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Abstract

Let K denote an algebraically closed field and let q denote a nonzero scalar in K

that is not a root of unity. Let V denote a vector space over K with finite positive
dimension. Let V0, V1, . . . , Vd denote a sequence of nonzero subspaces whose direct sum
is V . Suppose R : V → V and L : V → V are linear transformations such that

(i) RVi ⊆ Vi+1 (0 ≤ i ≤ d − 1), RVd = 0,

(ii) LVi ⊆ Vi−1 (1 ≤ i ≤ d), LV0 = 0,

(iii) for 0 ≤ i ≤ d/2 the restriction Rd−2i|Vi
: Vi → Vd−i is a bijection,

(iv) for 0 ≤ i ≤ d/2 the restriction Ld−2i|Vd−i
: Vd−i → Vi is a bijection,

(v) R3L − [3]R2LR + [3]RLR2 − LR3 = 0,

(vi) L3R − [3]L2RL + [3]LRL2 − RL3 = 0,

where [3] = (q3 − q−3)/(q − q−1). Let K : V → V be the linear transformation such
that, for 0 ≤ i ≤ d, Vi is an eigenspace for K with eigenvalue q2i−d. We show that
there exists a unique Uq(ŝl2)-module structure on V such that each of R− e−1 , L− e−0 ,
K − K0, and K−1 − K1 vanish on V , where e−1 , e−0 ,K0,K1 are Chevalley generators

for Uq(ŝl2). We determine which Uq(ŝl2)-modules arise from our construction.

1 The quantum affine algebra Uq(ŝl2)

Throughout this paper K will denote an algebraically closed field. We fix a nonzero scalar
q ∈ K that is not a root of unity. We will use the following notation.

[n] =
qn − q−n

q − q−1
, n = 0, 1, . . .

We now recall the definition of Uq(ŝl2).

Keywords: Quantum group, quantum affine algebra, affine Lie algebra ŝl2, raising and lowering maps,
tridiagonal pair.
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Definition 1.1 [2, p. 262] The quantum affine algebra Uq(ŝl2) is the unital associative K-
alegbra with generators e±i , K±1

i , i ∈ {0, 1} which satisfy the following relations:

KiK
−1
i = K−1

i Ki = 1, (1)

K0K1 = K1K0, (2)

Kie
±
i K−1

i = q±2e±i , (3)

Kie
±
j K−1

i = q∓2e±j , i 6= j, (4)

e+
i e−i − e−i e+

i =
Ki − K−1

i

q − q−1
, (5)

e±0 e∓1 = e∓1 e±0 , (6)

(e±i )3e±j − [3](e±i )2e±j e±i + [3]e±i e±j (e±i )2 − e±j (e±i )3 = 0 i 6= j. (7)

We call e±i , K±1
i , i ∈ {0, 1} the Chevalley generators for Uq(ŝl2) and refer to (7) as the q-Serre

relations.

2 The Main Theorem

In this section we state our main result. We begin with two definitions.

Definition 2.1 Let V be a vector space over K with finite positive dimension. By a
decomposition of V we mean a sequence V0, V1, . . . , Vd consisting of nonzero subspaces of V
such that V =

∑d

i=0 Vi (direct sum). For notational convenience we let V−1 = 0, Vd+1 = 0.

Definition 2.2 Let V be a vector space over K with finite positive dimension. Let V0, V1, . . . , Vd

be a decomposition of V . Let K : V → V denote the linear transformation such that, for
0 ≤ i ≤ d, Vi is an eigenspace for K with eigenvalue q2i−d. We refer to K as the linear
transformation corresponding to the decomposition V0, V1, . . . , Vd.

Note 2.3 With reference to Definition 2.2, we note that K is invertible. Moreover, for
0 ≤ i ≤ d, Vi is the eigenspace for K−1 with eigenvalue qd−2i. We observe that K−1 is the
linear transformation corresponding to the decomposition Vd, Vd−1, . . . , V0.

We will be concerned with the following situation.

