
ZONAL POLYNOMIALS FOR WREATH PRODUCTS
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Abstract. The pair of groups, symmetric group S2n and hyperoctohedral group
Hn, is a Gelfand pair. The image of zonal spherical functions of this pair under the
characteristic map are a family of symmetric functions called zonal polynomials. In
the meaning of wreath products, a generalization of this Gelfand pair is considered
in this abstract. Its zonal spherical functions are mapped to products of symmetric
functions by characteristic map.

RÉSUMÉ. La paire des groupes, du groupe symétrique S2n et du groupe hyperoc-
tohedral Hn, est une paire de Gelfand. L’image des fonctions sphériques zonales
de cette paire sous characteristic map sont une famille des fonctions symétriques
appelées les polynômes zonaux. Dans la signification de produits en couronne, une
généralisation de cette paire de Gelfand est considérée dans cet abstrait. Ses fonc-
tions sphériques zonales sont tracées aux produits des fonctions symétriques par
characteristic map.

Key Words: zonal polynomials, Schur functions, Jack symmetric polynomials,
Gelfand pairs of finite groups, zonal spherical functions

1. Introduction

The characteristic map can explain the relation of characters of symmetric groups
and symmetric functions. We denote by R(Sn) a complex vector space spanned by
the irreducible characters of Sn. An element f of R(Sn) can be identified an element
f =

∑
x∈Sn

f(x)x of the group ring CSn. R(Sn) has a scalar product defined by

〈f, g〉 =
1

|Sn|
∑
x∈Sn

f(x)g(x).

We put

R =
⊕
n≥0

R(Sn)

and define a scalar product on R as

〈f, g〉 =
∑
n≥0

n!〈fn, gn〉 for fn, gn ∈ R(Sn).

R has a ring structure defined as follows. For u ∈ R(Sn) and v ∈ R(Sm), we define
the multiplication of R by

fg = ind
Sn+m

Sn×Sm
u × v.

Classification number :33C45,05E35,05E05.
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Let Λ be a ring of symmetric function. We define a C-linear mapping

ch : R 7→ Λ

by

ch(
∑
x∈Sn

f(x)x) =
∑
x∈Sn

f(x)pσ(x),

where f(x) ∈ C and σ(x) is a cycle type of x. This mapping is called the characteristic
map. The characteristic map gives isometric isomorphism of R onto Λ. Let χλ

ρ be a
irreducible character evaluated at a conjugacy class ρ. We obtain Schur functions as
a image of a irreducible character of Sn:

ch(χλ) = Sλ, λ ⊢ n.

In Macdonald’s book(Chapter I, Appendix B) the theory above is extended to the
character theory of the wreath products of any finite group with a symmetric group.
We can also define the characteristic map as isometry isomorphism of the character
ring of a wreath product onto the ring of symmetric functions. In this case we obtain
c-times product of Schur functions as a image of irreducible characters. Here c is a
number of irreducible characters of G.

We know a similar theory for the case of a Gelfand pair (S2n, Hn)[6, VII7-2]. We
consider zonal spherical functions of this pair. Although precise definition of zonal
spherical functions appear in later (see Section 2). Here Hn is a subgroup of S2n

defined to be the centralizer of an element (1, 2)(3, 4) · · · (2n − 1, 2n). Littlewood’s
formula [5] says that

1S2n
Hn

∼
⊕
λ⊢n

χ2λ.

In fact, zonal spherical functions are unique Hn-invariant element of each irreducible
component of 1S2n

Hn
and constant on each double coset. It is known that double cosets

of this pair are classified by the partition of n [6, VII-2(2.1)]. Let ωλ
ρ be a zonal

spherical function in Vi evaluated on a double coset indexed by ρ. We define zonal
polynomials (cf. [2, 12, 13]) by

Zλ = |Hn|
∑
ρ⊢n

z−1
2ρ ωλ

ρpρ, λ ⊢ n.

