Solution Spaces of H-Systems and the Ore-Sato Theorem*

S. A. Abramov ${ }^{\dagger}$
Russian Academy of Sciences
Dorodnicyn Computing Centre
Vavilova 40, 119991, Moscow GSP-1, Russia
sabramov@ccas.ru
M. Petkovšek ${ }^{\ddagger}$
Faculty of Mathematics and Physics
University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
marko.petkovsek@fmf.uni-lj.si

Abstract

An H-system is a system of first-order linear homogeneous difference equations for a single unknown function T, with coefficients which are polynomials with complex coefficients. We consider solutions of H-systems which are of the form $T: \operatorname{dom}(T) \rightarrow \mathbb{C}$ where either $\operatorname{dom}(T)=\mathbb{Z}^{d}$, or $\operatorname{dom}(T)=\mathbb{Z}^{d} \backslash S$ and S is the set of integer singularities of the system. It is shown that any natural number is the dimension of the solution space of some H-system, and that in the case $d \geq 2$ there are H-systems whose solution space is infinite-dimensional. The relationships between dimensions of solution spaces in the two cases $\operatorname{dom}(T)=\mathbb{Z}^{d}$ and $\operatorname{dom}(T)=\mathbb{Z}^{d} \backslash S$ are investigated. Finally we give an appropriate formulation of the Ore-Sato theorem on possible forms of solutions of H-systems in this setting.

Résumé

Par un H-système nous désignons un système des équations aux differences linéaires homogènes pour une seule fonction inconnue T, à coefficients polynomiaux sur le corps des nombres complexes. Nous considérons les solutions des H-systèmes de la forme $T: \operatorname{dom}(T) \rightarrow \mathbb{C}$ où soit $\operatorname{dom}(T)=\mathbb{Z}^{d}$, soit $\operatorname{dom}(T)=\mathbb{Z}^{d} \backslash S$, et S est l'ensemble

[^0]des singularités entières du système. Nous montrons que chaque nombre naturel est égal à la dimension de l'éspace des solutions d'un H-système, et que dans le cas $d \geq 2$ il y a des H-systèmes dont la dimension de l'éspace des solutions est infinie. Les rélations entre les dimensions des éspaces des solutions dans les cas $\operatorname{dom}(T)=\mathbb{Z}^{d}$ et $\operatorname{dom}(T)=\mathbb{Z}^{d} \backslash S$ sont recherchées. Enfin nous présentons une formulation propre du théorême d'Ore-Sato sur les formes possibles des solutions des H-systèmes.

1 Introduction

Linear homogeneous recurrence equations with polynomial coefficients and systems of such equations play a significant role in combinatorics and in the theory of hypergeometric functions; the question of the dimension of the space of solutions of such systems is of great importance for many problems.

Let n_{1}, \ldots, n_{d} be variables ranging over the integers and $E_{n_{i}}$ the corresponding shift operators, acting on functions (sequences) of n_{1}, \ldots, n_{d} by $E_{n_{i}} f\left(n_{1}, \ldots, n_{i}\right)=f\left(n_{1}, \ldots, n_{i}+\right.$ $\left.1, \ldots, n_{d}\right), i=1, \ldots, d$. We consider H-systems, i.e., systems of equations of the form $f_{i} E_{n_{i}} T=g_{i} T$, where $f_{i}, g_{i} \in \mathbb{C}\left[n_{1}, \ldots, n_{d}\right] \backslash\{0\}$ for $i=1, \ldots, d$. The notion of singular points (singularities) of such systems can be defined in the usual way. Such singularities make obstacles (sometimes insuperable) for continuation of partial solutions of the system on all of \mathbb{Z}^{d}.

In this paper we consider two spaces of solutions of H-systems: the space V_{1} of solutions defined everywhere on \mathbb{Z}^{d}, and the space V_{2} of solutions that are defined at all nonsingular points of \mathbb{Z}^{d} (more precisely, if W is the set of all solutions of a given system that are defined at least at all non-singular elements of \mathbb{Z}^{d}, then V_{2} contains the restrictions of all elements of W to the set of all non-singular elements of \mathbb{Z}^{d}). In Sections 3 and 4 we investigate the dimensions of the spaces V_{1}, V_{2}. It is well known [6] that if (in the case $d=1$) one considers the germs of sequences at infinity (i.e., classes of sequences which agree from some point on), then the dimension of the solution space is 1 . However, the situation is different with $\operatorname{dim} V_{1}$ and $\operatorname{dim} V_{2}$. In Section 3 we prove for the case $d=1$ that if the equation has singularities then $1 \leq \operatorname{dim} V_{1}<\operatorname{dim} V_{2}<\infty$, and for any integers s, t such that $1 \leq s<t$ there exists an equation with $\operatorname{dim} V_{1}=s$ and $\operatorname{dim} V_{2}=t$ (the case where there is no singularity is trivial: $\operatorname{dim} V_{1}=\operatorname{dim} V_{2}=1$). In turn, in Section 4 we show that in the case $d>1$ the possibilities are even richer: for any $s, t \in \mathbb{Z}_{+} \cup\{\infty\}$ there exists an H-system with $\operatorname{dim} V_{1}=s$ and $\operatorname{dim} V_{2}=t$.

In Section 5 we revisit the Sato-Ore theorem $[5,7]$ and show that, contrary to some interpretations in the literature (e.g., [3, 4]), this theorem does not imply that any solution of an H-system is of the form

$$
\begin{equation*}
R\left(n_{1}, \ldots, n_{d}\right) \frac{\prod_{i=1}^{p} \Gamma\left(a_{i, 1} n_{1}+\cdots+a_{i, d} n_{d}+\alpha_{i}\right)}{\prod_{j=1}^{q} \Gamma\left(b_{j, 1} n_{1}+\cdots+b_{j, d} n_{d}+\beta_{j}\right)} u_{1}^{n_{1}} \cdots u_{d}^{n_{d}} \tag{1}
\end{equation*}
$$

where $R \in \mathbb{C}\left(x_{1}, \ldots, x_{d}\right), a_{i k}, b_{j k} \in \mathbb{Z}$, and $\alpha_{i}, \beta_{j} \in \mathbb{C}$ (for the case when the solution of the system is holonomic, and R is required to be a polynomial, we have already noted this in [2]). Finally we give an appropriate corollary of the Ore-Sato theorem on possible forms of solutions of systems under consideration.