Assumption 2.4 Let V be a vector space over K with finite positive dimension. Let
V0, V1, . . . Vd be a decomposition of V . Let K denote the linear transformation corresponding
to V0, V1, . . . Vd as in Definition 2.2. Let R : V → V and L : V → V be linear transformations
such that

(i) RVi ⊆ Vi+1 (0 ≤ i ≤ d),
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(ii) LVi ⊆ Vi−1 (0 ≤ i ≤ d),

(iii) for 0 ≤ i ≤ d/2 the restriction Rd−2i|Vi
: Vi → Vd−i is a bijection,

(iv) for 0 ≤ i ≤ d/2 the restriction Ld−2i|Vd−i
: Vd−i → Vi is a bijection,

(v) R3L − [3]R2LR + [3]RLR2 − LR3 = 0,

(vi) L3R − [3]L2RL + [3]LRL2 − RL3 = 0.

We now state our main result.

Theorem 2.5 Adopt Assumption 2.4. Then there exists a unique Uq(ŝl2)-module structure
on V such that (R − e−1 )V = 0, (L − e−0 )V = 0, (K − K0)V = 0, (K−1 − K1)V = 0, where

e−1 , e−0 , K0, K1 are Chevelley generators for Uq(ŝl2).

Theorem 2.5 is related to a result of G. Benkart and P. Terwilliger [1]. In [1] the authors adopt
Assumption 2.4(i),(ii),(v),(vi). They replace Assumption 2.4(iii),(iv) with the assumption

that V is irreducible as a (K, R, L)-module. From this assumption they obtain a Uq(ŝl2)-

module structure on V as in Theorem 2.5. The Uq(ŝl2)-module structure that they obtain

is irreducible while the Uq(ŝl2)-module structure given by Theorem 2.5 is not necessarily
irreducible. As far as we know Theorem 2.5 does not imply the result in [1] nor does the
result in [1] imply Theorem 2.5. Both this paper and [1] use an adaptation of a construction

which T. Ito and P. Terwilliger used to get Uq(ŝl2)-modules from a certain type of tridiagonal

pair [4]. In fact, the motivation for our work on Uq(ŝl2)-modules came from the study of
tridiagonal pairs [3].

The plan for the paper is as follows. In section 3 we present an overview of the argument
used to prove Theorem 2.5. In sections 4 through 9 we summarize the proof of Theorem
2.5. In sections 10 and 11 we determine which Uq(ŝl2)-modules arise from the construction
in Theorem 2.5. Since the rest of the paper is meant to provide a summary, many of the
proofs are omitted.

3 An outline of the proof of Theorem 2.5

We begin by adopting Assumption 2.4. To start the construction of the Uq(ŝl2)-action on V
we require that the linear transformations R − e−1 , L − e−0 , K±1 − K±1

0 , K±1 − K∓1
1 vanish

on V . This gives the actions of the elements e−1 , e−0 , K±1
0 , K±1

1 on V . We define the actions
of e+

0 , e+
1 on V as follows. First we prove that K + R and K−1 + L are diagonalizable on

V . Then we show that the set of distinct eigenvalues of both K + R and K−1 + L on
V is { q2i−d | 0 ≤ i ≤ d }. For 0 ≤ i ≤ d, we let Wi (resp. W ∗

i ) denote the eigenspace
of K + R (resp. K−1 + L) on V associated with the eigenvalue q2i−d. Then W0, . . . , Wd
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(resp. W ∗
0 , . . . , W ∗

d ) is a decomposition of V . We show that the decomposition V0, V1, . . . , Vd

satisfies

V0 + · · · + Vi = W ∗
d−i + · · · + W ∗

d (0 ≤ i ≤ d)

Vi + · · ·+ Vd = Wi + · · ·+ Wd (0 ≤ i ≤ d).

Then for 0 ≤ i ≤ d we define subspaces Zi = (W0 + · · · + Wd−i) ∩ (W ∗
d−i + · · · + W ∗

d ). We
argue that Z0, Z1, . . . , Zd is a decomposition of V and that

Z0 + · · ·+ Zi = W ∗
d−i + · · · + W ∗

d (0 ≤ i ≤ d)

Zi + · · · + Zd = W0 + · · · + Wd−i (0 ≤ i ≤ d).

