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Abstract. Combinatorial rigidity theory seeks to describe the rigidity or flexibility of bar-joint frameworks
in R

d in terms of the structure of the underlying graph G. The goal of this article is to broaden the
foundations of combinatorial rigidity theory by replacing G with an arbitrary representable matroid M . The
notions of rigidity independence and parallel independence, as well as Laman’s and Recski’s combinatorial
characterizations of 2-dimensional rigidity for graphs, can naturally be extended to this wider setting. As
we explain, many of these fundamental concepts really depend only on the matroid associated with G (or
its Tutte polynomial), and have little to do with the special nature of graphic matroids or the field R.

Our main result is a “nesting theorem” relating the various kinds of independence. Immediate corollaries
include generalizations of Laman’s Theorem, as well as the equality of 2-rigidity independence and 2-parallel
independence. A key tool in our study is the space of photos of M , a natural algebraic variety whose
irreducibility is closely related to the notions of rigidity independence and parallel independence. The
number of points of this variety, when working over a finite field, turns out to be an interesting Tutte
polynomial evaluation.

Resumé. Un des objectifs de la théorie combinatoire de rigidité est de décrire, utilisant la structure du
graphe fondamental G, la rigidité ou la flexibilité des cadres des barres et joints dans R

d. Le but de ce travail
est d’élargir la théorie combinatoire de rigidité en remplaçant G par un matröıde arbitraire représentable
M . Dans ce sens, les idées d’indépendance de rigidité et d’indépendance parallèle, les caractérisations
combinatoires de Laman et de Recski de la rigidité 2-dimensionelle pour les graphes, peuvent naturellement
être étendues. Comme nous le monterons, beaucoup de ces concepts fondamentaux dépendent seulement
du matröıde associé à G (ou à son polynôme de Tutte), et ils sont très peu liés á la nature spéciale des
matröıdes graphiques ou du champ R.

Notre principal résultat est un “théorème d’embôıtement” relatif aux divers genres d’indépendance.
Quelques conséquences directes de ce théorème sont les généralisations du théorème de Laman et l’équivalence
de la propriété d’indépendance 2-rigidité avec celle 2-parallèle. Notre étude est fondamentalement basée sur
l’éspace des photos de M représentant une variété algébrique naturelle dont l’irréductibilité est étroitement
liée aux notions d’indépendance de rigidité et d’indépendance parallèle. Le cardinal de cette variété, en
travaillant dans un champ fini, est en fait une évaluation intéressante de polynôme de Tutte.

1. Introduction

1.1. A brief tour through rigidity theory. Combinatorial rigidity theory is concerned with frameworks
built out of bars and joints in Rd, representing the vertices V and edges E of an (undirected, finite) graph G.
(For comprehensive treatments of the subject, see, e.g., [5, 18, 19].) The motivating problem is to determine
how the combinatorics of G governs the rigidity or flexibility of its frameworks. Typically, one makes a
generic choice of coordinates p = {pv : v ∈ V } ⊂ Rd for the vertices of G and considers infinitesimal motions
∆p of the vertices. The following two questions are pivotal:

(I.) What is the dimension of the space of infinitesimal motions ∆p that preserve all squared edge lengths

Q(pu − pv), for {u, v} ∈ E, where Q(x) =
∑d

i=1 x
2
i ?

(II.) What is the dimension of the space of infinitesimal motions ∆p that preserve all edge directions
pu − pv, up to scaling?

The answers to these questions are known to be determined by certain linear dependence matroids repre-
sented over transcendental extensions of R, as we now explain.
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First, the d-dimensional rigidity matroid Rd(G) is represented by the vectors

(1) {(eu − ev) ⊗ (pu − pv) : {u, v} ∈ E} ⊂ R|V | ⊗ R(p)d,

where R(p) is the extension of R by a collection of d|V | transcendentals p, thought of as the coordinates
of the vertices in a generic framework of G. The |E| × d|V | rigidity matrix Rd(G) has as its rows the |E|
vectors in (1). Then the nullspace of Rd(G) is precisely the space of infinitesimal motions of the vertices
that preserve all edge distances (because Rd(G) is 1

2 times the Jacobian in the variables p of the vector of
squared edge lengths Q(pu − pv); cf. Remark 5.2 below). Since row rank equals column rank, knowing the
matroid Rd(G) represented by the rows of Rd(G) answers question (I).

Second, the d-dimensional parallel matroid Pd(G) is represented by the vectors

(2) {(eu − ev) ⊗ η(j)
u,v : {u, v} ∈ E, j = 1, 2, . . . , d− 1} ⊂ R|V | ⊗ R(p, η)d,

where for each edge {u, v} ∈ E, the vectors η
(1)
u,v , . . . , η

(d−1)
u,v are generically chosen normals to pu − pv in Rd,

and R(p, η) is an extension of R by d|V | transcendentals p and (d − 1)|E| transcendentals η. In analogy to
the preceding paragraph, the |E| × d|V | parallel matrix P d(G) has as its rows the |E| vectors in (2), and its
nullspace is the space of infinitesimal motions of the vertices that preserve all edge directions. Consequently,
the matroid Pd(G) represented by the rows of P d(G) provides the answer to question (II).

For d = 2, the rigidity and parallel matroids coincide [18, Corollary 4.1.3]. The matroid R2(G) = P2(G)
has many equivalent combinatorial reformulations, of which the best known is Laman’s condition [6]: an
edge set A ⊂ E is 2-rigidity-independent if and only if for every subset A′ ⊂ A

(3) 2|V (A′)| − 3 ≥ |A′|, or equivalently 2 (|V (A′)| − 1) > |A′|

where V (A′) denotes the set of vertices incident to at least one edge in A′. We refer to the triple equivalence
between the 2-rigidity matroid, the 2-parallel matroid, and the matroid defined by Laman’s condition as the
planar trinity.

