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Abstract

We will consider the realization of the Littlewood-Richardson rule
for the outer product of symmetric group characters using generating
functions. It allows to prove the rationality of multiplicity series of
some PI-algebras.
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Introduction

The subject we will consider for the most part concerns the combinatorics of
Young diagrams and Young tableaus. As a combinatorial object Young dia-
grams have a wide application in various fields of mathematics, in particular
in the representation theory of symmetric groups ([10]) which is also actively
used. One of the field of applying of the symmetric group representation
theory is the PI-theory (see [4], [9], [12], [13]).

We will consider associative algebras over a field of zero characteristic.
Let F 〈X〉 be the free associative algebra over a field F of zero characteris-
tic with a countable set of generators X = {x1, x2, . . . }. Let f(x1, . . . , xn) ∈
F 〈X〉 be any associative noncommutative polynomial on variables x1, . . . , xn.
They say an associative algebra A over a field F satisfies the polynomial iden-
tity f(x1, . . . , xn) ≡ 0 if f(a1, . . . , an) = 0 holds in A for any ai ∈ A. The
algebra satisfying some nontrivial polynomial identity is called a PI-algebra.
For example, a commutative associative algebra is a PI-algebra because it
satisfies the identity xy − yx ≡ 0, also a nilpotent algebra is PI, it satisfies
the identity x1 · · ·xn ≡ 0 for some natural n. It is well known ([4], [9], [12],
[13]) all polynomial identities of an associative PI-algebra A form a T-ideal
of the algebra F 〈X〉 (i.e., an ideal invariant under all endomorphisms of
F 〈X〉). We will denote by Γ = T [A] the T-ideal of polynomial identities
of A and by V ar(A) the variety of all associative algebras over the field F
satisfying all polynomial identities of the algebra A.

∗The work is partially supported by grants RFFI 04-01-00739
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Let us consider the multilinear part Pn(A) = Pn/(Pn
⋂

T [A]) of the
relatively free algebra F 〈X〉/T [A] which is left FSn- module ([4], [13]).
Here Pn = 〈xσ(1) · · ·xσ(n)|σ ∈ Sn〉. The Sn-character of Pn(A) χn(A) =
∑

λ`n mλχλ is called the n-th cocharacter of A (respectively of T[A] or of
Var(A)). We will consider the multiplicity series for the algebra A

fA(t1, t2, . . . ) =
∑

λ=(λ1,...,λk)

mλtλ1

1 · · · tλk

k .

It is well known ([1]) in the case of a finitely generated algebra the height
of Young diagrams in the cocharacter decomposition formula is restricted.
It means in this case the number of variables ti of the multiplicity series fA

is finite. We will consider only this case to make the presentation of the
methods simpler.

Let A1 and A2 be any finitely generated PI-algebras over a field F of
zero characteristic, Γ1 = T [A1] and Γ2 = T [A2] be correspondingly their
ideals of polynomial identities. Let us consider the multiplicity series for
these algebras

f (1)(t1, . . . , tk) =
∑

λ

m
(1)
λ tλ1

1 · · · tλk

k - the multiplicity series

for the algebra A1 and the T-ideal Γ1,

f (2)(t1, . . . , tr) =
∑

λ

m
(2)
λ tλ1

1 · · · tλr
r - the multiplicity series

for the algebra A2 and the T-ideal Γ2.

Let us denote

η(Γ1, Γ2) =
∑

n≥0

n
∑

i=0

χi(Γ1)⊗̂χn−i(Γ2) =
∑

i≥0,j≥0

χi(Γ1)⊗̂χj(Γ2).

Here χi(Γ1)⊗̂χj(Γ2) = (χi(Γ1)⊗χj(Γ2)) ↑
Si+j is the outer product of charac-

ters and can be computed by the Littlewood-Richardson rule ([10, 11]). We
will present an algorithm counting the multiplicity series fη(Γ1,Γ2)(t1, . . . , tk+r)

for the character η(Γ1, Γ2) if the multiplicity series f (1) and f (2) for the T-
ideals Γ1 and Γ2 are given. The similar formulas for the case of two-variable
multiplicity series were introduced and applied in ([5, 6]).
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1 The basic transformations.

Let us consider five basic transformations of multiplicity series used in the
algorithm.

Let f(t1, . . . , tk) be any function depending on k variables t1, . . . , tk (no-
tice, it can also depend on another variables). To be short we will use
sometimes for a set of variables t1, . . . , tk a notation (t)k.

