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ABSTRACT. We present a decomposition strategy for c-nets, i. e.ethb8tconnected pla-
nar maps. The decomposition yields an algebraic equatioihéonumber of c-nets with a
given number of vertices and a given size of the outer face. ddtomposition also leads
to a deterministic and polynomial time algorithm to sampleetsuniformly at random
Using rejection sampling, we can also sample isomorphigmesyof convex polyhedra,
i.e., 3-connected planar graphs, uniformly at random.

RESUME. Nous proposons une stratégie de décomposition pouraescpointées 3-
connexesd-réseaux). Cette decomposition permet d’obtenir unéon algébrique pour
le nombre de:-réseaux suivant le nombre de sommets et la taille de laietégieure. On

en déduit un algorithme de complexité en temps polyna@mialur le tirage aléatoire uni-
forme desc-réseaux. En utilisant une méthode a rejet, nous obteaassi un algorithme
de tirage aléatoire uniforme pour les graphes planairesndexes.

1. INTRODUCTION

Three-connected planar graphs are in a one-to-one redimo the edge-graphs of
convex polyhedra [23]. The enumeration of such graphs hasgHistory. Already Euler
attempted to find an exact formula for the number of isomaphiypes of convex poly-
hedra [10], which is still unknown. However, since almostsaich graphs have a trivial
automorphism group [3, 26], and since all embeddings of sugtaph are equivalent (due
to Whitney; see e.g. [9]), thasymptotidoehavior of these numbers is the same as for the
number ofc-nets i.e., three-connected planar maps with a distinguishextt#id edge at
the outer face. The exact and the asymptotic number of cforedsgiven number of edges
was first computed by Tutte [25]. Mullin and Schellenberg][ft8ind exact formulas in
terms of vertices and faces. The algebraic equation dethes® was analyzed by Ben-
der and Richmond in [2], who showed that the growth constanttfe number of c-nets
depending on the number of verticed &/27(17 + 7+/7) = 21.049042.

Other motivations to study c-nets come freamdom samplingn theoretical computer
sciencé. The only known algorithm to sample labeled planar grapli®tmly at random
in polynomial time requires a sampling procedure for c-iveits “inner loop” [4]. A sam-
pling procedure from [1,21, 22] for planar maps with givemners of vertices and edges
was applied for that step in [4], and the analysis shows thiati$ the bottleneck for the
performance. Recently, the sampling procedure for c-natsimproved [13]. But still this
approach applies rejection sampling, and therefore canleat! to expected polynomial
time sampling procedures.

In this paper, we present a new decomposition strategy éontimber of c-nets with a
given number of vertices and a given size of the outer facewilVéormulate the decom-
position using the generating function for the number oktsn The resulting equations

Key words and phrasesRandom sampling, planar graphs, algorithms.
1in the literature often the word “generating” is used indte&“sampling”. We prefer “sampling” because it
is more specific.
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can be solved with the quadratic method [6,12], and the géingrfunction for the number
of c-nets is algebraic of degree four, and therefore has plicéddescription with radicals.

Using the computer algebra package GFUN [20], we computeeatlidifferential equa-

tion with polynomial coefficients that describes the getiegafunction. From that we get
a single-parameter recurrence for its coefficients thatallto compute the number of c-
nets with more than 100000 vertices within reasonable tiRzdlowing the discussion in

the forthcoming book of Flajolet and Sedgewick [12] we comepthe mentioned growth
constant.

With the decomposition strategy we obtain the fitsterministigpolynomial time sam-
pling procedure for c-nets. Together with the results invj4] obtain the firstetermin-
istic polynomial time sampling procedure for labeled planar gsapSince almost all 3-
connected graphs have a trivial automorphism group [3,¢an also be used in a rejection
sampling procedure to sample 3-connected planar graghxpactegolynomial time. The
algorithm uses a recursive formula for c-netsovertices with a specified size of the outer
face. Our decomposition strategy is flexible enough to atsdrol other parameters of c-
nets, for instance the total number of edges, faces, or gpeds of root vertices, if needed.
From a methodological point of view, the decomposition teiiasting, since it generalizes
the well-known and classical approach of Tutte to counhgidations [24]. This direct
technique was never carried out for c-nets — yet it is pderty suited for therecursive
method for samplingan early reference is [19]; see [8, 11] for recent develaps)e

The fact that we can control the size of the outer face opensapelications for count-
ing unlabeledplanar graphs. The only approach in question to enumerédbeied planar
graphs exploits the connectivity structure, and was ayrgadposed in [27]. As a first
step, we can use the result of the present paper to computemhiger ofunlabeled rooted
2-connectedlanar graphs on a given number of edges. Moreover, usingahmpling
procedure for c-nets with a specified size of the outer fa@phtain the first expected
polynomial time sampling procedure for 2-connected plamaphs [5]. With the sampling
procedures for c-nets from [13] this is not possible.