For d > 2, the parallel matroid has a simple combinatorial characterization that generalizes Laman’s
condition, while an analogous description for the rigidity matroid is not known.

1.2. From graphs to matroids. The purpose of this article is to broaden the scope of rigidity theory by
replacing the graph G with a more general object: a matroidM equipped with a representation over a field F.
Indeed, the notions of rigidity and parallel independence, as well as Laman’s combinatorial characterization,
can be naturally generalized to the setting of matroids. In the process, we will see that many of the main
results of do not depend on the special properties of graphs (or graphic matroids), nor on the field R, but
in fact remain valid for any matroid M and any field F. In the process, we are led naturally to study an
algebraic variety, the space of k-plane-marked d-photos of M , whose points play the role of “frameworks” of
M embedded in Fd.

Whether or not the photo space is irreducible plays a key role in characterizing the matroidal analogues
of rigidity independence and parallel independence. In turn, the question of irreducibility can be answered
combinatorially. Furthermore, when the field F is finite, the number of photos of M is given by an evaluation
of the Tutte polynomial using q-binomial coefficients. (Theorem 4.1).

In order to summarize our results, we define the main protagonists here. Recall that for a finite set E,
an (abstract) simplicial complex on E is a collection I of subsets of E satisfying the following hereditary
condition: if I ∈ I and I ′ ⊂ I , then I ′ ∈ I. The independent sets of a matroid always form a simplicial
complex. From here on we will make free use of standard terminology and notions from matroid theory;
background and definitions may be found in standard texts such as [1, 12, 17].

Definition 1.1. Let E be a set of cardinality n, and let M be a (not necessarily representable) matroid on
ground set E, with rank function r. Let m be a real number in the open interval (1,∞)R. Then A ⊂ E is
called m-Laman independent if

(4) m · r(A′) > |A′| for all nonempty subsets A′ ⊆ A.

The m-Laman complex Lm(M) is defined to be the abstract simplicial complex of all m-Laman independent
subsets of E.
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We will prove that if m is a positive integer, then Lm(M) is the collection of independent sets of a matroid.
Moreover, Lm(M) has several alternate combinatorial descriptions: one of these generalizes Recski’s Theorem
characterizing rigidity-independent graphs; another is related to Edmonds’ classic result on partitioning a
matroid into independent subsets [4].

We now consider the case that M is a matroid represented by vectors v1, . . . , vn in Fr, where F is a field.
For notational convenience, we identify the ground set E with the numbers [n] := {1, 2, . . . , n}. When m > 1
is a rational number, the Laman complex Lm(M) is closely related to a certain algebraic variety over F,
which we now describe. Denote by Gr(k, d) the Grassmannian of k-planes in Fd, regarded as a projective
variety over F via the usual Plücker embedding.

Definition 1.2. The space of k-plane-marked d-photos (or just (k, d)-photos) of M is the algebraic set

(5) Xk,d(M) := {(ϕ,W ) ∈ HomF(Fr,Fd) × Gr(k,Fd)n : ϕ(vi) ∈ Wi}.

One may think of the map ϕ ∈ HomF(Fr,Fd) as a camera taking a “snapshot” ofM on photographic paper
that looks like Fd. The k-planes Wi are markings added later to highlight the image vectors ϕ(vi). Of course,
whenever ϕ(vi) = 0 (perhaps the camera ϕ caught vi at a bad angle), the k-plane Wi is unconstrained.

The non-annihilating cellule of the photo space is defined as the Zariski open subset

X∅

k,d(M) := {(ϕ,W ) ∈ Xk,d(M) : ϕ(vi) 6= 0 for i = 1, 2, . . . , n}.

Its image under the projection map π : Hom(Fr,Fd) × Gr(k, d)n → Gr(k, d)n measures the constraints on
the Wi when none of the vi are mapped to zero. Accordingly, we make the following definition.

Definition 1.3. The matroid M is called (k, d)-slope independent if πX∅

k,d(M) is Zariski dense in Gr(k, d)n.

The (k, d)-slope complex is defined as

(6) Sk,d(M) := {A ⊂ E : M |A is (k, d) -slope independent}.

The third notion of matroidal rigidity generalizes the d-dimensional rigidity matroid Rd(G) of a graph
G. Let ϕ be a d × r matrix of algebraically independent transcendentals, regarded as a generic linear

transformation Fr → Fd. Consider the pseudo-distance quadratic form Q(x) :=
∑d

i=1 x
2
i on F(ϕ)d. Provided

that the field F has characteristic 6= 2, we wish to define a rigidity matrix Rd(M) whose nullspace consists
of the infinitesimal changes of ϕ that preserve the values Q(ϕ(vi)).

Definition 1.4. The d-dimensional (generic) rigidity matroid is the matroid represented by the vectors

(7) {vi ⊗ ϕ(vi)}
n
i=1 ⊂ Fr ⊗F F(ϕ)d.

where F(ϕ) is the purely transcendental field extension of F by the dr entries of ϕ. The d-rigidity complex
Rd(M) is the complex of independent sets of the d-dimensional rigidity matroid, and the d-rigidity matrix
Rd(M) is the n× dr matrix whose rows are given by the vectors (7).

In contrast, if we wish to extend the notion of graph rigidity that keeps track of edge slopes instead of edge
lengths (see Question II above), then we need a matrix P d(M) whose nullspace consists of the infinitesimal
changes ∆ϕ in the matrix ϕ which preserve the slopes of all the direction vectors ϕ(vi).