We write $p \perp q$ if polynomials $p, q \in \mathbb{C}\left[x_{1}, \ldots, x_{d}\right]$ are relatively prime. We call a set $A \subseteq \mathbb{Z}^{d}$ algebraic if there is a polynomial $p \in \mathbb{C}\left[x_{1}, \ldots, x_{d}\right] \backslash\{0\}$ which vanishes on A.

Definition 1 Let E denote the shift operator corresponding to x, so that $E f(x)=f(x+1)$ for every $f \in \mathbb{C}(x)$. A rational function $u \in \mathbb{C}(x)$ is shift-reduced if there are $a, b \in \mathbb{C}[x]$ such that $u=a / b$ and $a \perp E^{k} b$ for all $k \in \mathbb{Z}$.

Theorem 1 For every rational function $F \in \mathbb{C}(x)$ there are rational functions $u, v \in \mathbb{C}(x)$ such that
(i) $F=u \cdot \frac{E v}{v}$,
(ii) u is shift-reduced.

Definition 2 If u, v, F are as in Theorem $1,(u, v)$ is a rational normal form of F.
Theorem 2 Let (u, v) and $\left(u_{1}, v_{1}\right)$ be two rational normal forms of $F \in \mathbb{C}(x) \backslash\{0\}$. Write $u=p / q$ and $u_{1}=p_{1} / q_{1}$ where $p, q, p_{1}, q_{1} \in \mathbb{C}[x], p \perp q$, and $p_{1} \perp q_{1}$. Then $\operatorname{deg} p=\operatorname{deg} p_{1}$ and $\operatorname{deg} q=\operatorname{deg} q_{1}$.

For proofs of Theorems 1 and 2, see [1].

$2 H$-systems and their solution spaces

Definition 3 An H-system ${ }^{1}$ is a system of equations

$$
\begin{array}{r}
f_{i}\left(n_{1}, \ldots, n_{d}\right) T\left(n_{1}, \ldots, n_{i}+1, \ldots, n_{d}\right)=g_{i}\left(n_{1}, \ldots, n_{d}\right) T\left(n_{1}, \ldots, n_{i}, \ldots, n_{d}\right) \\
\text { for } i=1,2, \ldots, d \tag{2}
\end{array}
$$

where $f_{i}, g_{i} \in \mathbb{C}\left[n_{1}, \ldots, n_{d}\right] \backslash\{0\}$ and $f_{i} \perp g_{i}$. We say that a d-variate sequence T (i.e., a function $T: \operatorname{dom}(T) \rightarrow \mathbb{C}$) is a solution of (2) if (2) is satisfied for all $\left(n_{1}, \ldots, n_{i}, \ldots, n_{d}\right) \in$ $\operatorname{dom}(T)$ such that $\left(n_{1}, \ldots, n_{i}+1, \ldots, n_{d}\right) \in \operatorname{dom}(T)$ as well.

Definition 4 Let A be an H-system of the form (2).
A d-tuple $\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}$ is a trailing integer singularity of A if there exists $i, 1 \leq i \leq d$, such that $g_{i}\left(n_{1}, \ldots, n_{d}\right)=0$. A d-tuple $\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}$ is a leading integer singularity of A if there exists $i, 1 \leq i \leq d$, such that $f_{i}\left(n_{1}, \ldots, n_{i-1}, n_{i}-1, n_{i+1}, \ldots, n_{d}\right)=0$. A dtuple $\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}$ is an integer singularity of A if it is a leading or a trailing integer singularity of A.

Let $S(A)$ denote the set of all integer singularities of A. Denote by $V_{1}(A)$ the \mathbb{C}-linear space of all solutions of A which are defined at all elements of \mathbb{Z}^{d}, and by $V_{2}(A)$ the \mathbb{C}-linear space of all solutions of A which are defined at all elements of $\mathbb{Z}^{d} \backslash S(A)$.

[^1]We consider only integer singularities here, therefore we will drop the adjective "integer" in the sequel. Sometimes we will also drop the name of the H-system, and will write V_{1}, V_{2} instead of $V_{1}(A), V_{2}(A)$.

Definition 5 Call the two d-tuples $\left(n_{1}, \ldots, n_{d}\right),\left(n_{1}^{\prime}, \ldots, n_{d}^{\prime}\right) \in \mathbb{Z}^{d}$ adjacent if $\sum_{i=1}^{d}\left|n_{i}-n_{i}^{\prime}\right|=$ 1. Call a finite sequence $t_{1}, \ldots, t_{k} \in \mathbb{Z}^{d}$ a path from t_{1} to t_{k} if t_{i} is adjacent to t_{i+1} for all $i=1, \ldots, k-1$. Given an H-system A, we define components induced by A on \mathbb{Z}^{d} as the equivalence classes of the following equivalence relation \sim in $\mathbb{Z}^{d}: t^{\prime} \sim t^{\prime \prime}$ iff there exists a path from t^{\prime} to $t^{\prime \prime}$ which contains no singularity of A. If T is a solution of an H-system A, then its constituent is the sequence that is the restriction of T on a component induced by A.

Definition 6 Rational functions $F_{1}, \ldots, F_{d} \in \mathbb{C}\left(n_{1}, \ldots, n_{d}\right)$ are compatible if

$$
\left(E_{n_{j}} F_{i}\right) F_{j}=F_{i}\left(E_{n_{i}} F_{j}\right)
$$

for all $1 \leq i \leq j \leq d$.
Note that a single rational function (corresponding to the case $d=1$) is always compatible.
Proposition 1 Let A be an H-system of the form (2) where $g_{1} / f_{1}, \ldots, g_{d} / f_{d}$ are compatible rational functions. Then $\operatorname{dim} V_{2}$ is equal to the number of components induced by A.