Zonal polynomials are a special family of Jack symmetric function Jα
λ (x) [6, 11] with

parameter α = 2. In terms of Jack symmetric functions, zonal polynomials are
formulated as follows: We consider a inner product on Λ ⊗ Q(α) defined by

〈pρ, pσ〉α = δρ,σzρα
ℓ(λ).

Zonal polynomials are the unique homogenous basis of Λ ⊗ Q(2) satisfying:

(1) 〈Zλ, Zµ〉2 = h(2λ)δλ,µ, where h(λ) is the hook length product of λ
(2) We write Zλ =

∑
µ vλ,µmµ, where mµ is a monomial symmetric function. Then

vλ,µ = 0 unless µ is less than λ as the dominance order(cf. [6] pp.7 Chapter
1-1).

(3) If λ ⊢ v, then vλ,1n = n!
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The characteristic map make us understood equivalency of two definitions above. We
define a graded ring of Hecke algebra

H =
⊕
n≥0

eHnCSneHn ,

where eHn = 1
|Hn|

∑
h∈Hn

h. The multiplication of H is defined by

uv = en+m(u × v)en+m, u ∈ Hn, v ∈ Hm and u × v ∈ Hn ×Hm.

We can define the isometry isomorphism ch of H onto Λ and obtain

|Hn|ch(ωλ) = Zλ.

In this abstract our purpose is to generalize third case in the meaning of wreath
products. Then we expect to obtain products of zonal polynomials as images of zonal
spherical functions under proper isomorphism like the second case. We will consider
G ≀ S2n instead of S2n. But what kind of subgroup should be chosen, we argue for
this problem in Section 3. In Section 4, we classify double coset of the pair defined at
Section 3 by using G-colored graphs. We recall the representation theory of wreath
products in Section 5. Section 6 is devoted to the irreducible decomposition of the
permutation representations. In Section 7-9 we see that our expectation is true. In
fact, we obtain products of zonal polynomials and Schur functions as images of our
zonal spherical function under a ‘characteristic map’ (cf. Theorem 9.3).

2. Gelfand Pair of Finite Groups and Its Zonal Spherical Functions

We recall the theory of Gelfand pair of finite groups. Through this section we
denote G by a finite group and H by its subgroup. Put

eH =
1

|H|
∑
h∈H

h.

Let CG be the group ring of G and eHCGeH a Hecke algebra. We regard

f =
∑
x∈G

f(x)x ∈ CG, f(x) ∈ C

as a function x 7→ f(x) on G. Under this identity, the multiplication on CG is

(f ∗ g)(x) =
∑
yz=x

f(y)g(z).

We assume the induced representation CGe is multiplicity free, i.e. (G,H) is a
Gelfand pair. Under our assumption CGe is direct sum of non-isomorphic irreducible
G-module;

CGe =
s⊕

i=1

Vi,

where Vi’s are irreducible representations. Let χi be a character of Vi. We define

ei =
dim Vi

|G|
∑
x∈G

χi(x)
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to be a primitive idempotent affording to Vi-isotypic component of CGe. Then we
have next proposition [1].

Proposition 2.1. In the notation introduced above

Vi = CGeieH .

The Scalar product on CG is

〈f, g〉G =
1

|G|
∑
x∈G

f(x)g(x).

We can easy to see that this scalar product is G-invariant Hermitian scalar product.
The Frobenius reciprocity gives us that dim Vi

|G| eieH is a unique H-invariant element of

Vi which equals to 1 at unit element of G. We call the functions,

ωi(x) =
dim Vi

|G|
eieH = 〈eieH , xeieH〉G/〈eieH , eieH〉G, (1 ≤ i ≤ s, x ∈ G),

zonal spherical functions of a Gelfand pair (G,H). Zonal spherical functions are
constant on each double coset H\G/H and have a orthogonality relation

〈ωi, ωj〉G = δij
1

dim Vi

.

Proposition 2.2. [6, VIIpp. 389(1.3)] Let F be a non-zero H-invariant element of
W ∼= Vi and 〈, 〉 be a G-invariant Hermitian scalar product on W . Then the zonal
spherical function is written as

ωi(x) = 〈F, xF 〉/〈F, F 〉.