Definition 1.5. The d-dimensional hyperplane-marking matroid is the matroid represented by the vectors

{vi ⊗ ηi}
n
i=1 ⊂ Fr ⊗F F(ϕ, η)d

over the field F(ϕ, η), the extension of F by dr transcendentals ϕij (the entries of the matrix ϕ) and (d− 1)n
more transcendentals ηij . The complex Hd(M) is defined to be the complex of independent sets of this
matroid. The d-dimensional parallel matroid is defined as

Pd(M) := Hd((d− 1)M),

where (d− 1)M is the matroid whose ground set consists of d− 1 parallel copies of each element of E. The
d-parallel matrix P d(M) is the n× dr matrix whose rows represent Pd(M).
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These definitions generalize the ordinary definitions from the rigidity theory of graphs. Strikingly, the
geometric constraints on the photo space can be categorized combinatorially: the identity

Sk,d(M) = L
d

d−k (M),

(Corollary 3.3) provides a geometric interpretation of Lm(M) for rational m.
The slope complex Sk,d(M) is closely related to the rigidity and parallel matroids. The precise relationship

is given by the Nesting Theorem (Theorem 5.4):

S1,d(M) ⊆ Rd(M) ⊆ Ld(M) = Hd(M) = Sd−1,d(M)

for all integers d ≥ 2. In particular, when d = 2,

(8) H2(M) = S1,2(M) = R2(M) = L2(M).

Thus matroid rigidity theory leads to a proof of the planar trinity (the second and third inequalities in (8)).
For d ≥ 3, the d-rigidity matroid Rd(M) is the hardest of these objects to understand (as it is for graphic

matroids). One fundamental question is whether Rd(M) depends on the choice of representation of M . It
is invariant for d = 2 and up to projective equivalence of representations but the problem remains open in
general. We also study the behavior of the d-rigidity matroid as d→ ∞: it turns out that Rd(M) stabilizes
when d ≥ r(M).

In this extended abstract, we omit or merely sketch the proofs of many of our results. The complete
proofs can be found in the full-length article [3].

2. Laman independence

The main result of this section, Theorem 2.1, states that the generalized Laman’s condition (4) always
gives a matroid when m is an integer. The proof is completely combinatorial; that is, it is a statement about
abstract matroids, not represented matroids. In addition, we describe some useful equivalent characteriza-
tions of d-Laman independence: one uses the Tutte polynomial, another is reminiscent of Recski’s Theorem,
and another is related to Edmonds’ theorem on decomposing a matroid into independent sets.

Theorem 2.1. (i) Let d be a positive integer and let M be any matroid. Then the simplicial complex
Ld(M) is a matroid complex.

(ii) Let m ∈ (1,∞)R be a real number which is not an integer. Then there exists a represented matroid
M for which Lm(M) is not a matroid complex.

We omit the proof, which is technical but not difficult. The difference between the two cases makes
itself felt in the following way. If C and C ′ are distinct minimal d-Laman-dependent sets, then C ∩ C ′ is
d-Laman-independent; that is,

(9a) |C ∩ C ′| < d · r(C ∩ C ′),

where r is the rank function of M . If d is an integer, then (9a) implies the logically stronger

(9b) |C ∩ C ′| ≤ d · r(C ∩ C ′) − 1,

from which it eventually follows that the minimal nonmembers of Ld(M) satisfy the matroid circuit axioms
[1, p. 264, eq. 6.13]. On the other hand, if d 6∈ Z, then (9b) does not follow from (9a), and one can exploit
this to write down a matroid M whose minimal d-Laman-dependent sets fail the circuit axioms.

One of the equivalent phrasings of m-Laman independence involves the Tutte polynomial TM (x, y) of M ,
a fundamental isomorphism invariant of the matroid M . For background on the Tutte polynomial, see the
excellent survey article by Brylawski and Oxley [2]. Given a subset A of the ground set E, denote by A the
matroid closure or span of A. If A = A, then A is called a flat of M .

Proposition 2.2. Let M be a matroid on ground set E with rank function r, and fix m ∈ (1,∞)R.
Then the following are equivalent:

(i) E is m-Laman independent, that is, Lm(M) = 2E (the power set of E).
(ii) m · r(A) > |A| for every nonempty subset A ⊂ E. (Equivalently, m · r(F ) > |F | for every flat F of

M .)
(iii) The Tutte polynomial specialization TM (qm−1, q) is monic of degree (m− 1)r(M).
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Sketch of proof. The equivalence of (i) and (ii) is clear from the definition of m-Laman independence since
r(A) = r(A) and |A| ≥ |A| for any A ⊂ E. The equivalence of (i) and (iii) arises from expanding TM (qm−1, q)
as a polynomial in q using the Whitney corank-nullity formula [2, eq. 6.13]. �

Note that in (iii) we must allow (non-integral) real number exponents for a “polynomial” in q, but the
notions of “degree” and “monic” for such polynomials should still be clear. The connection between the
Tutte polynomial and rigidity of graphs was observed by the second author in [8].

Suppose thatm = d is a positive integer, so that Ld(M) is a matroid complex. Here d-Laman independence
has two more equivalent formulations, one of which extends a classical result in the rigidity theory of graphs.

Recski’s Theorem [13]. Let G = (V,E) be a graph, and let E ′ be a spanning set of edges of size 2|V | − 3.
Then E′ is a 2-rigidity basis if and only if for any e ∈ E ′, we can partition the multiset E ′ ∪ {e} (that is,
adding an extra copy of e to E ′) into two disjoint spanning trees of G.

This notion can be naturally extended to arbitrary matroids and dimensions.

