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Abstract. We generalize the results of Ksavrelof and Zeng about
the multidistribution of the excedance number of Sn with some
natural parameters to the colored permutation group and to the
Coxeter group of type D. We define two different orders on these
groups which induce two different excedance numbers. Surpris-
ingly, in the case of the colored permutation group we get the same
generalized formulas for both orders.

1. Introduction

Let r and n be two positive integers. The colored permutation group
Gr,n consists of all permutations of the set

Σ = {1, . . . , n, 1̄, . . . , n̄, . . . , 1[r−1], . . . , n[r−1]}

satisfying π(̄i) = π(i).
The symmetric group Sn is a special case of Gr,n for r = 1 while for

r = 2 we get the Weyl group of type B: Bn. In Sn one can define the
following well-known parameters: Given σ ∈ Sn, i ∈ [n] is an excedance
of σ if and only if σ(i) > i. The number of excedances is denoted by
exc(σ). Two other natural parameters on Sn are the number of fixed
points and the number of cycles of σ, denoted by fix(σ) and cyc(σ)
respectively.

Consider the following generating function over Sn:

Pn(q, t, s) =
∑

σ∈Sn

qexc(σ)tfix(σ)scyc(σ).

Pn(q, 1, 1) is the classical Eulerian polynomial, while Pn(q, 0, 1) is the
counter part for the derangements, i.e. the permutations without fixed
points, see [?].

In the case s = −1, the two polynomials Pn(q, 1,−1) and Pn(q, 0,−1)
have simple closed formulas:
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(1) Pn(q, 1,−1) = −(q − 1)n−1

(2) Pn(q, 0,−1) = −q[n− 1]q

Recently, Ksavrelof and Zeng [?] proved some new recursive formu-
las which induce Equations (??) and (??). A natural problem is to
generalize the results of [?] to other groups. The main challenge here
is to choose a suitable order on the alphabet Σ of Gr,n and define the
parameters properly.

In this paper we cope with this challenge. We define two different
orders on Σ, one of them, the absolute order ’forgets’ the colors, while
the other is much more natural, since it takes into account the colorful
structure of Gr,n. This order is called the color order. The parameter
exc will be defined according to both orders in two different ways. The
interesting point is that for the group Gr,n we get the same recursive
formulas for both cases.

Define
P ord

Gr,n
(q, t, s) =

∑

π∈Gr,n

qexcord(π)tfix(π)scyc(π)

where ord can be either the absolute order or the color order.
For Gr,n, we prove the following two main results:

Theorem 1.1.

PAbs
Gr,n

(q, 1,−1) = P Clr
Gr,n

(q, 1,−1) = (qr − 1)PGr,n−1
(q, 1,−1).

Hence,

PAbs
Gr,n

(q, 1,−1) = P Clr
Gr,n

(q, 1,−1) = −
(qr − 1)n

q − 1
.

Theorem 1.2.

PAbs
Gr,n

(q, 0,−1) = P Clr
Gr,n

(q, 0,−1) = [r]q(PGr,n−1
(q, 0,−1)− qn−1[r]n−1

q ).

Hence,

PAbs
Gr,n

(q, 0,−1) = P Clr
Gr,n

(q, 0,−1) = −q[r]nq [n− 1]q,

where [r]q = 1 + · · ·+ qr−1.

One can easily check that the formulas appeared in Theorem ?? and
Theorem ?? indeed generalize the formulas of Ksavrelof and Zeng (for
r = 1).

As mentioned above, when r = 2 we get the group Bn. This group
has a well known normal subgroup called Dn consisting of the even
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signed permutations, i.e., permutations with an even number of minus
signs. This group is also known as the Coxeter group of type D. With
respect to Dn, we prove:

Theorem 1.3.

PClr
Dn

(q, 1,−1) = (q2 − 1)PDn−1
(q, 1,−1).

Hence,
PClr

Dn
(q, 1,−1) = −(q2 − 1)n−1.

Theorem 1.4.

PAbs
Dn

(q, 1,−1) = −
1

2
(q − 1)n−1((1 + q)n + (1− q)n).