Next for 0 ≤ i ≤ d we define subspaces Z∗
i = (Wd−i + · · · + Wd) ∩ (W ∗

0 + · · · + W ∗
d−i). We

argue that Z∗
0 , Z

∗
1 , . . . , Z

∗
d is a decomposition of V and that

Z∗
0 + · · ·+ Z∗

i = Wd−i + · · ·+ Wd (0 ≤ i ≤ d)

Z∗
i + · · ·+ Z∗

d = W ∗
0 + · · · + W ∗

d−i (0 ≤ i ≤ d).

We then define the linear transformation B : V → V (resp. B∗ : V → V ) such that for
0 ≤ i ≤ d, Zi (resp. Z∗

i ) is an eigenspace for B (resp. B∗) with eigenvalue q2i−d. We let
e+
1 act on V as I − K−1B times q−1(q − q−1)−2. We let e+

0 act on V as I − KB∗ times
q−1(q − q−1)−2. Finally, we display some relations that are satisfied by B, B∗, L, R, K±1.
Using these relations, we argue that the above actions of e±0 , e±1 , K±1

0 , K±1
1 satisfy the

defining relations for Uq(ŝl2). In this way, we obtain the required action of Uq(ŝl2) on V .

4 The linear transformations A and A∗

In this section we define and discuss two linear transformations that will be useful.

Definition 4.1 In reference to Assumption 2.4 let A : V → V and A∗ : V → V denote the
following linear transformations.

A = K + R, A∗ = K−1 + L. (8)

Lemma 4.2 With reference to Definition 4.1 and Assumption 2.4 the following (i),(ii) hold.

(i) (A − q2i−dI)Vi ⊆ Vi+1, 0 ≤ i ≤ d,

(ii) (A∗ − qd−2iI)Vi ⊆ Vi−1, 0 ≤ i ≤ d.

Lemma 4.3 With reference to Definition 4.1 and Assumption 2.4, the following (i),(ii) hold.

(i) A is diagonalizable with eigenvalues q−d, q2−d, . . . , qd. Moreover, for 0 ≤ i ≤ d, the
dimension of the eigenspace for A associated with q2i−d is equal to the dimension of Vi.
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(ii) A∗ is diagonalizable with eigenvalues q−d, q2−d, . . . , qd. Moreover, for 0 ≤ i ≤ d, the
dimension of the eigenspace for A∗ associated with q2i−d is equal to the dimension of
Vd−i.

Proof: (i) We start by displaying the eigenvalues for A. Notice that the scalars q2i−d

(0 ≤ i ≤ d) are distinct since q is not a root of unity. Using Lemma 4.2(i) we see that,
with respect to an appropriate basis for V , A can be represented as a lower triangular
matrix that has diagonal entries q−d, q2−d, . . . , qd, with q2i−d appearing dim(Vi) times for
0 ≤ i ≤ d. Hence for 0 ≤ i ≤ d, q2i−d is a root of the characteristic polynomial of A with
multiplicity dim(Vi). It remains to show that A is diagonalizable. To do this we show that
the minimal polynomial of A has distinct roots. Recall that V0, V1, . . . , Vd is a decomposition
of V . Using Lemma 4.2(i) we see that

∏d

i=0(A − q2i−dI)V = 0. By this and since q2i−d

(0 ≤ i ≤ d) are distinct we see that the minimal polynomial of A has distinct roots. We
conclude that A is diagonalizable and the result follows.
(ii) Similar to (i). 2

Definition 4.4 With reference to Definition 4.1 and Lemma 4.3, for 0 ≤ i ≤ d, we let Wi

(resp. W ∗
i ) be the eigenspace for A (resp. A∗) with eigenvalue q2i−d. Using Lemma 4.3 we

observe that W0, W1, . . . , Wd (resp. W ∗
0 , W ∗

1 , . . . , W ∗
d ) is a decomposition of V .