Proof: To each component C_{i} induced by A on \mathbb{Z}^{d} we assign a solution T_{i} of (2) which is 1 at a selected point $p_{i} \in C_{i}$, and 0 on all the remaining components. The values of T_{i} on the remaining points of C_{i} are uniquely determined by (2). It is clear that the set of all T_{i} is a basis for V_{2}.

3 Dimensions of solution spaces: The univariate case

When $d=1$ the system (2) is of the form

$$
\begin{equation*}
f(n) T(n+1)=g(n) T(n) \tag{3}
\end{equation*}
$$

where $f(n), g(n) \in \mathbb{C}[n] \backslash\{0\}$ and $f(n) \perp g(n)$.
Example $1\left(\operatorname{dim} V_{1}=1, \operatorname{dim} V_{2}=k\right)$ Consider the recurrence

$$
\begin{equation*}
T(n+1)=p_{k}(n) T(n) \tag{4}
\end{equation*}
$$

where $k \geq 1$ and $p_{k}(n)=\prod_{i=0}^{k-2}(n-2 i+1)$. Here we use the convention that a product is 1 if its lower limit exceeds its upper limit. Clearly the set of singularities of (4) is $\{2 i-1 ; i=$ $0,1, \ldots, k-2\}$, so $\operatorname{dim} V_{2}=k$. To compute $\operatorname{dim} V_{1}$, note that any solution $T(n)$ of (4) defined for all $n \in \mathbb{Z}$ is a constant multiple of

$$
F_{k}(n)= \begin{cases}(-1)^{(k-1) n} / \prod_{i=0}^{k-2}(2 i-n-1)!, & n<0 \\ 0, & n \geq 0\end{cases}
$$

Therefore $\operatorname{dim} V_{1}=1$.

Example $2\left(\operatorname{dim} V_{1}=m, \operatorname{dim} V_{2}=m+1\right)$ Now consider the recurrence

$$
\begin{equation*}
q_{m}(n+1) T(n+1)=q_{m}(n) T(n) \tag{5}
\end{equation*}
$$

where $m \geq 1$ and $q_{m}(n)=\prod_{i=1}^{m}(n+2 i+1)$. The set of singularities is $\{-(2 i+1) ; i=$ $1,2, \ldots, m\}$, so $\operatorname{dim} V_{2}=m+1$. Let $T(n)$ be a solution of (5) defined for all $n \in \mathbb{Z}$. By substituting $n=-2(i+1)$ for $i=1,2, \ldots, m$ into (5), we see that $T(n)=0$ for these values of n. Likewise, by substituting $n=-3$ into (5), we find that $T(-2)=0$. Using (5) it follows by induction on n that $T(n)=0$ for all $n \leq-2(m+1)$ and for all $n \geq-2$ as well. On the other hand, it is easy to check that

$$
G_{m}^{(i)}(n)=\delta_{n,-(2 i+1)}
$$

(where δ is the Kronecker delta) is a solution of (5) for $i=1,2, \ldots, m$. Therefore $\operatorname{dim} V_{1}=m$.

Before describing the general situation we need a definition and a lemma.
Definition 7 Let A be an H-system of the form (3). An interval of integers

$$
\begin{equation*}
I=\{k, k+1, \ldots, k+m\}, \quad m \geq 0 \tag{6}
\end{equation*}
$$

is a segment of singularities of A if $I \subseteq S(A)$ while $k-1, k+m+1 \notin S(A)$.
Lemma 1 Each segment of singularities (6) of equation (3) is of (at least) one of the following types:
(i) all elements of the segment are trailing singularities;
(ii) all elements of the segment are leading singularities;
(iii) there exists $j, 0 \leq j<m$, such that $k, k+1, \ldots, k+j$ are leading singularities, while $k+j+1, \ldots, k+m$ are trailing singularities.

Proof: If $u \in \mathbb{Z}$ is a trailing singularity and $u+1$ a leading singularity of (3) then $f(u)=$ $g(u)=0$, contrary to the assumption $f \perp g$. So any segment of singularities of (3) consists of a (possiby empty) interval of leading singularities followed by a (possiby empty) interval of trailing singularities.

Theorem 3 Let S denote the set of singularities of equation (3).
a) If $S=\emptyset$ then $\operatorname{dim} V_{1}=\operatorname{dim} V_{2}=1$.
b) If $S \neq \emptyset$ then $1 \leq \operatorname{dim} V_{1}<\operatorname{dim} V_{2}<\infty$.

Proof: a) This is clear.
b) There is only a finite set of components induced on \mathbb{Z} by (3), therefore $\operatorname{dim} V_{2}<\infty$.

Next we prove that $\operatorname{dim} V_{1}<\operatorname{dim} V_{2}$. First we show that if (6) is a segment of singularities of (3), then the restriction of V_{1} to

$$
\hat{I}=\{k-1, k,, \ldots, k+m, k+m+1\}
$$

has dimension ≤ 1, while the analogous restriction of V_{2} obviously has dimension 2. Indeed, if u is a trailing singularity, then any sequence from V_{1} vanishes at $u+1$; and if u is a leading singularity, then any sequence from V_{1} vanishes at $u-1$. By Lemma 1 we have three possibilities (i), (ii), (iii) for (6). In case (i) we have $T(k+1)=T(k+2)=\cdots=$ $T(k+m+1)=0$, in case (ii) $T(k-1)=T(k)=\cdots=T(k+m-1)=0$, in case (iii) $T(k-1)=T(k)=\ldots T(k+j-1)=0$ and $T(k+j+2)=T(k+j+3)=\cdots=T(k+m+1)=0 ;$ in each case $T(n)$ can be nonzero at most in two points of \hat{I}, however the value at one of them is uniquely determined by the value at the other one. Therefore the dimension of the restricted V_{1} is ≤ 1. The same holds for dimension of the restriction of V_{1} to the set

$$
\{k-v, k-v+1, \ldots, k, k+1, \ldots, k+m, k+m+1, \ldots, k+w\}
$$

where $k, k+1, \ldots, k+m$ are singularities, while $k-v, \ldots, k-1$ and $k+m+1, \ldots, k+w$ are not. Gluing together two such restrictions with coinciding, say, $k+m+1, \ldots, k+w$, and non-intersecting singular parts, we get the dimension ≤ 2, while the dimension of the corresponding restriction of V_{2} is 3 and so on. This proves that $\operatorname{dim} V_{1}<\operatorname{dim} V_{2}$.