2. Preliminaries

2.1. Notations. For n ∈ N, let [n] := {1, 2, . . . , n} (where [0] := ∅).
Also, let:

[n]q :=
1− qn

1− q
= 1 + q + · · · + qn−1,

(so [0]q = 0).

2.2. The group of colored permutations.

Definition 2.1. Let r and n be two positive integers. The group of
colored permutations of n digits with r colors is the wreath product
Gr,n = Zr ≀Sn = Zn

r !Sn, consisting of all the pairs (z, τ) where z is an
n-tuple of integers between 0 and r−1 and τ ∈ Sn. The multiplication
is defined by the following rule: For z = (z1, ..., zn) and z′ = (z′1, ..., z

′
n)

(z, τ) · (z′, τ ′) = ((z1 + z′τ(1), ..., zn + z′τ(n)), τ ◦ τ ′)

(here + is taken modulo r).

In particular, G1,n = C1 ≀Sn is the symmetric group Sn while G2,n =
C2 ≀ Sn is the group of signed permutations Bn, also known as the
hyperoctahedral group, or the classical Weyl group of type B.

A natural way to present Gr,n, which justifies its name, is the follow-

ing: Consider the alphabet Σ = {1, . . . , n, 1̄, . . . , n̄, . . . , 1[r−1], . . . , n[r−1]}
as the set [n] colored by the colors 0, . . . , r − 1. Then, an element of
Gr,n is a colored permutation, i.e. a bijection π : Σ → Σ such that

π(̄i) = π(i).

Here are some conventions we use along this paper: For an ele-
ment π = (z, τ) ∈ Gr,n with z = (z1, ..., zn) we write zi(π) = zi. For
π = (z, τ), we denote |π| = (0, τ), (0 ∈ Zn

r ). The element (z, τ) =

((1, 0, 3, 2), (2, 1, 4, 3)) ∈ G3,4 will be written as (2̄1¯̄̄4¯̄3).
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2.3. The Coxeter group of type D. We define here the following
normal subgroup of Bn of index 2, called the Coxeter group of type D:

Dn = {π ∈ Bn |
n
∑

i=1

zi(π) ≡ 0 (mod 2)}.

3. Statistics on Gr,n

Given any ordered alphabet Σ′, we recall the definition of the ex-
cedance set of a permutation π on Σ′ by :

Exc(π) = {i ∈ Σ′ | π(i) > i}

and the excedance number to be exc(π) = |Exc(π)|.

Example 3.1. Given the order: ¯̄1 < ¯̄2 < ¯̄3 < 1̄ < 2̄ < 3̄ < 1 < 2 < 3,
we write σ = (31̄¯̄2) ∈ G3,3 in an extended form:

(¯̄1 ¯̄2 ¯̄3 1̄ 2̄ 3̄ 1 2 3
¯̄3 1 2̄ 3̄ ¯̄1 2 3 1̄ ¯̄2

)

and calculate: Exc(σ) = {¯̄1, ¯̄2, ¯̄3, 1̄, 3̄, 1} and exc(σ) = 6.

We start by defining two orders on the set Σ = {1, . . . , n, 1̄, . . . , n̄, . . . , 1[r−1], . . . , n[r−1]}.

Definition 3.2. Define the absolute order on Σ to be:

1[r−1] < · · · < 1̄ < 1 < 2[r−1] < · · · < 2̄ < 2 < · · · < n[r−1] < · · · < n̄ < n

and the color order on Σ by:

1[r−1] < · · · < n[r−1] < · · · < 1[1] < · · · < n[1] < 1 < · · · < n

Before defining the excedance number with respect to both orders,
we have to introduce some notations.

Let σ ∈ Gr,n. We define:

csum(σ) =

n
∑

i=1

zi(σ)

ExcA(σ) = {i ∈ [n− 1] | σ(i) > i},

where the comparison is with respect to the color order.

excA(σ) = |ExcA(σ)|

Let σ ∈ Gr,n. Recall that for σ = (z, τ) ∈ Gr,n, |σ| is the permutation

of [n] satisfying |σ|(i) = τ(i). For example, if σ = (2̄¯̄314̄) then |σ| =
(2314).