Lemma 4.5 With reference to Assumption 2.4 and Definition 4.4, the following (i)–(iii)
hold.

(i) V0 + · · · + Vi = W ∗
d−i + · · ·+ W ∗

d , 0 ≤ i ≤ d,

(ii) Vi + · · ·+ Vd = Wi + · · · + Wd, 0 ≤ i ≤ d,

(iii) Vi = (Wi + · · · + Wd) ∩ (W ∗
d−i + · · ·+ W ∗

d ), 0 ≤ i ≤ d.

Proof: (i) Let i be given. Define T = V0 + · · · + Vi and S = W ∗
d−i + · · · + W ∗

d . We show

that T = S. First we show that S ⊆ T . Let X =
∏d−i−1

h=0 (A∗ − q2h−dI). Recall that
W ∗

0 , W ∗
1 , . . . , W ∗

d is a decomposition of V and so we have XV = S. By Lemma 4.2(ii) we
have XVj ⊆ T for 0 ≤ j ≤ d. By this and since V0, V1, . . . Vd is a decomposition of V we find
that XV ⊆ T . By these comments S ⊆ T . By Lemma 4.3(ii) and Definition 4.4 we have
dim(W ∗

d−i)=dim(Vi). Thus dim(S)=dim(T ). We conclude T = S and the result follows.
(ii) Similar to (i).
(iii) Immediate from (i),(ii) and the fact that V0, V1, . . . , Vd is a decomposition of V . 2

5 The Subspaces Zi, Z∗
i

Definition 5.1 With reference to Definition 4.4, for 0 ≤ i ≤ d, we let Zi denote the following
subspace of V .

Zi = (W0 + · · ·+ Wd−i) ∩ (W ∗
d−i + · · ·+ W ∗

d ).
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Using Assumption 2.4(i),(iii) and Lemma 4.5 the following theorem can be proven.

Theorem 5.2 With reference to Definition 5.1, the following (i)–(iii) hold.

(i) Z0, Z1, · · · , Zd is a decomposition of V ,

(ii) Z0 + · · · + Zi = W ∗
d−i + · · · + W ∗

d , 0 ≤ i ≤ d,

(iii) Zi + · · ·+ Zd = W0 + · · · + Wd−i, 0 ≤ i ≤ d.

Definition 5.3 With reference to Definition 4.4, for 0 ≤ i ≤ d, we let Z∗
i denote the

following subspace of V .

Z∗
i = (Wd−i + · · · + Wd) ∩ (W ∗

0 + · · ·+ W ∗
d−i).

Theorem 5.4 With reference to Definition 5.3, the following (i)–(iii) hold:

(i) Z∗
0 , Z

∗
1 , · · · , Z∗

d is a decomposition of V ,

(ii) Z∗
0 + · · · + Z∗

i = Wd−i + · · ·+ Wd, 0 ≤ i ≤ d,

(iii) Z∗
i + · · · + Z∗

d = W ∗
0 + · · ·+ W ∗

d−i, 0 ≤ i ≤ d.

6 The linear transformations B and B∗

Definition 6.1 With reference to Definition 5.1 and Definition 5.3, we define the following
linear transformations.
(i) Let B : V → V be the unique linear transformation such that for 0 ≤ i ≤ d, Zi is an
eigenspace for B with eigenvalue q2i−d.
(ii) Let B∗ : V → V be the unique linear transformation such that for 0 ≤ i ≤ d, Z∗

i is an
eigenspace for B∗ with eigenvalue q2i−d.

7 Some relations involving A,A∗,B,B∗,K±1

Lemma 7.1 In reference to Definition 4.1 and Definition 6.1, the following hold.

qAB − q−1BA

q − q−1
= I, (9)

qA∗B∗ − q−1B∗A∗

q − q−1
= I, (10)

qBA∗ − q−1A∗B

q − q−1
= I, (11)

qB∗A − q−1AB∗

q − q−1
= I. (12)
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Lemma 7.2 With reference to Assumption 2.4 and Definition 6.1, the following hold.

qBK−1 − q−1K−1B

q − q−1
= I, (13)

qB∗K − q−1KB∗

q − q−1
= I. (14)

Lemma 7.3 With reference to Defintion 6.1, the following (i),(ii) hold.