Some zonal spherical functions of Gelfand pair of wreath products are calculated
in [7, 8, 9].

3. A pair (SG2n, HGn)

Through this section, S2n is a permutation group on [2n] = {1, 2, · · · , 2n} and its
subgroup Hn is the centralizer of an element (1, 2)(3, 4) · · · (2n − 1, 2n) ∈ S2n. We
remark that Hn can be considered the permutation groups on {{2i−1, 2i}; 1 ≤ i ≤ n}
and

Hn
∼= W (Bn),

where W (Bn) is the Weyl group of type B. Let G be a finite group. We denote by
G∗ the set of conjugacy class of G. We consider a wreath product

SG2n = G ≀ S2n.

Let ∆G be a diagonal subgroup of G × G defined by

∆G = {(g, g) | g ∈ G} .

We restrict the action of S2n on G2n to Hn and define a subgroup of SG2n by

HGn = (∆G)n oθ̃ Hn.

From the definition of Hn it is clear that HGn is well defined.
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4. Description of Double Cosets

Through a combinatorial argument, we can describe a complete representatives of
each double coset of (SG2n, HGn) [10]. In this section, without proofs, we introduce
a method of identification of each double coset.

For an element x = (g1, g2, · · · , g2n; σ) of SG2n, the G-colored graph ΓG(x) =
{VG(x), EG(x)} is a graph with vertices

VG(x) = {g1, g2, · · · , g2n}

and edges

EG(x) =
{
{g2i−1, g2i} ,

{
gσ(2j−1), gσ(2j)

}
; 1 ≤ i, j ≤ n

}
.

Here we call the edge {g2i−1, g2i} “broken” and
{
gσ(2i−1), gσ(2i)

}
“staright”.

Example 4.1. G = Z/3Z = {0, 1, 2}. We consider SG6 and take an element

x = (0, 1, 2, 2, 1, 0; (123)(56)).

Then the graph of x is

ΓG(x) =

1
s

2
s

0
s

0s 2s 1s



J

J
JJ .

This graph gives a two-sided HGn-invariant: Fix an element x = (g1, g2, · · · , g2n; σ)
of SG2n. Let L be a cycle of ΓG(x). We assume that L has vertices

{
gij ; 1 ≤ j ≤ 2k

}
.

Let {{
gi2j−1

, gi2j

}
; (1 ≤ j ≤ k)

}
be broken edges of L and{{

gi2j
, gi2j+1

}
, {gi2k

, gi1} ; (1 ≤ j ≤ k − 1)
}

be staright edges of L. We define a circuit product of L by

p(L) =
k∏

j=1

g−1
i2j−1

gi2j
.

Example 4.2. In the case of example 4.1, from a graph

ΓG(x) =

1
s

2
s

0
s

0s 2s 1s



J

J
JJ ,

we compute circuit products

−0 + 1 − 2 + 2 = 1,−1 + 0 = 2.

If L has 2k edges then we call p(L) a circuit product of length k.
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Definition 4.3. Put

G∗∗ =
{
R = C ∪ C−1; C ∈ G∗

}
,

where C−1 = {g−1; g ∈ C}. We call a conjugacy class real(resp. complex) when
C = C−1(resp.C ̸= C−1). Put

mk(R) = ♯{L; L is a 2k-cycle of Γ(x) and p(L) ∈ G∗∗. }
We define a tuple of partitions

ρ(x) = (ρ(R); R ∈ G∗∗),

where ρ(R) = (1m1(R), 2m2(R), · · · , nmn(R)). This tuple of partitions ρ(x) is called
circuit type of x.

Example 4.4. If G = Z/3Z we have G∗∗ = {{0} , {1, 2}}. In the case of example
4.1, we obtain

ρ(x) = ((∅), (2, 1)).

Definition 4.3 gives us next theorem.

Theorem 4.5. (1) x ∈ HGnyHGn ⇔ ρ(x) = ρ(y).