1. D
(1)
(t)k→(z)k

(f) = f̂(t1, . . . , tk, z1, . . . , zk) = f(t1, . . . , tk)|ti=ti·zi, i=1,k;

2. D
(2)
(t)k→(z)k

(f) = f̃(z1, . . . , zk) = f(t1, . . . , tk)|ti=zi/zi−1,z0=1, i=1,k;

3. D
(3)
(t)k→(z)k

(f) = f̄(z1, . . . , zk) = f(t1, . . . , tk)|ti=zi···zk, i=1,k;

4. D
(4)
(t)k→(z)k+1

(f) = f̆(z1, . . . , zk+1) =

∑

1≤i1<···<im≤k
0≤m≤k

(−1)m(zi1+1 · · · zim+1)f((t)k)

∣

∣

∣

∣

∣

tj=











1, j /∈ {i1, . . . , im}

zj+1, j ∈ {i1, . . . , im}

(1 − z2) · · · (1 − zk+1)
,

5. D
(5)
(s)k,(z)k

(f) = 1
(2π)k

2π
∫

0

· · ·
2π
∫

0

f((s)k; (z)k)

∣

∣

∣

∣

sj=2eiϕj ,

zj=
1

2
e−iϕj

dϕ1 . . . dϕk.

Here and later for transformations the superscript enumerates the transfor-
mation and the subscript determines the set of variables which are modi-
fied.We will omit the subscripts if the sets of variables are not essential for
the understanding of a matter.

Examples.

Let us consider f(t1, t2, s1, s2, s3) = t1t
2
2 + t2s3 −

s1t2+2t1
1−t1s1s2

,
g(t1, t2, t3, s1, s2, s3, p1) = p1t2t3s2s3 − 2p1t2t3s1. Then

1. f1(t1, t2, s1, s2, s3, p1, p2) = D
(1)
(t)2→(p)2

(f) = f |t1=t1·p1,
t2=t2·p2

= t1p1(t2p2)
2 +

t2p2s3 −
s1t2p2+2t1p1

1−t1p1s1s2
;

2. f2(t1, t2, t3) = D
(2)
(s)3→(t)3

(f) = f(t1, t2, s1, s2)|s1=t1,s2=t2/t1,
s3=t3/t2

= t1t
2
2 +

t2(t3/t2) −
t1t2+2t1

1−t2
1
(t2/t1)

= t1t
2
2 + t3 −

t1t2+2t1
1−t1t2

;
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3. f3(t1, t2, z1, z2, z3) = D
(3)
(s)3→(z)3

(f) = f(t1, t2, s1, s2, s3)| s1=z1z2z3,
s2=z2z3,s3=z3

=

t1t
2
2 + t2z3 −

z1z2z3t2+2t1
1−t1z1z2

2
z2
3

;

4. g1((t)3, (z)4, p1) = D
(4)
(s)3→(z)4

(g) = 1
(1−z2)·(1−z3)·(1−z4)

(

g|s1=s2=s3=1 −

z2 · g| s1=z2,
s2=s3=1

− z3 · g| s2=z3,
s1=s3=1

− z4 · g| s3=z4,
s1=s2=1

+ z2z3 · g|s1=z2,s2=z3,
s3=1

+

z2z4 · g|s1=z2,s3=z4,
s2=1

+ z3z4 · g|s2=z3,s3=z4,
s1=1

− z2z3z4 · g|s1=z2,s2=z3,
s3=z4

)

=

p1t2t3
(1−z2)·(1−z3)·(1−z4)

(

−1− z2 +2z2
2 − z2

3 +2z3 − z2
4 +2z4 + z2z

2
3 − 2z2

2z3 +

z2z
2
4 − 2z2

2z4 + z2
3z

2
4 − 2z3z4 − z2z

2
3z

2
4 + 2z2

2z3z4

)

= p1t2t3(−1 − 2z2 +
z3 + z4 + z3z4);

5. g2(p1) = D
(5)
(t)3,(s)3

(g) = 1
(2π)3

2π
∫

0

2π
∫

0

2π
∫

0

g

∣

∣

∣

∣

tj=2eiϕj ,

sj=
1

2
e−iϕj

dϕ1dϕ2dϕ3 =

1
(2π)3

2π
∫

0

2π
∫

0

2π
∫

0

(

4p1e
iϕ2eiϕ3 ·14e−iϕ2e−iϕ3−2p1·4e

iϕ2eiϕ3 ·12e−iϕ1
)

dϕ1dϕ2dϕ3 =

1
(2π)3

2π
∫

0

2π
∫

0

2π
∫

0

p1dϕ1dϕ2dϕ3 − 4p1

(

1
2π

2π
∫

0

e−iϕ1dϕ1

)

·
(

1
2π

2π
∫

0

eiϕ2dϕ2

)

×

×( 1
2π

2π
∫

0

eiϕ3dϕ3) = p1.