(i) B3B∗ − [3]B2B∗B + [3]BB∗B2 − B∗B3 = 0,

(ii) B∗3B − [3]B∗2BB∗ + [3]B∗BB∗2 − BB∗3 = 0.

8 The proof of Theorem 2.5 (existence)

This section is devoted to proving the existence part of Theorem 2.5.

Definition 8.1 With reference to Assumption 2.4 and Definition 6.1, let r : V → V ,
l : V → V be the following linear transformations.

r =
I − KB∗

q(q − q−1)2
, l =

I − K−1B

q(q − q−1)2
.

Lemma 8.2 With reference to Definition 8.1, the following (i),(ii) hold.

(i) B = K − q(q − q−1)2Kl,

(ii) B∗ = K−1 − q(q − q−1)2K−1r.

Proof: Immediate from Definition 8.1. 2

Theorem 8.3 With reference to Assumption 2.4 and Definition 8.1, the following (i)–(ix)
hold.

(i) KK−1 = K−1K = I,

(ii) KR = q2RK, KL = q−2LK,

(iii) Kr = q2rK, Kl = q−2lK,

(iv) rR = Rr, lL = Ll,

(v) lR − Rl = K−1−K
q−q−1 , rL − Lr = K−K−1

q−q−1 ,

(vi) R3L − [3]R2LR + [3]RLR2 − LR3 = 0,

7



(vii) L3R − [3]L2RL + [3]LRL2 − RL3 = 0,

(viii) r3l − [3]r2lr + [3]rlr2 − lr3 = 0,

(ix) l3r − [3]l2rl + [3]lrl2 − rl3 = 0.

Proof: (i) Immediate from Note 2.3.
(ii) Since V0, V1, . . . , Vd is a decompositon of V to prove the first equation it suffices to show
that KR − q2RK vanishes of Vi for 0 ≤ i ≤ d. Let i be given, and let v ∈ Vi. Recall that
v is an eigenvector for K with eigenvalue q2i−d. By Assumption 2.4(i), Rv is an eigenvector
for K with eigenvalue q2i+2−d. From these comments we see that (KR − q2RK)v = 0. The
second equation follows in a similar fashion.
(iii) Evaluate the equations in Lemma 7.2 using Lemma 8.2.
(iv),(v) Evaluate (9)–(12) of Lemma 7.1 using Definition 4.1, Lemma 8.2, and Theorem
8.3(ii),(iii).
(vi),(vii) These relations hold by Assumption 2.4(v),(vi).
(viii), (ix) Substiute the expressions in Lemma 8.2 into Lemma 7.3(i),(ii), and simply using
Theorem 8.3(iii). 2

Theorem 8.4 With reference to Assumption 2.4 and Definition 8.1, V supports a
Uq(ŝl2)-module structure for which the Chevalley generators act as follows.

generator e−1 e−0 e+
0 e+

1 K0 K1 K−1
0 K−1

1

action on V R L r l K K−1 K−1 K

Proof: To see that the above action on V determines a Uq(ŝl2)-module compare the equations

in Theorem 8.3 with the defining relations for Uq(ŝl2) in Definition 1.1. 2

Proof of Theorem 2.5 (existence): The existence part of Theorem 2.5 is immediate from
Theorem 8.4. 2

9 The proof of Theorem 2.5 (uniqueness)

This section is devoted to proving the uniqueness part of Theorem 2.5.

In proving uniqueness we will make use of the quantum algebra Uq(sl2) and its representa-
tions. We now recall the definition of Uq(sl2).