Definition 2.3. Let M be a matroid on E. We say that E is d-Recski independent if for any element e ∈ E,
the multiset E ∪ {e} can be partitioned into d disjoint independent sets for M .

We wish to show that this purely matroidal condition is equivalent to d-Laman independence. To prove
this, we use a powerful classic result of Edmonds.

Edmonds’ Decomposition Theorem [4, Theorem 1]. Let M be a matroid of rank r on ground set E.
Then E has a decomposition into d disjoint independent sets I1, . . . , Id if and only if d · r(A) ≥ |A| for every
subset A ⊂ E.

Definition 2.4. Let M be a matroid on E. A d-Edmonds decomposition of M is a family of independent
sets I1, . . . , Id whose disjoint union is E, with the following property: given subsets I ′1 ⊂ I1, . . . , I ′d ⊂ Id
with not all I ′i empty, then it is not the case that I ′1 = I ′2 = · · · = I ′d.

Theorem 2.5. Let M be a matroid on ground set E, and let d be a positive integer. Then the following are
equivalent:

(1) E has a d-Edmonds decomposition;
(2) E is d-Laman independent;
(3) E is d-Recski independent.

Again, the proof is purely technical.

As we have seen in Theorem 2.1 (ii), when m is not an integer, the Laman complex Lm(M) need not
form the collection of independent sets of a matroid. However, Lm(M) is related to a more general (and
less well-known) object called a polymatroid [17, chapter 18], as we now explain. (We will not consider
polymatroids in the remainder of the paper.)

Definition 2.6. Fix a ground set E = [n]. A function ρ : 2E → R≥0 is the ground set rank function of a
polymatroid on E if

– ρ(A) ≤ ρ(B) whenever A ⊂ B ⊂ E (monotonicity);
– ρ(A ∪ B) + ρ(A ∩ B) ≤ ρ(A) + ρ(B) for all A,B ⊂ E (submodularity); and
– ρ(∅) = 0 (normalization).

The polymatroid associated with ρ is the convex polytope

Pρ := {x ∈ Rn
≥0 :

∑

a∈A

xa ≤ ρ(A) for all A ⊆ E},

also called the set of independent vectors of the polymatroid.

The connection between Laman independence and polymatroids is as follows.

Proposition 2.7. For every loopless matroid M on ground set E = [n], and every real number m ∈ (1,∞)R,
there is a polymatroid rank function ρ on E with the following property: A ⊂ E is m-Laman independent if
and only if its characteristic vector is independent for ρ.
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3. Slope independence and the space of photos

Throughout this section, we work with a matroid M with rank function r, represented over a field F by
nonzero1 vectors v1, . . . , vn ∈ Fr. In addition, fix positive integers k < d, and let m = d

d−k
.

Recall (Definition 1.2) that the space of (k, d)-photos of M is
{

(ϕ,W ) ∈ HomF(Fr,Fd) × Gr(k,Fd)n : ϕ(vi) ∈ Wi for all 1 ≤ i ≤ n
}

,

an algebraic subset of HomF(Fr,Fd) × Gr(k,Fd)n, hence a scheme over F. The symbol Xk,d(M) is a slight
abuse of notation; as defined, the photo space depends on the representation {vi}, and it is not at all clear to
what extent it depends only on the structure of M as an abstract matroid. (We will return to this question
later.)

For each photo (ϕ,W ), kerϕ is a linear subspace of Fr, hence intersects E in some flat F of M . It is useful
to classify photos according to what this flat is. Accordingly, for a flat F ⊂ E, we define the corresponding
cellule as

XF
k,d(M) = {(ϕ,W ) ∈ Xk,d(M) : kerϕ ∩ E = F} .

Each photo belongs to exactly one cellule; that is, Xk,d(M) decomposes as a disjoint union of its cellules.

The cellule X∅

k,d(M) corresponding to the empty flat ∅ is called the non-annihilating cellule. It is a Zariski

open subset of Xk,d(M), defined by the open conditions ϕ(vi) 6= 0 for i = 1, . . . , n. At the other extreme,
the cellule XE

k,d(M) corresponding to the improper flat E is called the degenerate cellule. It is precisely

{0} × Gr(k,Fd)n, where 0 is the zero map Fr → Fd.
The following facts are easy consequences of the preceding discussion.

Proposition 3.1. Let M and Xk,d(M) be as above. Then:

(i) The natural projection map X∅

k,d(M) → HomF(Fr,Fd) makes X∅

k,d(M) into a bundle with fiber

Gr(k−1,Fd−1) and base the Zariski open subset of HomF(Fr,Fd) defined by ϕ(vi) 6= 0 for i = 1, . . . , n.
(ii) For each flat F , XF

k,d(M) ∼= X∅

k,d(M/F ) × Gr(k,Fd)F . In particular, XF
k,d(M) is irreducible, and

(10) dimXF
k,d(M) = d(r − r(F )) + (n− |F |)(k − 1)(d− k) + |F |k(d− k).

Let π denote the projection map

(11) HomF(Fr,Fd) × Gr(k,Fd)n π
−→ Gr(k,Fd)n,

and define M to be (k, d)-slope independent if πX∅

k,d(M) is Zariski dense in Gr(k, d)n.

Theorem 3.2. The following are equivalent:

(i) M is (k, d)-slope independent, i.e., πX∅

k,d(M) is dense in Gr(k, d)n.

(ii) M is m-Laman independent, i.e., m · r(F ) > |F | for every nonempty flat F of M .
(iii) dimXF

k,d(M) < dimX∅

k,d(M) for every nonempty flat F of M .

(iv) The photo space Xk,d(M) is irreducible.
(v) The photo space Xk,d(M) coincides with the Zariski closure of its non-annihilating cellule.