Outline. The paper is organized as follows: We first introduce c-regtd, mention previ-
ous enumerative results. In Section 3, we describe the amdgaomposition strategy for
c-nets, which directly translates into equations for theegating function for the number
of c-nets. In Section 4 we apply the quadratic method to deaigingle algebraic equa-
tion of degree four that defines this generating functiow, @nderive a single parameter
recurrence. Section 5 uses the decomposition to samplesasnigormly at random.

2. PLANAR STRUCTURES AND GNETS

A mapis a graph embedded in the plane.pfanar graphis a graph that has an em-
bedding in the plane. A graph isconnectedf the graph stays connected after deleting
anyk vertices. By Whitney's theorem (see e.g. [9]), all embeddiof 3-connected planar
graphs are equivalent. ®oted mags a map with a distinguished directed edgen the
outer face. If we count rooted maps, we count them up to isphisms that map the outer
face to the outer face and the root edge to the root edge.

A c-netis a rooted and 3-connected map on at least three verticesdidtiaguish
betweenouter vertices, which lie on the outer face amher vertices, which do not lie
on the outer face. The outer vertices include the verticabefrootst and are labeled
s, t,u1, ... ,uy in clockwise order starting with the root; see Figure 1.
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FIGURE 1. A c-netom + k + 3 vertices

Starting with Tutte’s pioneering work [25], many classeplainar maps were enumer-
ated. Itis possible to compute the number of unrooted plerags onm edges [17,28,29].
For rooted maps, the enumeration is easier. The formulas for 3-coade2tconnected,
connected, and all rooted planar maps are related via a ctvityedecomposition [25].
Mulling and Schellenberg [18] used a bijection between Brazted rooted maps, i.e.,
c-nets, andjuadrangulationswhich can be further decomposed, to enumerate c-nets in
terms of edges and faces (by Euler's formula, one can thencalstrol the number of
vertices). The evaluation of their formula, however, im&s the evaluation of a double
summation. In this paper, we present a single parameterregme that can be computed
much faster. Since the generating function is algebrais,dtraightforward to use singu-
larity analysis (an excellent exposition of which can benfin the forthcoming book of
Flajolet and Sedgewick) to reproduce the asymptotic resifilBender and Richmond [2].

3. DECOMPOSITION

In this section we present a unique decomposition strategg-fiets. Informally, the
idea is toremovethe root edge, and to describe the remaining graph in terrsmafler
c-nets. Tutte [24] applied this technigue successfullyear-triangulationswhich gener-
alize triangulations. The decomposition proposed by Tiaénple: Either the graph with-
out the root edge is 3-connected, or it is decomposed atdétigRinto 3-connected com-
ponents. In either case the decomposition yields one or sroedler near-triangulations.
The uniqueness of the decomposition is ensured by an impqgstaperty of the simple
structure of near-triangulations: The components of a egosition at a 2-cut are inde-
pendent, i.e., an arbitrary combination of near-triangoies can be composed to obtain a
near-triangulation.

The generalization of this decomposition for c-nets facaiiy two problems. First,
the objects resulting from the decomposition are not nec#gs-nets. Second, the com-
ponents induced by a 2-cut are in general not independerdsasided before. We solve
these problems by assigning distinct generating functiorgsach type of component and
by introducing a third case for the decomposition into dejgen components. This leads
us to the notions of d-nets (one 3-connected componengtefere is a 2-cut that yields
two dependent components) and f-nets (there is a 2-cut iblaisytwo independent com-
ponents), which are depicted in Fig. 3.