Finally we prove that $\operatorname{dim} V_{1} \geq 1$. If there are leading singularities, let n_{0} be the largest leading singularity. Set $T\left(n_{0}\right)=1$ and $T(n)=0$ for $n<n_{0}$. None of the points $n>n_{0}$ is a leading singularity, hence the value of T at $n>n_{0}$ is uniquely determined by the recurrence (3) and the initial condition $T\left(n_{0}\right)=1$. If there are no leading singularities, let n_{0} be the least trailing singularity. Set $T\left(n_{0}\right)=1$ and $T(n)=0$ for $n>n_{0}$. None of the points $n<n_{0}$ is a trailing singularity, hence the value of T at $n<n_{0}$ is uniquely determined by the recurrence (3) and the initial condition $T\left(n_{0}\right)=1$. In either case V_{1} contains a nonzero solution.

Theorem 4 For any integers s, t such that $1 \leq s<t$ there exists an equation of the form (3) such that $\operatorname{dim} V_{1}=s$ and $\operatorname{dim} V_{2}=t$.

Proof: Consider the recurrence

$$
\begin{equation*}
q_{m}(n+1) T(n+1)=p_{k}(n) q_{m}(n) T(n) \tag{7}
\end{equation*}
$$

where $k, m \geq 1, p_{k}(n)$ is as in Example 1, and $q_{m}(n)$ is as in Example 2. Here the set of singularities is $\{2 i-1 ; i=0,1, \ldots, k-2\} \cup\{-(2 i+1) ; i=1,2, \ldots, m\}$, so $\operatorname{dim} V_{2}=k+m$. Let $T(n)$ be a solution of (7) defined for all $n \in \mathbb{Z}$. In exactly the same way as in Example 2 we can see that $T(n)=0$ for $n=-2,-4, \ldots,-2(m+1), n \leq-2(m+1)$ or $n \geq-2$, and that $G_{m}^{(i)}(n)=\delta_{n,-(2 i+1)}$ is a solution of (7) for $i=1,2, \ldots, m$. Therefore $\operatorname{dim} V_{1}=m$.

If $1 \leq s<t$, let $m=s$ and $k=t-s$. Then for equation (7), $\operatorname{dim} V_{1}=m=s$ and $\operatorname{dim} V_{2}=k+m=t$.

We conclude this section by some remarks on computation of $\operatorname{dim} V_{1}$ and $\operatorname{dim} V_{2}$. Let A denote equation (3). According to Proposition 1, $\operatorname{dim} V_{2}(A)$ is the number of components induced on \mathbb{Z} by A and is thus easy to compute. We claim that $\operatorname{dim} V_{1}(A)$ equals the dimension of the kernel of a bidiagonal matrix B defined as follows. Let α be the maximum
and β the minimum of the integer roots of $f(x) g(x)$; if A has no integer singularities then we can take $\alpha=\beta=1$. Let B be the $(\alpha-\beta+1) \times(\alpha-\beta+2)$ matrix with entries

$$
b_{i, j}= \begin{cases}f(\alpha-i+1), & j=i \\ -g(\alpha-i+1), & j=i+1 \\ 0, & \text { otherwise }\end{cases}
$$

where $1 \leq i \leq \alpha-\beta+1$ and $1 \leq j \leq \alpha-\beta+2$. Indeed, any vector v such that $B v=0$ can be extended to a solution of A in a unique way. This mapping is an isomorphism between the kernel of B and $V_{1}(A)$.

Incidentally, this gives an alternative proof of the inequality $\operatorname{dim} V_{1} \geq 1: B$ has more columns than rows, hence its kernel is nontrivial.

4 Dimensions of solution spaces: The multivariate case

If $d \geq 2$ in (2) then the dimensions of V_{1} and/or V_{2} can be infinite as shown by the following examples.

Example $3\left(\operatorname{dim} V_{1}=\infty, \operatorname{dim} V_{2}=1\right)$ Let A be the system

$$
\begin{aligned}
& \left(n_{1}-4 n_{2}+1\right) T\left(n_{1}+1, n_{2}\right)=\left(n_{1}-4 n_{2}\right) T\left(n_{1}, n_{2}\right) \\
& \left(n_{1}-4 n_{2}-4\right) T\left(n_{1}, n_{2}+1\right)=\left(n_{1}-4 n_{2}\right) T\left(n_{1}, n_{2}\right)
\end{aligned}
$$

It is easy to check that

$$
T_{i}\left(n_{1}, n_{2}\right)=\delta_{n_{1}, 4 i} \delta_{n_{2}, i}, \quad \text { for } i \in \mathbb{Z},
$$

are linearly independent solutions of A on all of \mathbb{Z}^{2}, hence $\operatorname{dim} V_{1}=\infty$. On the other hand, $S(A)=\left\{\left(n_{1}, n_{2}\right) ; n_{1}=4 n_{2}\right\}$, so A induces a single component on \mathbb{Z}^{2}, and $\operatorname{dim} V_{2}=1$.

Example $4\left(\operatorname{dim} V_{1}=1, \operatorname{dim} V_{2}=\infty\right)$ Let B be the system

$$
\begin{aligned}
\left(n_{1}-4 n_{2}\right) T\left(n_{1}+1, n_{2}\right) & =\left(n_{1}-4 n_{2}+1\right) T\left(n_{1}, n_{2}\right) \\
\left(n_{1}-4 n_{2}\right) T\left(n_{1}, n_{2}+1\right) & =\left(n_{1}-4 n_{2}-4\right) T\left(n_{1}, n_{2}\right) .
\end{aligned}
$$

It can be shown that any solution of B defined on all \mathbb{Z}^{2} is a constant multiple of $n_{1}-4 n_{2}$, so $\operatorname{dim} V_{1}=1$. On the other hand, $S(B)=\left\{\left(n_{1}, n_{2}\right) ; n_{1}-4 n_{2} \in\{-4,-1,1,4\}\right\}$, so each of the points $(4 i, i)$ for $i \in \mathbb{Z}$ is a separate component of \mathbb{Z}^{2} induced by B, hence $\operatorname{dim} V_{2}=\infty$.