The result is analogous to Theorem 4.5 of [7], and the proof uses the cellule decomposition in a similar
way. In particular, the equivalence of (i) and (ii) immediately gives the following equality between the slope
and Laman complexes.

Corollary 3.3. Let m ∈ Q ∩ (1,∞)R. Write m as d
d−k

, where 0 < k < d are integers.

Then Sk,d(M) = Lm(M).

Remark 3.4. The condition d ≥ 2 is implicit in Corollary 3.3. However, there is a sense in which the result

is still valid for d = 1. When k = 1, the result asserts that S1,d(M) = L
d

d−1 (M). Now, if one establishes
conventions properly, this equality remains valid as d approaches 1, so that m = d

d−1 approaches infinity.

That is, S1,1(M) = L∞(M) = 2E . Indeed, the full simplex 2E is logically equal to S1,1(M): there is only
one possible line through any point in F1, so the projection map π is dense. Meanwhile, it is easy to see that
L∞(M) = 2E , where L∞(M) := limm→∞ Lm(M).

1That is, we assume that M contains no loops. Our results still hold—with trivial but notationally annoying modifications—
when loops are present.
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Remark 3.5. For a given matroid M and irrational number m, it is not hard to see that there exists a
rational number m̃, chosen sufficiently close to m, such that Lm̃(M) = Lm(M). Therefore, Corollary 3.3
actually gives a geometric interpretation for every instance of Laman independence.

Remark 3.6. Another surprising consequence of Corollary 3.3 is that (k, d)-slope-independence is invariant
under simultaneously scaling k and d. That is, Sk,d(M) = Sak,ad(M) for every integer a > 0. Moreover, if d
is divisible by k, then m = d

d−k
is an integer, and in fact Sk,d(M) = Lm(M) is a matroid by Theorem 2.1 (i).

It is far from clear what the geometry is behind these phenomena.

A natural question is to determine the singularities of the photo space. While we cannot do this in general,
we can at least say exactly for which matroids Xk,d(M) is smooth. The result and its proof are akin to [8,
Proposition 15], and do not depend on the parameters k and d.

Proposition 3.7. Let M be a loopless matroid equipped with a representation {v1, . . . , vn} as above. Then,
for all integers 0 < k < d, the photo space Xk,d(M) is smooth if and only if each ground set element is either
a loop or a coloop.

Sketch of proof. If M consists solely of loops and coloops, then its photo space has the structure of an
iterated fiber bundle over a point, in which every fiber is smooth (in fact, a copy of a projective space).
Otherwise, one can explicitly describe the tangent space to Xk,d(M) at a point in the degenerate cellule,
and show that its dimension exceeds that of the photo space. �

4. Counting photos

Although it will not be needed in the sequel, we digress to prove an enumerative result, possibly of
independent interest: when the field of representation of M is finite, the cardinality of the photo space
Xk,d(M) is an evaluation of the Tutte polynomial T (M) = TM (x, y). We refer the reader to [2] for details on
the Tutte polynomial; roughly, it is the most general matroid isomorphism invariant satisfying the deletion-
contraction recurrence

T (M) = T (M\v) + T (M/v)

for every ground set element v that is neither a loop nor a coloop.
For n ∈ N, define the q-analogues of n and n! by

[n]q :=
1 − qn

1 − q
= 1 + q + q2 + · · · + qn−1, [n]!q := [n]q [n− 1]q · · · [2]q[1]q,

and define the q-binomial coefficient

(12)

[

d
k

]

q

:=
[d]!q

[k]!q [d− k]!q
.

Theorem 4.1. Let F be the finite field with q elements. Let M be a matroid of rank r, represented over F

by vectors v1, . . . , vn spanning Fr, and let d ≥ 2. Then the number of (k, d)-photos of M is

|Xk,d(M)| =

[

d− 1
k − 1

]r(M⊥)

q

(

qk

[

d− 1
k

]

q

)r(M)

TM











[

d
k

]

q
[

d− 1
k

]

q

,

[

d
k

]

q
[

d− 1
k − 1

]

q











.

Here M⊥ denotes the dual or orthogonal matroid to M , defined combinatorially as the matroid on E
whose bases are the complements of the bases of M .

The proof uses the commutative diagram

(13)

Xk,d(M/e) × Gr(k,Fd) ↪→ Xk,d(M)

π̃









y

π









y

Xk,d(M/e) ↪→ Xk,d(M − v)
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to give a deletion-contraction recurrence for |Xk,d(M)|. This recurrence can then be translated into a Tutte
polynomial evaluation. The q-binomial coefficient (12) arises as the cardinality of the Grassmannian of
k-planes in Fn; see [14, Proposition 1.3.18]. The argument resembles that of [8, Theorem 1], in which the
second author used a similar commutative diagram to express the Poincaré series of the picture space of a
graph (over C) as an analogous Tutte polynomial evaluation. (In contrast, when F = R or C, the topology
of the photo space is much simpler: there is a deformation retraction of Xk,d(M) onto its degenerate cellule,
which is homeomorphic to Gr(k,Fd)n.)

Since the Tutte polynomial of M does not depend on the choice of representation, neither does the number
of photos. Moreover, there is a curious symmetry between the number of photos of a matroid M and of its
dual M⊥. Since TM⊥(x, y) = TM (y, x) [2, Prop. 6.2.4] and

[

d
k

]

q
=
[

d
d−k

]

q
, we have

(14) qd·r(M)|Xd−k,d(M
⊥)| = q(d−k)n|Xk,d(M)|.

A direct combinatorial explanation of this equality would be of interest.