In figures, we draw the root edge as a directed edge. Edges that are added to the
graph are indicated as dotted lines. If a pair of verticemfoa 2-cut, we draw a dashed
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FIGURE 2. The basic case distinction: Every c-net (exc&p} is either
a d-net, and e-net, or an f-net.

circle around the two vertices. The set of inner verticesjsesented by a closed line with
its size noted inside.

We formulate the decomposition in terms of generating fionst Letc(n, k) be the
number of all c-nets on + 1 inner vertices andé + 2 outer vertices. For technical reasons,
we also define(n, k) for k = 0: This case corresponds to graphs where the soét a
double edge which bounds the outer face. Every c-net withubléagoot edge can be iden-
tified with a simple c-net by removing one of the parallel esigence:(n) := ¢(n,0) =
Yohc(n—k,k). LetC(t,u) ==Y, 50 > rso ¢(n, k)t"u* be the two variable ordinary
generating function for the number of c-nets, andJét) := 3" _, c(n)t".

Decomposition of c-nets. If a c-net has only three vertices, { and an inner vertex) then
it is the K5 and represents the only initial case of the whole decomipasi{The decom-
position terminates trivially for negative valuesrobr k.) Now consider c-nets on at least
four vertices. We distinguish three disjoint cases; theydapicted in Fig. 2.

(1) After removing the root edge, the remaining graph i$ ttike-connected.

(2) Thereis a 2-cut in the graph without the root edge, antexeiis of degree three.
(The two neighbors of besides vertex necessarily form a 2-cut in the graph
without the root.)

(3) Thereis a 2-cutin the graph without the root edge, antéxeis at least of degree
four.

Now let D(n, k), E(n, k) andF(n, k) be the generating functions representing the c-nets
of the first, second and third case, with coefficiedits, k), e(n, k) and f(n, k). For
convenience we call these three different kind of c-detets e-netsandf-nets Then the
basic case distinction can be formulated as follows.

(1) C(t,u) =14+ D(t,u) + E(t,u) + F(t,u).

Decomposition of d-nets. Let G be a d-net, i.e.(7 is a c-net which is 3-connected after
removing the roott. The decomposition of d-nets is easy. kebe the neighbor of
(different froms) on the inner face. There are two distinct cases, depictEairs.

(1) The vertex is the only vertex on the inner face ef excepts andt.
DecompositionRemovest and choosew as new root edge.
Result:A c-net with one inner vertex less and one outer vertex mae¢h
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FIGURE 3. The decomposition of d-nets.
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FIGURE 4. The decomposition of e-nets.

(2) There is at least one other vertex thaon the inner face oft excepts andt.
DecompositionRemovest and insertsv as new root edge.
Result:A d-net with one inner vertex less and one outer vertex mae¢h

With exception of the initial case every c-net with a doulidges root is a d-net. Hence

@ D(t,u) = 5(0@, ) — C(t,0)) + é(D(t, w) — D(t,0))

3) D(t,0) = C(t,0) — 1.

Decomposition of e-nets. Let G be an e-net, i.e(f is a c-net and is of degree3. The
two neighbors of apart froms arew; on the outer ana on the inner face andlv, u;}
forms a 2-cut on7 without st. We now introduce the last two kinds of c-nets that ap-
pear in the decompositiore’ -nets(represented by* (¢, u)) are defined as e-nets where
the two neighbors (other thas) of ¢ are connected by an edge, wherésets(repre-
sented by °(¢, u)) are defined as f-nets whetig has to be one of the cut vertices. In the
decomposition of d-nets there are four distinct cases; @neylepicted in Fig. 4.

(1) Thereis an edgeu, in G.
Result:An e"-net with the same number of vertices like

(2) Thereis no edgeu; andG withoutt is 3-connected.
DecompositionRemovet, insert the edgew; and insertsu; as new root edge.
Result:A d-net with one outer vertex less théh
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FIGURE 5. The decomposition of‘enets.

(3) Thereis no edgeu; andG withoutt has a 2-cut including; .
DecompositionRemovet, insertvu; and insertsv as new root edge.
Result:An f%-net with one inner vertex less théh

(4) Thereis no edgeu; andG withoutt has a 2-cut, where, is no cut vertex.
DecompositionRemovet, insertvu; and insersu, as new root edge.
Result:An f-net with one outer vertex less thah

Hence
(4) E(t,u) = E*(t,u) +u D(t,u) +t F°(t,u) +u F(t,u).