Example $5\left(\operatorname{dim} V_{1}=\operatorname{dim} V_{2}=\infty\right)$ Let C be the system

$$
\begin{aligned}
\left(n_{1}-n_{2}-1\right)\left(n_{1}-n_{2}+1\right) T\left(n_{1}+1, n_{2}\right) & =\left(n_{1}-n_{2}\right)\left(n_{1}-n_{2}+2\right) T\left(n_{1}, n_{2}\right), \\
\left(n_{1}-n_{2}-1\right)\left(n_{1}-n_{2}+1\right) T\left(n_{1}, n_{2}+1\right) & =\left(n_{1}-n_{2}\right)\left(n_{1}-n_{2}-2\right) T\left(n_{1}, n_{2}\right) .
\end{aligned}
$$

It is easy to check that

$$
\begin{equation*}
T_{i}\left(n_{1}, n_{2}\right)=\delta_{n_{1}, i} \delta_{n_{2}, i}, \quad \text { for } i \in \mathbb{Z}, \tag{8}
\end{equation*}
$$

are linearly independent solutions of C on all of \mathbb{Z}^{2}, hence $\operatorname{dim} V_{1}=\infty$. As $S(C)=$ $\left\{\left(n_{1}, n_{2}\right) ; n_{1}-n_{2} \in\{-2,0,2\}\right\}$, each of the points $(i, i-1)$ and $(i, i+1)$ for $i \in \mathbb{Z}$ is a separate component of \mathbb{Z}^{2} induced by C, so $\operatorname{dim} V_{2}=\infty$ as well.

The following theorem describes the general situation.
Theorem 5 Let $1 \leq s, t \leq \infty$. Then there exists an H-system such that $\operatorname{dim} V_{1}=s$ and $\operatorname{dim} V_{2}=t$.

Proof: Let $t \geq 2$ and $p_{t}\left(n_{1}, n_{2}\right)=\prod_{i=0}^{t-2}\left(n_{1}-n_{2}+3 i\right)$. Then the set of singularities of

$$
\begin{aligned}
p_{t}\left(n_{1}+1, n_{2}\right) T\left(n_{1}+1, n_{2}\right) & =p_{t}\left(n_{1}, n_{2}\right) T\left(n_{1}, n_{2}\right), \\
p_{t}\left(n_{1}, n_{2}+1\right) T\left(n_{1}, n_{2}+1\right) & =p_{t}\left(n_{1}, n_{2}\right) T\left(n_{1}, n_{2}\right)
\end{aligned}
$$

is $S=\left\{\left(n_{1}, n_{2}\right) ; n_{1}-n_{2} \in\{-3 i ; 0 \leq i \leq t-2\}\right\}$. As in Example 5, the functions (8) are linearly independent solutions of this system on all of \mathbb{Z}^{2}, hence $\operatorname{dim} V_{1}=\infty$. On the other hand, the number of components induced on \mathbb{Z}^{2} is t, so $\operatorname{dim} V_{2}=t$.

Let $s \geq 2$ and

$$
\begin{equation*}
q_{s}\left(n_{1}, n_{2}\right)=\prod_{i=1}^{s-1}\left(\left(n_{1}-2 i\right)^{2}+n_{2}^{2}\right) \tag{9}
\end{equation*}
$$

Then the set of singularities of

$$
\begin{aligned}
\left(n_{1}-4 n_{2}\right) q_{s+1}\left(n_{1}+1, n_{2}\right) T\left(n_{1}+1, n_{2}\right) & =\left(n_{1}-4 n_{2}+1\right) q_{s+1}\left(n_{1}, n_{2}\right) T\left(n_{1}, n_{2}\right) \\
\left(n_{1}-4 n_{2}\right) q_{s+1}\left(n_{1}, n_{2}+1\right) T\left(n_{1}, n_{2}+1\right) & =\left(n_{1}-4 n_{2}-4\right) q_{s+1}\left(n_{1}, n_{2}\right) T\left(n_{1}, n_{2}\right)
\end{aligned}
$$

is $S=\left\{\left(n_{1}, n_{2}\right) ; n_{1}-4 n_{2} \in\{-4,-1,1,4\}\right\} \cup\{(2 i, 0) ; 1 \leq i \leq s\}$. Each of the points $(4 i, i)$ for $i \in \mathbb{Z}$ is a separate component, so $\operatorname{dim} V_{2}=\infty$. It can be shown that any solution $T\left(n_{1}, n_{2}\right)$ defined on all \mathbb{Z}^{2} vanishes everywhere except at the points $(2 i, 0)$ where $1 \leq i \leq s$, and that

$$
\begin{equation*}
T_{i}\left(n_{1}, n_{2}\right)=\delta_{n_{1}, 2 i} \delta_{n_{2}, 0} \tag{10}
\end{equation*}
$$

for $i=1,2, \ldots, s$, are linearly independent solutions of this system defined on all \mathbb{Z}^{2}. Hence $\operatorname{dim} V_{1}=\infty$.

Together with Examples $3-5$ this proves the assertion in the case when at least one of s, t is infinite.