5. Rigidity and parallel independence

In this section, we examine more closely the special cases k = 1 and k = d−1 of (k, d)-slope independence
for a represented matroid M . It turns out that they are intimately related to the d-dimensional generic
rigidity matroid Rd(M) and the d-dimensional generic hyperplane-marking matroid Hd(M). As before, let
M be a matroid represented by vectors E = {v1, . . . , vn} spanning Fr, and let d > 0 be an integer.

5.1. Interpreting Rd(M) and Hd(M). Recall (Definition 1.4) that the d-dimensional rigidity matroid is
represented over F(ϕ) by the vectors {vi ⊗ ϕ(vi)}

n
i=1 ⊂ Fr ⊗F F(ϕ)d. where F(ϕ) is the extension of F by

dr transcendentals (the entries of the matrix ϕ : Fr → F(ϕ)d). The complex Rd(M) is defined to be the
complex of independent sets of this matroid. The d-rigidity matrix Rd(M) is the n× dr matrix whose rows
represent Rd(M).

Recall also (Definition 1.5) that the d-dimensional hyperplane-marking matroid is represented over F(ϕ, n)
by the vectors {vi⊗ηi)}

n
i=1 ⊂ Fr⊗FF(ϕ, η)d. where F(ϕ) is the extension of F by dr+(d−1)n transcendentals

(the dr entries of the matrix ϕ, and the (d−1)n coordinates of the normal vectors ηi to ϕ(vi)). The complex
Hd(M) is defined to be the complex of independent sets of this matroid. Denote by Hd(M) the n × dr
matrix whose rows represent Hd(M).

To interpret Rd(M) and Hd(M), we study their (right) nullspaces. Both matrices have row vectors in
Fr ⊗F Fd, so their nullvectors live in the same space. It will be convenient to freely use the identifications

Fr ⊗F Fd ∼= (Fr)∗ ⊗F Fd ∼= HomF(Fr,Fd).

The second of these isomorphisms is canonical; the first comes from identifying Fr and (Fr)∗ by the standard
bilinear form 〈x, y〉 =

∑r
i=1 xiyi on Fr, whose associated quadratic form is Q(x) = 〈x, x〉 =

∑r
i=1 x

2
i . With

these identifications, one has

〈v ⊗ x, ψ〉 = 〈x, ψ(v)〉.

for every ψ ∈ HomF(Fr,Fd), v ∈ Fr, and x ∈ Fd. Using this fact, one can prove the following:

Proposition 5.1. Let M be a matroid represented by E as above, and let ψ ∈ Fr ⊗F Fd ∼= HomF(Fr,Fd).

(i) The vector ψ lies in kerHd(M) if and only if (ϕ+ ψ)(vi) is normal to ηi for every i = 1, 2, . . . , n.
(ii) Provided that F does not have characteristic 2, the vector ψ lies in kerRd(M) if and only if

Q
(

(ϕ+ εψ)(vi)
)

≡ Q
(

ϕ(vi)
)

mod ε2

for every i = 1, 2, . . . , n.

Remark 5.2. Part (i) of Proposition 5.1 says that the nullspace of Hd(M) is the space of directions in which
one can perturb the map ϕ while keeping every image ϕ(vi) in the same hyperplane normal to ηi.

In contrast, part (ii) of Proposition 5.1 says that the nullspace of Rd(M) is the space of infinitesimal
changes that can be made to ϕ while keeping Q(ϕ(vi)) constant (up to first order) for every i. (This is a
rephrasing of a familiar fact from rigidity theory: the rigidity matrix Rd(M) is just the Jacobian matrix
(after scaling by 1

2 ) of the map HomF(Fr,Fd) → Fn sending ϕ to Q(ϕ(vi))
n
i=1.)
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Denote by (d−1)M the matroid whose ground set consists of d−1 copies of each vector in E. The d-parallel
matrix of M is defined as Hd((d−1)M), and the matroid represented by its rows is the d-dimensional parallel
matroid Pd(M) := Hd((d − 1)M). Part (ii) of Proposition 5.1 leads to an interpretation of the geometric
meaning carried by the d-parallel matrix:

Corollary 5.3. Let ψ ∈ Fr⊗F Fd ∼= HomF(Fr,Fd). Then ψ ∈ kerP d(M) if and only if (ϕ+ψ)(vi) is parallel
to ϕ(vi) for all i = 1, 2, . . . , n.

Proof. Since there are d− 1 copies of the vector vi in (d− 1)M , there will be (d− 1) accompanying normal
vectors to ϕ(vi). Because these normals are chosen with generic coordinates, the only vectors normal to all
d− 1 of them are those parallel to ϕ(vi). Now apply Proposition 5.1. �

5.2. The Nesting Theorem. We now give one of our main results, the Nesting Theorem, which describes
the relationship between the various independence systems associated to an arbitrary representable matroid
M . In the special case that M is graphic and the ambient dimension d is 2, the Nesting Theorem gives what
we have called the planar trinity (Corollary 5.5 below).

Theorem 5.4 (The Nesting Theorem). Let M be a matroid represented by vectors E = {v1, . . . , vn} ⊂ Fr,
and let d > 1 be an integer. Then

S1,d(M) ⊆ Rd(M) ⊆ Ld(M) = Hd(M) (= Sd−1,d(M)).

Sketch of proof. To prove that Rd(M) ⊆ Ld(M), it suffices to show that whenever d · r(M) ≤ n, there is an
F(ϕ)-linear dependence among the n rows of Rd(M). The construction of Rd(M) implies that these rows
lie in a F(ϕ)-vector space of dimension d · r(M). Thus if d · r(M) < n, then the desired linear dependence
is immediate, while if d · r(M) = n, then the form of Rd(M) allows us to exhibit an explicit nullvector. The
proof that Hd(M) ⊆ Ld(M) is analogous.