(2) ρ(x) = ρ(x−1).

Furthermore we can see the cardinality of each double coset.

Proposition 4.6. Let x be an element such that whose circuit type is ρ(x) = (ρ(R); R ∈
G∗∗) where ρ = (1m1(R), 2m2(R), · · · , nmn(R)) and ζC = |G|

|C| for C ∈ G∗. Then we have

Zρ(x)
−1 = |HGnxHGn| =

|Hn|2|G|2n∏
R∈G∗∗

z2ρ(R)

×
∏

R∈G∗∗
|R|ℓ(ρ(R))

|G|ℓ(ρ)

= |Hn|2|G|2n
∏

R=C∈G∗∗
C=C−1

1

z2ρ(R)ζ
ℓ(ρ(R))
C

×
∏

R=C∪C−1∈G∗∗
C ̸=C−1

1

zρ(R)ζ
ℓ(ρ(R))
C

.

This result is important to determine the weight of inner product on the ring of
symmetric functions see Section 7 .

5. Representation Theory of Wreath Products

In this section we recall the representation theory of wreath products (cf. [4]). Let
G be a finite group. We write

SGn = G ≀ Sn.

Let G∗ be a set of irreducible characters of G and c its cardinality. We introduce a
construction method of the irreducible representations.

Let

Cn =

{
n = (nχ; χ ∈ G∗);

∑
χ∈G∗

nχ = n, ni ≥ 0

}
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be a set of c-composition of n. We take an element n ∈ Cn and define a set of c-tuple
of partitions;

P(n) = {(λχ|χ ∈ G∗); λχ ⊢ nχ}
We define a subgroup of SGn by

SG(n) =
∏

χ∈G∗

SGnχ .

Taking n ∈ Cn and λ = (λ(χ)|χ ∈ G∗) ∈ P(n), we define two representations R(n)
and S(λ) of SG(n) as follows:

R(n) ∼=
⊗
χ∈G∗

Vχ
⊗nχ ,

S(λ) ∼=
⊗
χ∈G∗

Sλ(χ),

where Sλ is the Specht module indexed by a partition λ. The action of SG(n) is
defined by

(g1, · · · , gn; σ)v1 ⊗ · · · ⊗ vn = g1vσ−1(1) ⊗ · · · ⊗ gnvσ−1(n) on R(n),

and

(g1, · · · , gn; σ)v = σv on S(λ).

We consider an irreducible representation of S(n)

S(λ) = R(n) ⊗ S(λ)

We write
S(λ) = S(λ) ↑SGn

SG(n) .

Theorem 5.1. [4] The complete system of irreducible representations of SGn are
given by

{S(λ); n ∈ Cn, λ ∈ P(n)} .

As can be seen from the theorem above, there is a one-to-one correspondence
between SG∗

n and the set of c-tuple of partitions of n.

6. Gelfand pair (SG2n, HGn)

From the second claim of Theorem 4.5, we see that x ∈ SG2n and x−1 are in same
double coset. Therefore we have the following proposition [6, VII(1.2)].

Proposition 6.1. (SG2n, HGn) is a Gelfand pair.

We consider irreducible decomposition of the permutation representation

indSG2n
HGn

1 = 1SG2n
HGn

.

Let G∗ be a set of irreducible characters of G. We call a character χ ∈ G∗ real
(resp. complex) if χ = χ(resp. χ ̸= χ). Let G∗

R be a set of real characters and G∗
C a

set of complex characters. We define a relation in G∗
C as

χ ∼ χ′ ⇔ χ = χ′
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and

G∗∗ = G∗
R ∪ G∗

C/∼.

Taking proper representatives, we consider G∗∗/ ∼ to be a subset of G∗. Next propo-
sitions are elementary in this section.

Proposition 6.2. (1) (S2n, Hn) is a Gelfand pair.

(2) (G × G, ∆G) is a Gelfand pair.

(3) Especially, (Sn × Sn, ∆Sn) is a Gelfand pair.