Definition 9.1 [5, p. 9] The quantum algebra Uq(sl2) is the unital associative K-algebra
generated by k, k−1, e, f subject to the following relations:

kk−1 = k−1k = 1,

ke = q2ek,

kf = q−2fk,

ef − fe =
k − k−1

q − q−1
.
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We now recall the irreducible finte-dimensional modules for Uq(sl2).

Lemma 9.2 [5, p. 20] With reference to Defintion 9.1, there exist a family

Vε,d ε ∈ {−1, 1}, d = 0, 1, 2, . . .

of irreducible finite-dimensional Uq(sl2)-modules with the following properties. The module
Vε,d has a basis u0, u1, . . . , ud satisfying:

kui = εqd−2iui, 0 ≤ i ≤ d, (15)

fui = [i + 1]ui+1, 0 ≤ i ≤ d − 1, fud = 0, (16)

eui = ε[d − i + 1]ui−1, 1 ≤ i ≤ d, eu0 = 0. (17)

Moreover, every irreducible finite-dimensional Uq(sl2)-module is isomorphic to exactly one
of the modules Vε,d.

We now show how Uq(sl2)-modules and Uq(ŝl2)-modules are related.

Lemma 9.3 Let V be a finite-dimensional Uq(ŝl2)-module. For i ∈ {0, 1}, V supports a
Uq(sl2)-module structure such that each of Ki − k, e+

i − e, e−i − f vanish on V , where k, e, f
are the generators from Definition 9.1.

Proof: Immediate from Definition 1.1 and Definition 9.1. 2

Lemma 9.4 Let k, e, f be the generators for Uq(sl2) as in Definition 9.1. Let V be a finite-
dimensional Uq(sl2)-module. Assume the action of k on V is diagonalizable. Suppose e′ :
V → V is a linear transfomation such that

ke′ = q2e′k, (18)

e′f − fe′ =
k − k−1

q − q−1
, (19)

hold on V . Then (e − e′)V = 0.

Proof of Theorem 2.5 (uniqueness): By the existence part of Theorem 2.5 we know that

there exists a Uq(ŝl2)-module structure on V under the action of the Chevalley generators
e±i , K±1

i , i ∈ {0, 1} such that each of R − e−1 , L − e−0 , K − K0, and K−1 − K1 vanish on

V . Now suppose there exists another Uq(ŝl2)-module structure on V under the action of the
Chevalley generators (e±i )′, (K±1

i )′, i ∈ {0, 1} such that each of R− (e−1 )′, L− (e−0 )′, K −K ′
0,

and K−1 − K ′
1 vanish on V . To prove uniqueness it suffices to show that for i ∈ {0, 1},

e±i − (e±i )′ and K±1
i − (K±1

i )′ vanish on V . Since R − e−1 and R − (e−1 )′ vanish on V then
(e−1 − (e−1 )′)V = 0. Similarly, we have that

e−0 − (e−0 )′, K±1
0 − (K±1

0 )′, K±1
1 − (K±1

1 )′, (20)

9



vanish on V . We now show that (e+
0 − (e+

0 )′)V = 0. By Lemma 9.3 we can view V as a
Uq(sl2)-module under the action of K0, e

−
0 , e+

0 . Using Definition 1.1 and (20) we see that

K0(e
+
0 )′ = q2(e+

0 )′K0 and (e+
0 )′e−0 − e−0 (e+

0 )′ =
K0−K

−1

0

q−q−1 . Therefore, by Lemma 9.4, we have

(e+
0 − (e+

0 )′)V = 0. The proof that (e+
1 − (e+

1 )′)V = 0 is similar. 2

10 Which Uq(ŝl2)-modules arise from Theorem 2.5?

Theorem 2.5 gives a way to constuct finite dimensional Uq(ŝl2)-modules. Not all finite

dimensional Uq(ŝl2)-modules arise from this construction; in this section we determine which
ones do.

Definition 10.1 Let V denote a nonzero finite dimensional Uq(ŝl2)-module. Let d denote a
nonnegative integer. We say V is basic of diameter d whenever there exists a decomposition
V0, V1, . . . , Vd of V and linear transformations R : V → V and L : V → V satisfying
Assumption 2.4(i)–(vi) such that the given Uq(ŝl2)-module structure on V agrees with the

Uq(ŝl2)-module structure on V given by Theorem 2.5.