To prove that S1,d(M) ⊆ Rd(M), we assume that the rows of Rd(M) are dependent and show that M is

(k, d)-slope dependent for k = 1. Note that Sk,d(M) = L
d

d−k (M) ⊂ Ld(M). The equality is Corollary 3.3,
and the inclusion follows from the definition of Lm(M) (because d

d−k
≤ d). In particular, if M is d-Laman

dependent then M is automatically (k, d)-slope dependent; we may therefore assume that M is d-Laman
independent. Without loss of generality, d · r(M) ≥ n, so the dependence of the rows of Rd(M) implies the
vanishing of every one of its n×n minors. Moreover, by Theorem 2.5, M admits a d-Edmonds decomposition
(see Definition 2.4).

Using the combinatorial properties of an Edmonds decomposition, we construct an n × n minor ξ of
Rd(M) that is a nonzero multihomogeneous polynomial in the coordinates of the vectors ϕ(vi). If ξ vanishes
on the non-annihilating cellule X∅

k,d(M) of the photo space, then the projection on X∅

k,d(M) → Gr(k,Fd) is

not Zariski dense, because the homogeneous coordinates of the ϕ(vi) are in fact the Plücker coordinates on
Gr(k,Fd). This observation, together with Theorem 3.2, implies that S1,d(M) ⊆ Rd(M).

Replacing Rd(M) with Hd(M), k = 1 with k = d− 1, and ϕ(vi) with ηi throughout, the same argument
shows that Sd−1,d ⊂ Hd(M). This completes the proof, since Sd−1,d(M) = Ld(M) by Corollary 3.3. �

The case d = 2 is very special. Recall that Pd(M) = Hd((d− 1)M), so P2(M) = H2(M). Indeed, setting
d = 2 in the Nesting Theorem gives the following equalities:

Corollary 5.5. S1,2(M) = R2(M) = L2(M) = H2(M) = P2(M).

When d ≥ 3, the inclusion Rd(M) ⊂ Ld(M) is typically strict. The nullspace of Rd(M) contains the
(

d
2

)

-dimensional space of all vectors of the form σ ◦ϕ, as σ ranges over all skew-symmetric matrices in Fd×d.

Consequently, every d-rigidity-independent subset A ⊂ E must satisfy |A| ≤ d · r(A) −
(

d
2

)

. On the other
hand, there may exist d-Laman independent sets A of cardinality up to d · r(A) − 1.

6. Examples: Uniform matroids

Let E be a ground set with n elements. The uniform matroid of rank r on E is defined to be the matroid
Ur,n with independent sets {F ⊂ E : |F | ≤ r}. Ur,n may be regarded as the matroid represented by n
generically chosen vectors in Fr, where F is a sufficiently large field.
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Predictably, the d-Laman and (k, d)-slope independence complexes on Ur,n are also uniform matroids:

(15) Ld(Ur,n) = Us,n, Sk,d(Ur,n) = Ut,n where s = min(ddr − 1e, n), t = min(d dr
d−k

− 1e, n).

More striking is that d-Laman independence carries nontrivial geometric information about sets of n generic
vectors in r-space: coplanarity for U2,3 and the cross-ratio for U2,4.

Example 6.1 (U2,3). Let F be any field, and let e1, e2 be the standard basis vectors in F2. The matroid
M = U2,3 is represented by the vectors {e1, e1 + e2, e2} ⊂ F2; this representation is unique up to the action
of the projective general linear group. By (15),

Ld(U2,3) =

{

U2,3 if d ∈ (1, 3
2 ]R

U3,3 if d ∈ ( 3
2 ,∞)R

and S1,d(U2,3) =

{

U3,3 if d = 2

U2,3 if d ∈ {3, 4, . . .}.

We now consider what these equalities mean in terms of slopes. Let ϕ : F2 → Fd be a linear transformation.
If d = 2, then the images ϕ(e1), ϕ(e1 + e2), ϕ(e2) can have arbitrary slopes as ϕ varies. This is why
S1,2(U2,3) = U3,3. On the other hand, when d ≥ 3, those three vectors must be coplanar. This imposes a
nontrivial constraint on the homogeneous coordinates for the lines spanned by the three images, and explains
why S1,d(U2,3) = U2,3. By direct calculation, the inclusions Rd(M) ⊆ Ld(M) given by Theorem 5.4 turn
out to be equalities.

Example 6.2 (U2,4). Let F be a field of cardinality > 2, let µ ∈ F \ {0, 1}, and let e1, e2 be the standard
basis vectors in F2. The four vectors {e1, e1 + e2, e2, e1 + µe2} represent M = U2,4 over F. Again, this
representation is unique up to projective equivalence. By (15),

Ld(U2,4) =











U2,4 if d ∈ (1, 3
2 ]R

U3,4 if d ∈ ( 3
2 , 2]R

U4,4 if d ∈ (2,∞)R

and S1,d(U2,4) =

{

U3,4 if d = 2

U2,4 if d ∈ {3, 4, . . .}.

Why is this correct from the point of view of slopes? From Example 6.1, we know that when d ≥ 3, the lines
spanned by the images of any three of the four vectors must be coplanar, so there is an algebraic dependence
among the homogeneous coordinates for these three lines. For d = 2, this does not happen; the slopes of the
images of any triple can be made arbitrary. However, applying a linear transformation to the representing
vectors does not change their cross-ratio (in this case µ), so the fourth image vector is determined by the
first three. This is the geometric interpretation of the combinatorial identity S1,2(U2,4) = U3,4.