Now assume that s, t are natural numbers, and let $r_{t}\left(n_{1}, n_{2}\right)=\prod_{i=1}^{t-1}\left(n_{1}+2 i+1\right)$. Consider the system

$$
\begin{aligned}
q_{s}\left(n_{1}+1, n_{2}\right) T\left(n_{1}+1, n_{2}\right) & =q_{s}\left(n_{1}, n_{2}\right) r_{t}\left(n_{1}, n_{2}\right) T\left(n_{1}, n_{2}\right), \\
q_{s}\left(n_{1}, n_{2}+1\right) T\left(n_{1}, n_{2}+1\right) & =q_{s}\left(n_{1}, n_{2}\right) T\left(n_{1}, n_{2}\right),
\end{aligned}
$$

where q_{s} is as in (9). It can be shown that any solution $T\left(n_{1}, n_{2}\right)$ defined on all \mathbb{Z}^{2} vanishes for all $\left(n_{1}, n_{2}\right)$ such that $n_{1}>-(2 t-1)$ and $\left(n_{1}, n_{2}\right)$ is not of the form $(2 i, 0)$ with $1 \leq i \leq s-1$. Further, a basis of V_{1} is given by the s functions $T_{i}\left(n_{1}, n_{2}\right)$ for $i=0,1, \ldots, s-1$ where

$$
T_{0}\left(n_{1}, n_{2}\right)= \begin{cases}\frac{(-1)(t-1) n_{1}}{\prod_{i=1}^{s-1}\left(\left(n_{1}-2 i\right)^{2}+n_{2}^{2}\right) \prod_{i=1}^{t-1}\left(-n_{1}-2 i-1\right)!}, & n_{1} \leq-(2 t-1) \\ 0, & \text { otherwise }\end{cases}
$$

and $T_{i}\left(n_{1}, n_{2}\right)$ are as in (10) for $i=1,2, \ldots, s-1$. It follows that $\operatorname{dim} V_{1}=s$. The set of singularities of this system is $S=\{(2 i, 0) ; 1 \leq i \leq s-1\} \cup\{(-(2 i+1), j) ; 1 \leq i \leq t-1, j \in$ $\mathbb{Z}\}$, and the number of components induced on \mathbb{Z}^{2} is t, so $\operatorname{dim} V_{2}=t$ as desired.

We considered the case $d=2$ here. The corresponding H-systems for the case of an orbitrary $d>1$ can be obtained by adding equations $E_{n_{i}} T=T, i=3, \ldots, d$, to the systems with $d=2$.

5 The Ore-Sato theorem and its consequences

The well-known Ore-Sato theorem (see [5], [7]) is commonly believed to imply that any solution of an H-system (2) is of the form (1). We show that this is not so, and give an appropriate corollary of the Ore-Sato theorem on possible forms of solutions of H-systems in our setting.

Definition 8 Let T be a solution of (2). We write supp T for the support of T, i.e., for the set of points in \mathbb{Z}^{d} where T is defined and does not vanish.

If (2) has a solution with non-algebraic support, then the rational functions $f_{i} / g_{i}, i=1, \ldots, d$, are compatible, and uniquely determined by this solution (see [2]).

Definition 9 A polynomial $p \in \mathbb{C}\left[x_{1}, \ldots, x_{d}\right]$ is integer-linear if $p\left(x_{1}, \ldots, x_{d}\right)=a_{0}+a_{1} x_{1}+$ $\cdots+a_{d} x_{d}$ where $a_{1}, \ldots, a_{d} \in \mathbb{Z}$.

The Ore-Sato theorem states (in the case $d=2$) that for any compatible rational functions $F_{1}(x, y)$ and $F_{2}(x, y)$ there are compatible rational functions $G_{1}(x, y)$ and $G_{2}(x, y)$ which factor into integer-linear factors, and a rational function $R(x, y)$ such that $F_{1}(x, y)=G_{1}(x, y) R(x+1, y) / R(x, y)$ and $F_{2}(x, y)=G_{2}(x, y) R(x, y+1) / R(x, y)$. The full statement gives a precise description of the integer-linear factors.

In the literature one often encounters the claim that as a corollary of this theorem, any solution of an H-system (2) is of the form (1). For example, in [3, p. 223] one can read: "From Ore's result it can be deduced that the most general form of $A_{m n}$ is of the form

$$
A_{m n}=R(m, n) \gamma_{m n} a^{m} b^{n}
$$

where R is a fixed rational function of m and n, a and b are constants, and $\gamma_{m n}$ is a gamma product (...) that is to say it is of the form

$$
\gamma_{m n}=\prod_{i} \Gamma\left(a_{i}+u_{i} m+v_{i} n\right) / \Gamma\left(a_{i}\right)
$$

where the a_{i} are arbitrary (real or complex) constants, and the u_{i} and v_{i} are arbitrary integers which may be positive, negative, or zero." A similar quote can be found in [4, p. 5].

It may be the case that in the literature referred to above the term $A_{m n}$ is implicitly assumed to be nonzero for all $m, n \in \mathbb{Z}$. This possibility is supported by the fact that, e.g., in [3] the corresponding H-system is given in terms of the two quotients $A_{m+1, n} / A_{m n}$ and $A_{m, n+1} / A_{m n}$. But such a severe restriction would preclude many important functions from being hypergeometric, such as the binomial coefficient $T\left(n_{1}, n_{2}\right)=\binom{n_{1}}{n_{2}}$, and all polynomials with integer roots.

However if we do not adopt this restriction, then there are hypergeometric terms which cannot be written in the form (1), as illustrated by the following examples.

Example 6 Take the H-system

$$
\begin{align*}
p\left(n_{1}, n_{2}\right) T\left(n_{1}+1, n_{2}\right) & =p\left(n_{1}+1, n_{2}\right) T\left(n_{1}, n_{2}\right), \tag{11}\\
p\left(n_{1}, n_{2}\right) T\left(n_{1}, n_{2}+1\right) & =p\left(n_{1}, n_{2}+1\right) T\left(n_{1}, n_{2}\right),
\end{align*}
$$

where $p\left(n_{1}, n_{2}\right)=\left(n_{1}-n_{2}-1\right)\left(n_{1}-n_{2}+1\right)$. It can be checked that any sequence T which satisfies $T\left(n_{1}, n_{2}\right)=0$ unless $n_{1}=n_{2}$ is a solution of (11). In particular, the sequence

$$
T\left(n_{1}, n_{2}\right)= \begin{cases}2^{n_{1}^{2}}, & n_{1}=n_{2} \\ 0, & \text { otherwise }\end{cases}
$$

is a solution of (11), even though it does not have the form (1) because it grows too fast along the diagonal.