Decomposition of €*-nets. Next, letG be an é-net, i.e., an e-net with an edge;. Again,
there are four distinct cases; they are depicted in Fig. 5.

(1) The degrees af andu; in G are both three.
DecompositionRemovet andu, insert the edgeus (which cannot exist in7)
and insertsv as new root edge.
Result:An e-net with one inner and one outer vertex less ffian

(2) The degree of in G is three and the degree of in G is at least four.
DecompositionRemovet and insertsv as new root edge.
Result:An e-net with one inner vertex less théh

(3) The degree of in G is at least four, and; is not a cut-vertex of any 2-cut i@
withoutt.
DecompositionRemovet and insertsu; as new root edge.
Result:A c-net with one outer vertex less théh

(4) The degreeaf in G is at least four, and, is a cut-vertex of a 2-cut i6¥ withoutt.
DecompositionRemovet and insertsv as new root edge.
Result:An f°-net with one inner vertex less thah

Hence
(5) E*(t,u) = tu E(t,u) +t B(t,u) +u C(t,u) +t FO(t,u).

Decomposition of f-netsand f°-nets. Let G be an f-net, i.e (7 is a c-net where the degree
of ¢ is at least four and which has a 2-cut after remowhgBecause of planarity there
exists a unique 2-cutu;+1 (0 < j < k — 1) that is closest te (see Figure 6). As intro-
duced above(; is an f-net if j = 0. G withoutv andu;,1 has two components, one of
which includeg andi inner vertices and the other includeandn — ¢ inner vertices. Let
G be the subgraph induced byu;; and the component containingand letG; be the
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FIGURE 6. The decomposition of f-nets an-hets.

subgraph induced by, u;,; and the component containing Note that the edgeu;
might or might not be present .

Decomposition: If vu;;1 is not an edge oy, then insert it into botlG, andG;. In-
serttu,4+1 as root edge int@7;. Add a new vertex’ to G, insert the edgest’, t'v
andt'u;11, and chooset’ to be the root edge a¥ .

Result: G; is an d-net withi inner and;j outer verticesG, is an é-net withn — 7 inner
andk — j outer vertices.

For given parametersandj the choice whetheru;,, is an edge of, the choice of
G, and the choice of7, are all independent, i.e., changing any of these choices fmat
yields a different f-net with the same parameters. The deasition for -nets is the
same, and since af-het is an f-net withj = 0, we have

(6) F(t,u) =2 D(t,u)E*(t,u)
7) FO(t,u) =2 D(t,0)E*(t,u).

4. GENERATING FUNCTIONS

We now use the equations (1) - (7) from the decomposition tivelan algebraic equa-
tion and an explicit description far' (¢, w) and forC(t) = C(t,0). First, we eliminate the
auxiliary generating function® (¢, u), D(t,0), E(t,u), E*(t,u), F(t,u) and FO(¢,u)
within (1) - (7), which yields an equation ifi(¢, u), C(t), t andu:

(8) 0= (g1(t,u) C(t,u) + ga(t,u) )2 —g3(t,u), where

g1 (t,u) = dtu(t+1)(u+1),

go(t, u) := 204262 4413 —ut+tu+4Atutu? Ftu® —2t%u> — 2t(t41)(u+1)(2t+u) C(t),

g3(t,u) == 4t* (ut1) (4> —4tutu? +4t—4u+5) +2tu(u® —4u? —3u—2) +u? (u—1)*
4413 (u* —5u3 —9u? —u+2) +1% (5u’ —10u> —15u>4-4)
+ 42 (t41)% (ut1)23 (2t—u)? C ()% — 4t(t+1) (ut1) (462 +4t3 -8t
—Atu—A4t3ut-8ttu—u® —5tu? —2t*u? —8t3u +ud+tud+2t2u3) C(t) .