The transformations D(1), D(2), D(3) are the simple substitutions of vari-
ables, and D(1) adds the new set of variables, while D(2), D(3) exchange the
old variables by the new ones. The transformation D(4) also changes vari-
ables and their number increase by 1. The transformation D(5) acts on two
sets of variables s1, . . . , sk and z1, . . . , zk.

2 The derived transformations.

We also will use some derived transformations.

1. S
(1)
(t)k→(z)k

= D
(2)
(s)k→(z)k

◦ D
(1)
(t)k→(s)k

,

2. hz(f) = 1
1−z1

f,

3. S
(2)
(s)k→(z,t)k+1

= D
(1)
(z)k+1→(t)k+1

◦ hz ◦ D
(4)
(s)k→(z)k+1

,

4. S
(3)
(t)k→(z)k

= D
(3)
(s)k→(z)k

◦ D
(1)
(t)k→(s)k

.
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Here ”◦” denotes the usual composition of maps.
Examples.

Let us take f(s1, s2, s3) = 2s1s
2
2 + s2s3, then

1. f1(s1, s2, s3, z1, z2, z3) = S
(1)
(s)3→(z)3

(f) = f(s1, s2, s3)|si=si(zi/zi−1)

i=1,3, z0=1

=

2s1z1(s2(z2/z1))
2 + s2(z2/z1)s3(z3/z2) = 2s1s

2
2

z2
2

z1
+ s2s3

z3

z1
;

2. f2((z)4, (t)4) = S
(2)
(s)3→(z,t)4

(f(s1, s2, s3)) =

∑

1≤i1<···<im≤3
0≤m≤3

(−1)m(
m
∏

r=1
zir+1tir+1)f((s)3)

∣

∣

∣

∣

∣

sj=











1,j /∈{i1,...,im}

zj+1tj+1,j∈{i1,...,im}

(1 − z1t1)(1 − z2t2) · · · (1 − z4t4)
=

1
1−z1t1

(

z4t4(1 + z3t3) + 2z2t2(1 + z3t3 + z2
3t

2
3) + 3 + 3z3t3 + 2z2

3t
2
3

)

;

3. f3(s1, s2, s3, z1, z2, z3) = S
(3)
(s)3→(z)3

(f((s)3)) = f(s1, s2, s3)|si=sizi···z3

i=1,3

=

2(s1z1z2z3)(s2z2z3)
2 + (s2z2z3)(s3z3) = 2s1s

2
2z1z

3
2z

3
3 + s2s3z2z

2
3 .

3 The algorithm.

Before counting the multiplicity series fη(Γ1,Γ2) we need to modify the first

generating function f (1)(t1, . . . , tk).
The 1-st stage.

On the entrance we have a function F11 = f (1)(t1, . . . , tk).

1. F12 = S
(1)
(t)k→(s)k

(F11),

2. F21 = S
(2)
(s)k→(α,t)k+1

(F12).

The j-th stage (2 ≤ j ≤ r).
On the entrance we have a function Fj1((t)k+j−1; (ε)j−2; (α)k+j−1) (F21

does not depend on ε).

1. Fj2 = S
(1)
(t)k+j−1→(s)k+j−1

(Fj1),

2. Fj3 = S
(3)
(α)k+j−1→(y)k+j−1

(Fj2),

3. Fj4 = D
(4)
(s)k+j−1→(p)k+j

(Fj3),
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4. Fj5 = S
(3)
(p)k+j→(s)k+j

(Fj4),

5. Fj6 = D
(4)
(y)k+j−1→(z)k+j

(Fj5),

6. Fj7 = D
(5)
(s)k+j ,(z)k+j

(Fj6),

7. Fj8 = D
(1)
(p)k+j→(t)k+j

(Fj7),

8. Fj9 = Fj8((t)k+j ; (ε)j−2; α1, . . . , αk+j−1; (p)k+j)|α1=···=αk+j−1=εj−1
,

9. Fj+11((t)k+j ; (ε)j−1; (α)k+j) = Fj9((t)k+j ; (ε)j−1; p1, . . . , pk+j)|pi=αi
.

Now we can go to the next (j + 1)-th stage.
When we have finished the last r-th stage and obtain the function

Fr+11((t)k+r; (ε)r−1, (α)k+r) we can find the multiplicity series fη(Γ1,Γ2).