There are examples which look less artificial and where the solution has a non-algebraic support.

Example 7 In this example we show that $\left|n_{1}-n_{2}\right|$, although a hypergeometric term, cannot be written in the form (1).

Denote $D\left(n_{1}, n_{2}\right)=\left|n_{1}-n_{2}\right|$. Then

$$
\begin{align*}
& \left(n_{1}-n_{2}\right) D\left(n_{1}+1, n_{2}\right)=\left(n_{1}-n_{2}+1\right) D\left(n_{1}, n_{2}\right) \tag{12}\\
& \left(n_{1}-n_{2}\right) D\left(n_{1}, n_{2}+1\right)=\left(n_{1}-n_{2}-1\right) D\left(n_{1}, n_{2}\right)
\end{align*}
$$

for all $n_{1}, n_{2} \in \mathbb{Z}$, so $D\left(n_{1}, n_{2}\right)$ is a hypergeometric term. Note that when restricted to $n_{1}, n_{2} \geq 0$, it is also holonomic, because its generating function is rational:

$$
\begin{equation*}
\sum_{n_{1}, n_{2} \geq 0}\left|n_{1}-n_{2}\right| z_{1}^{n_{1}} z_{2}^{n_{2}}=\left(\frac{z_{1}}{\left(1-z_{1}\right)^{2}}+\frac{z_{2}}{\left(1-z_{2}\right)^{2}}\right) \frac{1}{1-z_{1} z_{2}} \tag{13}
\end{equation*}
$$

To compare, the generating function of the polynomial $n_{1}-n_{2}$ is

$$
\sum_{n_{1}, n_{2} \geq 0}\left(n_{1}-n_{2}\right) z_{1}^{n_{1}} z_{2}^{n_{2}}=\left(\frac{z_{1}}{1-z_{1}}-\frac{z_{2}}{1-z_{2}}\right) \frac{1}{\left(1-z_{1}\right)\left(1-z_{2}\right)}
$$

Let $T\left(n_{1}, n_{2}\right)$ be a hypergeometric term of the form (1) with $d=2$, defined for all $n_{1}, n_{2} \geq 0$. Pick $k_{0} \in \mathbb{Z}, k_{0}>0$, and assume that $T\left(n, k_{0}\right)=\left|n-k_{0}\right|$ for all $n>k_{0}$. Then we claim that $T\left(n, k_{0}\right)=n-k_{0}$ for all $n \geq 0$. Hence $T\left(n, k_{0}\right)$ disagrees with $\left|n-k_{0}\right|$ for all n such that $0 \leq n<k_{0}$.

To prove the claim, define

$$
\begin{equation*}
t(n):=T\left(n, k_{0}\right)=R\left(n, k_{0}\right) u_{1}^{n} u_{2}^{k_{0}} \frac{\prod_{i=1}^{p} \Gamma\left(a_{i, 1} n+a_{i, 2} k_{0}+\alpha_{i}\right)}{\prod_{j=1}^{q} \Gamma\left(b_{j, 1} n+b_{j, 2} k_{0}+\beta_{j}\right)}, \quad \text { for all } n \geq 0 \tag{14}
\end{equation*}
$$

We wish to rewrite the right-hand side of (14) in such a way that the coefficient of n in the arguments of the Gamma function will be 1. It is straightforward to verify that for $n \in \mathbb{Z}$, $a \in \mathbb{Z} \backslash\{0\}$ and $z \in \mathbb{C}$ such that $a n+z$ is not a nonpositive integer,

$$
\Gamma(a n+z)= \begin{cases}C(a, z) a^{a n} \prod_{m=0}^{a-1} \Gamma(n+(z+m) / a), & a>0, \\ C(a, z) a^{a n} / \prod_{m=1}^{|a|} \Gamma(n+(z-m) / a), & a<0, z \notin \mathbb{Z},\end{cases}
$$

where $C(a, z) \in \mathbb{C}$ is independent of n. To be able to apply this to (14), we need to show that
(i) for $i=1, \ldots, p$ and for all $n \geq 0$, the number $a_{i, 1} n+a_{i, 2} k_{0}+\alpha_{i}$ is not a nonpositive integer,
(ii) for $i=1, \ldots, p$ and for all $n \geq 0$, if $a_{i, 1}<0$ then $\alpha_{i} \notin \mathbb{Z}$,
(iii) for $j=1, \ldots, q$ and for all $n \geq 0$, the number $b_{j, 1} n+b_{j, 2} k_{0}+\beta_{j}$ is not a nonpositive integer,
(iv) for $j=1, \ldots, q$ and for all $n \geq 0$, if $b_{j, 1}<0$ then $\beta_{j} \notin \mathbb{Z}$.

Assertion (i) is obvious, for otherwise $T\left(n, k_{0}\right)$ would be undefined at such n. Assertion (ii) holds for the same reason, since if $a_{i, 1}<0$ and $\alpha_{i} \in \mathbb{Z}$ for some i, then $a_{i, 1} n+a_{i, 2} k_{0}+\alpha_{i}$ would be a nonpositive integer for all large enough n. If $b_{j, 1} n+b_{j, 2} k_{0}+\beta_{j}$ is a nonpositive integer for some j and some $n \neq k_{0}$, then t vanishes at this n, contrary to the fact that $t(n)=\left|n-k_{0}\right| \neq 0$ for all $n \neq k_{0}$. If $b_{j, 1} k_{0}+b_{j, 2} k_{0}+\beta_{j}$ is a nonpositive integer then (depending on the sign of $\left.b_{j, 1}\right)$ at least one of $b_{j, 1}\left(k_{0}-1\right)+b_{j, 2} k_{0}+\beta_{j}$ and $b_{j, 1}\left(k_{0}+1\right)+b_{j, 2} k_{0}+\beta_{j}$ is also a nonpositive integer, something we have just ruled out. This proves (iii). Assertion (iv) holds for the same reason, since if $b_{j, 1}<0$ and $\beta_{j} \in \mathbb{Z}$ for some j, then $b_{j, 1} n+b_{j, 2} k_{0}+\beta_{j}$ would be a nonpositive integer for all large enough n.