Both C(¢,u) and C(t) appear in (8), and we cannot solve directly for one of these
functions int andu only. Settingu = 0 we only yield the trivial equatiof = 0. Instead,

we apply the quadratic method due to Tutte [24], and follogvhesentation in [15]. We
assume that there exists a function := w(t) such thatgs(¢t,u;) = 0. Equation (8)
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directly yields0 = g53(t,u;) = (g1 C + g2)*(t,u¢), henced = (g1 C + g2)(t,u;) and
then (2 93)(t,ue) = o (91C + g2)°(t,ue) = (2(91C + g2) 2 (91C + g2)) (£, us) = 0
holds as well. We now have the following pair of simultaneegsations0 = gs(¢, u;)
and0 = (3%93)(ﬁ,ut), depending orC(t), t andwu. We eliminateu by calculating the
resultant, i.e., the Sylvester determinantgeft, u.) and(%gg)(t,ut) with respect tau,
and obtain one polynomial i’ := C(¢) andt, the roots of which include the common
roots ofgs (¢, u) and(%g3)(t, u¢). The resultant has several nontrivial factors, but only
the following factorp(C, ¢) will be relevant for us.

p(C,t) = (83 +72t* 4264t 4504545287 +-28854-6417) C*
+ (12t2 228t —988t* —17561° —2032t° 1792t " — 10245 —256¢") C*
+ (6+218%+89413+2190¢* 328415 +3120¢°+2304¢ "+ 134415 +384¢7) C?
+ (1—-43t—337t* 10213 —1828t* —2404¢°—2128t° — 13441 —768t%—~2561°) C
+ (= 1436t +131¢24-350t>4-540t* +-616t° 4536t °+-304t " +160t54-6417) .
As the order of(C, t) as a polynomial irC' is four, andp(C, t) = 0 yields four algebraic

solutions forC. Comparing initial coefficients, we find that the following the explicit
form of the generating functio@'(t).

a=—"729 — 49113t — 61936t — 137856t> + 6144¢* + 8192t°

b=(t- 1)(*2(3% F17 — TVT) (32t + 17 + TVT)) 3

s = — 34 2126t — 1571¢% — 11800¢> — 9392t* — 256° 4 1024t°
y=—3(254t5 (1 +t)(1 +203((a+b)5 — (=1)3 (a — b)3) + 5)
c(t) :(3(—3 + 63t + 12417 + 1283 + 128t + 64¢°) + /3
+ (= 9s — y + 54(1 + 2681t — 46609t> — 96397¢> + 48468t* + 188304t°
+ 62016t° — 63488t" — 32768t%)/,/y) %)/(2415(1 +1)(1+2t)%).

An explicit form for C(t, u) can be obtained by solving equation (8) fo(t, »), and
substitutingC'(¢) by its explicit form.

Having the algebraic equation at hand, we can apply sinigplanalysis: The domi-
nant singularity lies in the exceptional set of the algebcairve, and can be computed by
evaluating the resultari® of p(C,t) and %p(C, t) with respect taC. The solutions for
in the equation? = 0 can be computed symbolically with Mathematica, and the lersial
real solutionty, where additionally the equatiop$C, o) = 0 and%p(c, to) = 0 have a
simultaneous solution, is a dominant singularityf). In this way, it is easy to compute
the dominant singularity of'(¢), which is atty = 1/32(7v/7 — 17) = 0.047508 (that was
computed before from the equations of Mullin and Schellegibsee [2]), and proves the
following.

Theorem 1 (essentially from [2]) The number of c-netgn) is in (1/to)"t°(")), where
1/tg = 16/27(17 + 7/7) = 21.049042.

Using the Maple package GFUN [20], the algebraic equat{ah t) can be transformed
automatically into a linear differential equation with ppbmial coefficients, which in turn
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translates to a one parameter recurrence formula,fotJsing Horner’'s method and this
formula we computed the value ef100000) in 100 seconds on a PC.

Theorem 2. For the coefficients(n) of C(t) the following recursion holds.
c(0) =0, ¢(1) =1, ¢(2) =7, ¢(3) =73, c(4) =879, ¢(5) = 11713,
¢(6) = 167423, ¢(7) = 2519937, and forn > 8,
c(n) = ((42147840 + 49975296 (n—7) + 19267584(n—T7)% 4 2408448(n—7)*) c(n—T7)
+ (291529728 + 269461504 (n—7) + 83615232(n—7)% + 8692736(n—7)*) c(n—6)
+ (533308032 + 435701440(n—7) 4 119431200(n—7)% + 11026784(n—7)%) ¢(n—>5)
+ (259749888 + 220560168(n—7) + 59988636 (n—7)% + 5361276(n—7)*) c(n—4)
+ (—45552288 — 9821452(n—7) + 1941468(n—7)% + 418816(n—7)%) ¢(n—3)
+ (—16057320 — 11696062(n—7) — 2582841(n—7)% — 180467(n—7)%) c(n—2)
+ (5063688 + 2370408(n—7) 4 367734(n—7)% 4 18930(n—7)*) c(n—l))
/ (255024 4 99918(n—7) + 13041(n—7)* + 567(n—7)%) .