Direct calculation shows that

Rd(U2,4) =

{

U2,4 if d = 1,

U3,4 if d ∈ {2, 3, . . .}.

This calculation is independent of the particular coordinates chosen for the representing vectors, even up to
projective equivalence (that is, up to the choice of the parameter µ): that is, Rd(U2,4) is a combinatorial
invariant. On the other hand, unlike the situation for U2,3, the inclusions Rd(M) ⊂ Ld(M) given by
Theorem 5.4 are strict. (This behavior deviates from the case of graphic matroids; see below.)

7. More about Rd(M): invariance and stabilization

The examples in the previous section raise some natural questions. Clearly Lm(M) is a combinatorial
invariant of M (that is, it does not depend on the choice of representation), so by Corollary 3.3 the same is
true for Sk,d(M) (and in particular Hd(M) and Pd(M)). But what about Rd(M)? Note that this issue does
not arise in classical rigidity theory, where the graphic matroid M(G) is always represented by the vectors
{ei − ej : {i, j} ∈ E(G)}, where ei is the ith standard basis vector in R|V (G)|.

Question 7.1. Is Rd(M) a combinatorial invariant of M , or does it depend on the choice of representation
{v1, . . . , vn}?

In the special case d = 2, the Nesting Theorem implies that Rd(M) is indeed a combinatorial invariant.
Call two sets of vectors E = {v1, . . . , vn}, E

′ = {v′1, . . . , v
′
n} ⊂ Fr projectively equivalent if there are

nonzero scalars c1, . . . , cn ∈ F× and an invertible linear transformation g ∈ GLr(F), such that v′i = g(civi)
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for every i. Then the matroids represented by E and E ′ are combinatorially identical. It is not hard to prove
that their corresponding rigidity matroids are also identical. Unfortunately, this fact provides little insight
into Question 7.1, because projective equivalence is a very strong condition.

On the other hand, we have not found a counterexample. We have seen that Rd(M) is indeed a combi-
natorial invariant for all d when M = U2,3 or U2,4. As another example, consider the following two sets of
nine coplanar vectors in R3:

E = {(1, 0, 0), (1, 0, 1), (1, 0, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2)},

E′ = {(1, 0, 0), (1, 0, 1), (1, 0, 3), (1, 2, 0), (1, 2, 1), (1, 2, 3), (1, 3, 0), (1, 4, 1), (1, 6, 3)}.

•

•

•

•

•

•

•

•

•

E

•

•

•

•

•

•

•

•

•

E′

Let M,M ′ be the matroids represented by E,E ′ respectively. These matroids are combinatorially isomor-
phic but projectively inequivalent. On the other hand, computations using Mathematica have shown that
R2(M) = R2(M ′) and R3(M) = R3(M ′).

It is not hard to show that Rd(M) ⊂ Rd+1(M) for all represented matroids M and integers d. Since there
are only finitely many simplicial complexes on E, the tower M = R1(M) ⊆ R2(M) ⊆ R3(M) ⊆ · · · must
eventually stabilize. Using standard facts about the transcendence degree of field extensions, we prove that
this stabilization occurs no later than the rank r = r(M): that is,

Rd(M) = Rr(M) for all d ≥ r.

Moreover, if M is the graphic matroid for a graph G = (V,E), equipped with the standard representation
{ei − ej : ij ∈ E} over an arbitrary field, then Rr(M) is the Boolean matroid on E.

This observation begs the question of whether Rd(M(G)) depends on the field before d reaches the stable
range. For an arbitrary representable matroid M , it is not true in general that R∞(M) is Boolean. We
have already seen one example for which this fails, namely U2,4. Another example is the well-known Fano
matroid F , represented over the two-element field F2 by the seven nonzero elements of F3

2. It is not hard to
show that Ld(F ) is Boolean for d > 7

3 . On the other hand, computation with Mathematica indicates that

R2(F ) = U5,7, but Rd(F ) = U6,7 for all integers d ≥ 3.

8. Open problems

The foregoing results raise many questions that we think are worthy of further study. Some of these have
been mentioned earlier in the paper. In this final section, we restate the open problems and add a few more.

Problem 1. Determine the singular locus of the (k, d)-photo space Xk,d(M) (perhaps by calculating the
dimension of its various tangent spaces, as in Proposition 3.7).

Problem 2. Give a direct combinatorial explanation for the identity (14) (presumably by identifying some
natural relationship between photos of M and of M⊥).

Problem 3. Explain the “scaling phenomenon” of Remark 3.6 geometrically.

Problem 4. Determine whether or not the d-rigidity matroid Rd(M) is a combinatorial invariant of M
(Question 7.1). If not, determine which matroids have this property, and to what extent Rd(M) depends on
the field over which M is represented.

Problem 5. Let M(G) be a graphic matroid equipped with the standard representation {ei − ej : {i, j} ∈
E(G)}. Is the rigidity matroid Rd(M) independent of the ambient field F for all d?

Problem 6. Generalize other aspects of classical (graph) rigidity theory to non-graphic matroids. One
example is Crapo’s “(d+1)Td” characterization of the hyperplane-marking matroid of a graph [18, Theorem
8.2.2]. Another is Henneberg’s construction of the bases of the 2-rigidity matroid [18, Theorem 2.2.3].



12 MIKE DEVELIN, JEREMY L. MARTIN AND VICTOR REINER

Our last open problem is similar in spirit to the results of [7] and [9], describing the algebraic and
combinatorial structure of the equations defining the slope variety of a graph. It is motivated also by the
appearance of the cross-ratio in Example 6.2.

Problem 7. Describe explicitly the defining equations (in Plücker coordinates on Gr(k,Fd)n) for πX∅

k,d(M),

where π is the projection map of (11).
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