Therefore the univariate term t can be written in the form

$$
\begin{equation*}
t(n)=r(n) v^{n} \frac{\prod_{i=1}^{p^{\prime}} \Gamma\left(n+\gamma_{i}\right)}{\prod_{j=1}^{q^{\prime}} \Gamma\left(n+\delta_{j}\right)}, \quad \text { for all } n \geq 0 \tag{15}
\end{equation*}
$$

where $r \in \mathbb{C}(x)$ and $v, \gamma_{i}, \delta_{j} \in \mathbb{C}$. If $\gamma_{i}-\delta_{j} \in \mathbb{Z}$ then $\Gamma\left(n+\gamma_{i}\right) / \Gamma\left(n+\delta_{j}\right)$ is a rational function of n, hence (15) can be rewritten as

$$
\begin{equation*}
t(n)=s(n) v^{n} \frac{\prod_{i=1}^{p^{\prime \prime}} \Gamma\left(n+\varepsilon_{i}\right)}{\prod_{j=1}^{q^{\prime \prime}} \Gamma\left(n+\zeta_{j}\right)}, \quad \text { for all } n \geq 0 \tag{16}
\end{equation*}
$$

where $s \in \mathbb{C}(x), \varepsilon_{i}, \zeta_{j} \in \mathbb{C}$, and none of the differences $\varepsilon_{i}-\zeta_{j}$ is an integer. It follows that

$$
g(x):=v \frac{\prod_{i=1}^{p^{\prime \prime}}\left(x+\varepsilon_{i}\right)}{\prod_{j=1}^{q^{\prime}}\left(x+\zeta_{j}\right)} \in \mathbb{C}(x)
$$

is a shift-reduced rational function (see Definition 1). Let $f(x):=\left(x+1-k_{0}\right) /\left(x-k_{0}\right) \in \mathbb{C}(x)$. For $n>k_{0}$ we have

$$
\frac{t(n+1)}{t(n)}=\frac{\left|n+1-k_{0}\right|}{\left|n-k_{0}\right|}=\frac{n+1-k_{0}}{n-k_{0}}=f(n)
$$

and

$$
\frac{t(n+1)}{t(n)}=g(n) \frac{s(n+1)}{s(n)}
$$

The two rational functions $f(x)$ and $g(x) s(x+1) / s(x)$ agree infinitely often, so they are equal. Since g is shift-reduced, both $\left(1, x-k_{0}\right)$ and $(g(x), s(x))$ are rational normal forms of f. Now Theorem 2 implies that $g(x)=1$. Comparing this with the definition of $g(x)$, we see that $v=1$ and $p^{\prime \prime}=q^{\prime \prime}=0$. From (16) it follows that $s(n)=t(n)$ for all $n \geq 0$, therefore $s(n)=n-k_{0}$ for all $n>k_{0}$. As the two rational functions $s(x)$ and $x-k_{0}$ agree infinitely often, they are equal. But then $t(n)=n-k_{0}$ for all $n \geq 0$, which proves our claim.

We could have chosen a specific value for k_{0} (such as $k_{0}=1$, say), but by doing so our result would be slightly weaker. In geometric language, we have shown that as soon as a hypergeometric term $T\left(n_{1}, n_{2}\right)$ agrees with $\left|n_{1}-n_{2}\right|$ on any horizontal (or, by symmetry, vertical) line which contains integer points on both sides of the line $n_{1}=n_{2}$, then it cannot have the form (1). It seems that, under some additional conditions, this could be generalized from $\left|n_{1}-n_{2}\right|$ to $\left|R\left(n_{1}, n_{2}\right)\right|$ where $R \in \mathbb{C}\left(x_{1}, x_{2}\right)$, and to horizontal (or vertical) lines containing integer points $\left(p_{1}, p_{2}\right)$ and $\left(n_{1}, n_{2}\right)$ with $R\left(p_{1}, p_{2}\right)>0$ and $R\left(n_{1}, n_{2}\right)<0$.

In the theory of multivariate hypergeometric series, H-systems are used to specify coefficients for such series. The simple rational function on the right-hand side of (13) has series expansion whose coefficients satisfy the H-system (12), however are not of the form (1).

The following statement is a corollary of the Ore-Sato theorem.
Corollary 1 Any constituent (see Definition 5) of a solution with non-algebraic support of an H-system (2) is of the form (1).

References

[1] S. A. Abramov and M. Petkovšek, On the structure of multivariate hypergeometric terms, Adv. Appl. Math. 29 (2002) 386-411.
[2] S. A. Abramov and M. Petkovšek, Rational normal forms and minimal decompositions of hypergeometric terms, J. Symb. Comput. 33 (2002) 521-543.
[3] H. Bateman, A. Erdelyi, Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York-Toronto-London 1953.
[4] I. M. Gel'fand, M. I. Graev and V. S. Retakh, General hypergeometric systems of equations and series of hypergeometric type (Russian), Uspekhi Mat. Nauk 47 (1992) 3-82, 235; translation in Russian Math. Surveys 47 (1992) 1-88.
[5] O. Ore, Sur la forme des fonctions hypergéométriques de plusieurs variables, J. Math. Pures Appl. 9 (1930) 311-326.
[6] M. Petkovšek, H. S. Wilf, D. Zeilberger, $A=B$, A K Peters, Wellesley, Massachusetts, 1996.
[7] M. Sato, T. Shintani and M. Muro, Theory of prehomogeneous vector spaces (algebraic part), Nagoya Math. J. 120 (1990) 1-34.

[^0]: *The work is partially supported by the ECO-NET program of the French Foreign Affairs Ministry.
 ${ }^{\dagger}$ Partially supported by RFBR grant 04-01-00757.
 ${ }^{\ddagger}$ Partially supported by MŠZŠ RS under grant P1-0294.

[^1]: ${ }^{1}$ The prefix " H " refers to Jakob Horn and to the adjective "hypergeometric" as well.