5. SAMPLING

We now discuss how to use the presented decomposition tdesaamets uniformly at
random. (As usualf)(-) denotes growth up to logarithmic factors.) Note that theyeisa
of [13] applies to expected running time, whereas our bosrdkterministic. Moreover,
they have parameters for vertices and faces, whereas weheameters for the number of
vertices and the size of the outer face. Thus the resultsamimrectly comparable. Their
upper bound i®)(n*) for n vertices, and reduces @(n) if the ratio of vertex number to
face number is fixed to a constant. The worst case is attagréddngulations.

Theorem 3. There exists a deterministic polynomial time algorithmdmgle c-nets on a
given number of vertices and a given number of vertices oauter face uniformly at ran-
dom. The algorithm runs i®(n°) time andO(n?) space. If we allow a pre-computation,
the algorithm can sample a c-net@(n?) time andO(n®) space.

Proof. The decomposition yields recursive counting functionsderets, d-nets, e-nets,
e*-nets, f-nets, and®nets. For allz, k > 0:

1 fn=k=0,
e(n k) = {d(n,k) Ve(nk)+ f(n,k) else.

din,k) =cn —1Lk+1)+dn—-1,k+1).
e(n, k) =e*(n,k) +d(n,k — 1)+ fO(n — 1,k) + f(n,k —1).
e'(n, k) = (n—l E—1)+e(n—1,k)+c(nk—1)+ fO(n—1,k).

nk—QZZd’L] (n—1i,k—7).

1=0 j=0

nk*QZd ef(n—ik).
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By induction on the lexicographically ordered pgir, k), the decomposition reduces to the
initial case withinO(nk) steps of recursion. Hence we can evaluate the functiong usin
dynamic programming. The representation size of all coeghnimbers is linear, because
it is bounded by the logarithm of the number of unlabeled ts;nehich isO(2°(™) ac-
cording to Theorem 1. Note that the functiahs:, e*, f, andf© are at most as large as
according to their definitions. Since we employ a constantimer of two-dimensional ta-
bles, the total space requirementién?). Concerning the running time, each summation
runs over at most two indices, and for each summand we hawertorp one multiplica-
tion with O(n) bit numbers. We assume &hn log n loglogn) multiplication algorithm
(see e.g. [7]). Thus the running time for the computatiorhefialues is withirO(n?).

The values in the dynamic programming tables can be usedke tha correct proba-
bilistic decisions in a recursive construction of c-nethjch is essentially the inversion of
the presented decomposition — this method is standard aowirkas theecursive method
for sampling [8,11,19]. For each entry, we scan over all titées from which it was com-
puted (there are at most of them). We compute partial sums in another pass over these
entries and build a balanced binary tree, where in eacmiateode the maximum over its
left-hand siblings is stored. This will take(n?) time in total, since we hav@(n?) table
entries, each wittO(n?) dependencies, and each tree node store@(ar bit number.
After that, when given a random number between 1 and the marifn e., the value of
the entry for which the tree was built), we can find the coroesiing table entry in one
pass through the tree, while reading each bit of the randanbeuonly a constant number
of times, and hence i®(n) time. Then the procedure calls itself recursively. In theeca
of f and f°, we have to trace back two separate lines, as the randomgsitrresponds
to a choice of the summation indicégfor f), respectively(i, j) (for f°) and the actual
summand is a product of two entries (ed(i,j) ande*(n — i,k — j) for f(n,k) and
(4,4)). Note that the sum of the bit lengths of both factors is lirieahe bit length of the
entry. It follows that the total running time for generatithg decomposition tree '(é(n2)
(details omitted due to lack of space). If the decompositiea is stored appropriately, we
can output the sampled random grapl®ifr) time.