F ∗((t)k+r; (ε)r) = Fr+11((t)k+r; (ε)r−1; α1, . . . , αk+r)|α1=···=αk+r=εr ,

fη(Γ1,Γ2)(t1, . . . , tk+r) = D
(5)
(ε)r,(s)r

(

F ∗((t)k+r, (ε)r) · f
(2)((s)r)

)

. (1)

4 On the rationality of some multiplicity series.

The next statement is obvious.

Lemma 1 The algebra of rational functions is closed under the basic trans-
formations D(1), D(2), D(3), D(4).

We will call such transformations by rational transformations.

Corollary 2 The compositions S(1), S(2), S(3) of rational transformations
are also rational.

Definition 3 We will call a rational function f = P
Q , (P, Q are polynomi-

als) specific on variables (s)m and (z)m if the denominator Q has a form

Q =
d
∏

j=1
(1−ωj), where all ωj are words on variables and for any i = 1, . . . , m

and for all j = 1, . . . , d degsi
ωj + degzi

ωj ≤ 1.

Lemma 4 The image of the transformation D
(5)
(s)m,(z)m

of a rational func-

tion specific on variables (s)m, (z)m is also a rational function.
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Theorem 5 If fA1
, fA2

are rational functions specific on all variables then
fη(Γ1,Γ2) is also a rational function, specific on all variables.

Evidently it is enough to be sure that all functions on the entrance of the
transformation D5 (on the 6-th step of any stage and in (1)) remain specific
on all corresponding variables.

Theorem 6 If the multiplicity series fΓ1
, fΓ2

for T-ideals Γ1 and Γ2 are
rational specific functions then the multiplicity series fΓ for the product Γ =
Γ1 · Γ2 of the T-ideals is a rational specific function.

Proof The theorem follows from the previous theorem and the Berele and
Regev formula for the cocharacter of the product of T-ideals [3]. We can
realize this formula for the multiplicity series as follows

fΓ((t)k+r) = fΓ1
+ fΓ1

+ B(fη(Γ1,Γ2)) − fη(Γ1,Γ2), where

f̌((t)m, (s)m) = S
(1)
(t)k→(s)k

(f((t)m)), and

B(f((t)m)) = (

m+1
∑

i=1

ti)f((t)m) −

m
∑

i=1

ti+1 · f̌((t)m, (s)m)

∣

∣

∣

∣

∣

sj=











1, j 6= i,

0, j = i.

The transformation B here is evidently rational. �

Theorem 7 Any minimal variety of associative algebras over a field of zero
characteristic of the matrix type not greater than 2 and generated by a finitely
generated algebra has a rational multiplicity series.

Proof By [8] the ideal of polynomial identities Γ of such variety is the

product of T-ideals Γ =
m
∏

j=1
Γj , where any Γj = T [M2(F )] is the ideal

of identities of full matrix algebra of the 2-nd order over the base field, or
Γj = {[x, y]}T is the commutator ideal. Then in the first case the multiplicity
series for Γj can be obtained using the description of multiplicities for 2× 2
matrices given by V.Drensky [7]

fM2(F ) =
1

(1 − t1)2(1 − t1t2)2(1 − t1t2t3)2(1 − t1t2t3t4)
−

1

(1 − t1)2(1 − t1t2)
−

t1t2t3 + t1t2t3t4 − 1

(1 − t1)
.

In the second case the multiplicity series is trivial f{[x,y]}T = 1
1−t1

. It is
obvious in the both cases the multiplicity series are rational specific on all
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variables functions. Then by the previous theorem the multiplicity series for
a product Γ of these T-ideals is also rational. �

Taking into account this result, the results of V.Drensky and G.K.Genov
[5, 6] and the rationality of a Hilbert series of any relatively free algebra [2]
the question whether any associative PI-algebra over a field of zero charac-
teristic has a rational multiplicity series becomes quite natural.

Notice at the end the presenting algorithm also can be applied for count-
ing of exact formulas for cocharacters of some PI-algebras using some math-
ematical software.
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