are
rational specific functions then the multiplicity series fr for the product I’ =
I'y - 'y of the T-ideals is a rational specific function.

Proof The theorem follows from the previous theorem and the Berele and
Regev formula for the cocharacter of the product of T-ideals [3]. We can
realize this formula for the multiplicity series as follows

fr((t)kJrr) = fFl + fF1 + B(fn(F1,F2)) - fn(F1,F2)7 where
F(@ms (5)m) = S{y), ), (D)), and

m+1 m
B(F((t)m)) = (Dt (Om) = D tist - F(O)ms ()m) {1 Iy
i=1 i=1 sj={ ’
0,7 =1.

The transformation B here is evidently rational. [

Theorem 7 Any minimal variety of associative algebras over a field of zero
characteristic of the matriz type not greater than 2 and generated by a finitely
generated algebra has a rational multiplicity series.

Proof By [8] the ideal of polynomial identities I' of such variety is the
m

product of T-ideals I' = [][ I'j, where any I'; = T[My(F)] is the ideal
j=1

of identities of full matrix algebra of the 2-nd order over the base field, or

[; = {[z,y]}" is the commutator ideal. Then in the first case the multiplicity

series for I'; can be obtained using the description of multiplicities for 2 x 2

matrices given by V.Drensky [7]

1
Tara(e) = (1= t1)2(1 — t1t2)2(1 — tatats)2(1 — titatsts)
1 titots + titatsty — 1
0= )21 — trta) 1—t)

In the second case the multiplicity series is trivial f{[%y]}:r = ﬁ It is
obvious in the both cases the multiplicity series are rational specific on all



variables functions. Then by the previous theorem the multiplicity series for
a product I' of these T-ideals is also rational. [

Taking into account this result, the results of V.Drensky and G.K.Genov

[5, 6] and the rationality of a Hilbert series of any relatively free algebra [2]
the question whether any associative PI-algebra over a field of zero charac-
teristic has a rational multiplicity series becomes quite natural.

Notice at the end the presenting algorithm also can be applied for count-

ing of exact formulas for cocharacters of some PI-algebras using some math-
ematical software.
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