It is not necessary to create the binary trees physicallyefmh entry of the tables.
Instead, we can just redo the computations from the prepsotg and stop if the partial
sum exceeds the random number. This way, the algorithm @e%) time andO(n?)
space. O

To sample unlabeled, unrooted 3-connected planar grapfesmiy at random, we ap-
ply rejection samplingThat is, we generate a c-net uniformly at random, but theltiag
graph is accepted only with a probability that is inversepoirtional to the size of the orbit
of the root edge together with an incident face in the autginiem group of the graph. (It
is well-known that the automorphism group of a planar gragohtoe computed efficiently,
see e.g. [16].) If we do not output the graph, we restart therghm. Clearly, the output
of this procedure are uniform random samples from the cléasdl 8-connected planar
graphs. Since a 3-connected planar graph has with high pildpa trivial automorphism
group [3], the expected number of restarts is constant.

Corallary 1. Using rejection sampling, we can sample 3-connected plgrgphs using
the algorithm of Theorem 3 in an expected constant numberuofds.

6. CONCLUSION

Our main structural result is a new decomposition of rootetBnected planar graphs,
which can easily be expressed in terms of recursive coufdimgulas, or equations for
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c(n,k) | 0 1 2 3 4 5 k=6
01 6 56 640 8256 115456 1710592
1 1 16 208 2848 41216 624384 9812992
2 (1 30 560 9440 156592 2613664 44169600
3|1 48 1240 25864 496944 9234368 169378560
4 (1 70 2408 61712 1377600 28663040 574139904
511 96 4256 132480 3430528 80104448 1758695424
6 | 1 126 7008 261648 7826544 205083936 4944057984
7 1 1 160 10920 483080 16600944 487362496 12906193920
8 [ 1 198 16280 843744 33111232 1086226944 31579350528
9 1 240 23408 1406752 62659200 2289692416 72985375744
n =10 | 1 286 32656 2254720 113313200 4596347808 160355238784
c(n, k) 7 8 9 k=10
0 26468352 423641088 6966960128 117148778496
1 158883840 2636197888 44640468992 769058340864
2 756712960 13136471040 230851792896 4102116843520
3 3095526912 56624998400 1039080697856 19147850612736
4 11259283200 218198045184 4201424145408 80643838062592
5 37158281984 765948707328 15534537453568 311681600004096
6 112834665216 2481031718144 53154302311936 1117907385569280
7 318621198720 7487670554880 169818439763968 3751908804540416
8 843790483712 21217661003264 510172604564480 11860405982539776
9 | 2110406347008 56815355557376 1449735177678848 35506327812194304
n =10 | 5014608178944 144547875949568 3916271978577920 101129913041264640

FIGURE 7. Atable ofc(n, k) for small c-nets on up t@3 vertices. The
number of vertices on the outer facekis- 2. The total number of ver-
ticesisn + k + 3.

their generating functions. We use these equations toalan\algebraic equation of degree
four that determines the generating function for the nunolbeooted 3-connected planar
graphs om vertices. Here we apply computer algebra systems, and albeedh single
parameter recurrence formula, which allows to computeetimesnbers for much larger
than the previously known formulas of Mullin and Schellergjd 8].

The main algorithmic result is the first deterministic padymal time algorithm to sam-
ple c-nets with a given number of vertices and a given sizénefauter face uniformly
at random. Since the recurrences of the decomposition dowave any subtractions,
the decomposition immediately translates into a sampliggrithm that produces a rooted
3-connected planar graph uniformly at random. The recemsdunting formulas were im-
plemented by top-down dynamic programming in C++ using thé&PGibrary for exact
arithmetic [14]. A table for small values efandk is given in Figure 7.

It is fairly straightforward to see that the decompositiam e refined to control more
parameters of the graph, e. g., the number of edges, or thealefja root vertex. Each
parameter comes at the cost of another dimension in thestabtéhence increases the pre-
computation time by a quadratic factor. The recursive dagribrmulas with an additional
parameter for the number for edges were also implementeldyarused the numbers of
Mullin and Schellenberg [18] to check both implementations

The algorithm can be used to obtain a faster and now fullyrdetéstic polynomial
time sampler for labeled planar graphs [4]. Also, using #jeation sampling method,
we obtain an expected polynomial time algorithm for 3-carteé planar graphs (isomor-
phism types of convex polyhedra). In forthcoming work, welgghe n,k,m-recurrence
and rejection sampling to generate 3-connected planahgnajth a sense-reversing auto-
morphism, and unlabeled 2-connected planar graphs [5].
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