Our goal for the remainder of this section is to determine which Uq(ŝl2)-modules are basic.

Lemma 10.2 Let V be a finite dimensional Uq(ŝl2)-module. If the characteristic of K is not
equal to 2 then the actions of K0 and K1 on V are diagonalizable.

Theorem 10.3 Let d be a nonnegative integer and let V be a finite dimensional
Uq(ŝl2)-module. With reference to Definition 10.1, the following are equivalent.

(i) V is basic of diameter d.

(ii) (K0K1 − I)V = 0, the action of K0 on V is diagonalizable, and the set of distinct
eigenvalues for K0 on V is {q2i−d, 0 ≤ i ≤ d}.

11 The relationship between general Uq(ŝl2)-modules and

basic Uq(ŝl2)-modules

Throughout this section V will denote a finite dimensional Uq(ŝl2)-module (not necessarily
irreducible) on which the actions of K0 and K1 are diagonalizable (see Lemma 10.2).

In this section we will show, roughly speaking, that V is made up of basic Uq(ŝl2)-modules.
We will use the following definition.

Definition 11.1 Let ε0, ε1 ∈ {1,−1}. Define V
(ε0,ε1)
even (resp. V

(ε0,ε1)
odd ) to be the subspace of V

spanned by all the vectors v ∈ V such that K0v = ε0q
iv, K1v = ε1q

−iv, i ∈ Z, i even (resp.
i odd).
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Lemma 11.2 With reference to Definition 11.1 the following holds.

V =
∑

(ε0,ε1)

∑

σ

V (ε0,ε1)
σ (direct sum of Uq(ŝl2) − modules) (21)

where the first sum is over all ordered pairs (ε0, ε1) with ε0, ε1 ∈ {1,−1} and the second sum
is over all σ ∈ {even, odd}.

Lemma 11.3 With reference to Definition 10.1, Definition 11.1, and Lemma 11.2 the fol-
lowing are equivalent.

(i) V = V
(1,1)
even .

(ii) V is basic of even diameter.

(iii) The spaces V
(−1,1)
even , V

(1,−1)
even , V

(−1,−1)
even , V

(1,1)
odd , V

(−1,1)
odd , V

(1,−1)
odd , V

(−1,−1)
odd are all zero.

Lemma 11.4 With reference to Definition 10.1, Definition 11.1, and Lemma 11.2 the fol-
lowing are equivalent.

(i) V = V
(1,1)
odd .

(ii) V is basic of odd diameter.

(iii) The spaces V
(−1,1)
odd , V

(1,−1)
odd , V

(−1,−1)
odd , V

(1,1)
even , V

(−1,1)
even , V

(1,−1)
even , V

(−1,−1)
even are all zero.

Refering to (21) even though the six terms V
(−1,1)
even , V

(1,−1)
even , V

(−1,−1)
even , V

(−1,1)
odd , V

(1,−1)
odd , V

(−1,−1)
odd

are not basic modules they can easily be modified to become basic modules. We now state
a lemma that makes this precise.

Lemma 11.5 [2, Prop. 3.2] For any choice of scalars ε0, ε1 ε {1,−1} there exists a K-algebra

automorphism of Uq(ŝl2) such that

Ki → εiKi, e+
i → e+

i , e−i → εie
−
i .

for i ∈ {1,−1}.

Remark 11.6 With reference to Definition 10.1 and Definition 11.1 we can alter each of
the modules V

(−1,1)
even , V

(1,−1)
even , V

(−1,−1)
even to a basic Uq(ŝl2)-module of even diameter by applying

an automorphism as in Lemma 11.5. Furthermore, we can alter each of the modules V
(−1,1)
odd ,

V
(1,−1)
odd , V

(−1,−1)
odd to a basic Uq(ŝl2)-module of odd diameter by applying an automorphism as

in Lemma 11.5.
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