Proposition 6.3. (1) 1S2n
Hn

=
⊕

λ⊢n S2λ.

(2) 1G×G
∆G =

⊕
χ∈G∗

R
χ ⊗ χ ⊕

⊕
χ∈G∗

C
χ ⊗ χ.

(3) Especially, 1Sn×Sn
∆Sn

=
⊕

λ⊢n Sλ ⊗ Sλ.

We use the notation appeared in Section 5. We put

C2n ⊃ C∗∗
2n = {(nχ; nχ ≡ 0 (mod 2) χ ∈ G∗

R, nχ = nχ χ ∈ G∗
C)} .

Example 6.4. The case of G = Z/2Z:

C∗∗
2n = {(2n − 2k, 2k); 0 ≤ k ≤ n} .

The case of G = Z/3Z:

C∗∗
2n = {(2n − 2k, k, k); 0 ≤ k ≤ n} .

For n ∈ C∗∗
2n we define

P(n) ⊃ P∗∗(n) =
{
(λχ; λχ = 2∃µχ, χ ∈ G∗

R and λχ = λχ, χ ∈ G∗
C)

}
,

where 2λ means (2λ1, 2λ2, · · · ) for λ = (λ1, λ2, · · · ).

Example 6.5. The case of G = Z/2Z:

P∗∗(n) = {(2λ, 2µ); |λ| + |µ| = n} .

The case of G = Z/3Z:

P∗∗(n) = {(2λ, µ, µ); |λ| + |µ| = n} .

We consider a representation χ(n)⊗S(λ) for n ∈ C∗∗
2n and λ ∈ P∗∗(n). Propositions

6.2 and 6.3 give us the following fact.

Proposition 6.6. χ(n) ⊗ S(λ) has
∏

χ∈G∗
R

HGnχ ×
∏

χ∈G∗
C/∼

∆SGnχ-invariant ele-

ment. Here we think the following embedding

HGnχ ⊂ SG2nχ , ∆SGnχ ⊂ SGnχ × SCnχ

and ∏
χ∈G∗

R

HGnχ ×
∏

χ∈G∗
C/∼

∆SGnχ ⊂ SG(λ).
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A construction method of the irreducible representation of wreath product, see
Section 5, gives us the reverse of Proposition 6.6. Next proposition is a corollary of
a lemma due to Brauer(cf. [3, Chapter6 (6.32)]).

Proposition 6.7.

|G∗∗| = |G∗∗|.

Therefore we have the following theorem from Proposition 6.6 and 6.7

Theorem 6.8.

1SG2n
HGn

=
⊕

n∈C∗∗
2n

⊕
λ∈P∗∗(n)

S(λ)

The end of this section we see an example.

Example 6.9. The case of G = Z/2Z:

1SG2n
HGn

=
⊕

|λ|+|µ|=n

S(2λ, 2µ).

The case of G = Z/3Z:

1SG2n
HGn

=
⊕

|λ|+|µ|=n

S(2λ, µ, µ).

7. The Ring Λ̃(G)

In this section we define a suitable ring of symmetric function for considering our
zonal spherical functions. Let pr(R)(r ≥ 1) be the power sum symmetric function
with variables x(R) = (x(R)1, x(R)2, · · · ) for R ∈ G∗∗ and Λ̃(G) a ring generated by
pr(R)(r ≥ 1, R ∈ G∗∗). Let ρ = (ρ(R); R ∈ G∗∗) be a |G∗∗|-tuple of partitions. Put

Pρ(G∗∗) =
∏

R∈G∗∗

pρ(R)(R)

for ρ. We change variables pr(R)’s to

pr(χ) =
∑

R=C∪C−1∈G∗∗
C=C−1

χ(C)

ζC

pr(R) +
∑

R=C∪C−1∈G∗∗
C ̸=C−1

χ(C) + χ(C)

ζC

pr(R),

where χ ∈ G∗∗ and χ(C) is a value of χ at conjugacy class C. We also put

Pλ(G
∗∗) =

∏
λχ∈G∗∗

pλχ(χ)

for a tuple of partition λ = (λχ; χ ∈ G∗∗). We define an inner product on Λ̃(G) by

〈Pρ(G∗∗), Pσ(G∗∗)〉Λ̃(G) = δρσZρ.

Zρ is given in Proposition 4.6. Here we write a polynomial with variables pr(χ) like

as Sλ(χ).
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8. The Ring H(G)

We define a Hecke algebra by

H(SG2n, HGn) = eHGnCSG2neHGn .

It is true that zonal spherical functions of (SG2n, HGn) are orthonormal basis of
H(SG2n, HGn). We define a graded vector space

H(G) =
⊕
n≥0

H(SG2n, HGn).

The multiplication of H(G) is defined by

uv = eHGn+m(u × v)eHGn+m ,

where we think that u × v is a function on a diagonal subalgebra CS2n × CS2m of
CS2n+2m. Since H(G) has a structure of a graded algebra. We see that zonal spherical
functions are basis of H(G).

9. Main result

By using group theoretical method as in the book [1] we can obtain zonal spherical
functions as a product of some primitive idempotents. To describe details of this fact
is a little complicated. So we omit to explain how to get our zonal spherical functions
here. We only show the final final form of them.

Our zonal spherical functions can be described as follows. Let Sλ(χ) be an irre-
ducible representation of SGn isomorphic to χ(n)⊗ Sλ for n = (nη; η ∈ G∗ and nη =
δχηn). We define eλ(χ), ( λ ⊢ n and χ ∈ G∗) to be a primitive idempotent of CSGn

which afford to Sλ(χ)-isotypic component in CSGn. We avoid to write concrete
equations in the below so we use the notation “∝”. Then we have

Proposition 9.1. We put n ∈ C∗∗
2n and λ = (λχ; λχ = 2∃µχ, χ ∈ G∗

R and λχ =
λχ) ∈ P∗∗(n). Then we have zonal spherical functions in a irreducible component
χ(n) ⊗ S(λ) ↑SG2n

HGn
of 1SG2n

HGn
as

ωλ ∝ eHGn

 ∏
χ∈G∗

R

e2µχ(χ) ×
∏

χ∈G∗
C/∼

eλχ(χ) × eλχ(χ)

 eHGn .

We define a characteristic map

chH : H(G) 7→ Λ̃(G)

by
chH(x) = Pρ(x)(G

∗∗), (x ∈ SG2n).

This characteristic map gives an isometric isomorphism of H(G) onto Λ̃(G). We have
the following proposition.

Proposition 9.2. Let λ be a partition of n.

chH(e2λ(χ)eHGn) ∝ Zλ(χ), χ ∈ G∗
R,

chH(eλ(χ) × eλ(χ)e∆SGn) ∝ h(λ)Sλ(χ), χ ∈ G∗
C/ ∼ .
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Bh combining two propositions above, we obtain the main theorem of this abstract.

Theorem 9.3. We put n ∈ C∗∗
2n and λ = (λχ; λχ = 2µχ, χ ∈ G∗

R and λχ = λχ) ∈
P∗∗(n). Let ωλ be a zonal spherical function in a irreducible component S(λ) of
1SG2n

HGn
. Then we have

chH(ωλ) ∝
∏

χ∈G∗
R

Zµχ(χ) ×
∏

χ∈G∗
C/∼

h(λχ)Sλχ(χ)

=
∏

χ∈G∗
R

J
(2)
µχ (χ) ×

∏
χ∈G∗

C/∼

J
(1)
λχ (χ).

Example 9.4. In the case of G = Z/2Z = {−1, 1}: Put χi(j) = ji(i = 0, 1, j ∈ G)
We obtain

{Zµ(χ0)Zλ(χ1)}
as images of zonal spherical functions.
In the case of G = Z/3Z = {1, ξ, ξ2}: Put χi(j) = ji(i = 0, 1, 2, j ∈ G) We obtain

{Zµ(χ0)Sλ(χ1)}
as images of zonal spherical functions.
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