Now we can define the excedance numbers.
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Definition 3.3. Define:

excAbs(σ) = exc(|σ|) + csum(σ)

excClr(σ) = r · excA(σ) + csum(σ)

Example 3.4. Take σ = (1̄¯̄342̄) ∈ G3,4. Then csum(σ) = 4, ExcA(σ) =
{3}, Exc(|σ|) = {2, 3} and thus excAbs(σ) = 6 and excClr(σ) = 7.

Recall that any permutation of Sn can be decomposed into a product
of disjoint cycles. This notion can be easily generalized to the group
Gr,n as follows. Given any π ∈ Gr,n we define the cycle number of
π = (z, τ) to be the number of cycles in τ .

We say that i ∈ [n] is an absolute fixed point of σ ∈ Gr,n if |σ(i)| = i.

4. Proof of Theorem ?? for the color order

In this section we prove Theorem ?? for the color order. The idea
of proving such identities is constructing a subset S of Gr,n whose
contribution to the generating function is exactly the right side of the
identity and a killing involution on Gr,n − S, i.e., an involution on
Gr,n−S which preserves the number of excedances but changes the sign
of each element of Gr,n− S and hence shows that Gr,n− S contributes
nothing to the generating function.

Therefore, we divide Gr,n into 2r + 1 disjoint subsets as follows:

Kr,n = {σ ∈ Gr,n | |σ(n)| ̸= n, |σ(n− 1)| ̸= n}

T i
r,n = {σ ∈ Gr,n | σ(n) = n[i]}, (0 ≤ i ≤ r − 1)

Ri
r,n = {σ ∈ Gr,n | σ(n− 1) = n[i]}, (0 ≤ i ≤ r − 1)

We first construct a killing involution on the set Kr,n. Define ϕ :
Kr,n → Kr,n by

σ′ = ϕ(σ) = (σ(n− 1), σ(n))σ, σ ∈ Kr,n

Note that ϕ exchanges σ(n − 1) with σ(n). It is obvious that ϕ is
indeed an involution.

We will show that excClr(σ) = excClr(σ′). First, for i < n − 1, it is
clear that i ∈ ExcA(σ) if and only if i ∈ ExcA(σ′). Now, as σ(n−1) ̸= n,
n−1 /∈ ExcA(σ) and thus n /∈ ExcA(σ′). Finally, |σ(n)| ̸= n implies that
n − 1 /∈ ExcA(σ′). Now since it is obvious that csum(σ) = csum(σ′),
we have that excClr(σ) = excClr(σ′).
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On the other hand, cyc(σ) and cyc(σ′) have different parities due
to a multiplication by a transposition. Hence, ϕ is indeed a killing
involution on Kr,n.

We turn now to the sets T i
r,n. Note that there is a natural bijection

between T i
r,n and Gr,n−1 defined by ignoring the last digit. Denote the

image of σ ∈ T i
r,n under this bijection by σ′. Since n ̸∈ ExcA(σ), we

have excA(σ) = excA(σ′). Now, since zn(σ) = i we have csum(σ′) =
csum(σ)− i and we get:

excClr(σ) = excClr(σ′) + i.

Now, since n is an absolute fixed point of σ, cyc(σ′) = cyc(σ)− 1.
To summarize, we get that the total contribution of the elements in

T i
r,n is:

P Clr
T i

r,n
= −qiPClr

Gr,n−1
(q, 1,−1)

for 0 ≤ i ≤ r − 1.

Now, we treat the sets Ri
r,n. There is a bijection between Ri

r,n and

T i
r,n using the same function ϕ we used above. Define ϕ : Ri

r,n → T i
r,n

by

σ′ = ϕ(σ) = (σ(n− 1), σ(n))σ.

When we compute the change in the excedance, we split our treat-
ment into two cases: i = 0 and i > 0.

We start with the case i = 0. Note that n − 1 ∈ ExcA(σ). On the
other hand, in σ′, n− 1, n ̸∈ ExcA(σ′). Hence, excA(σ)− 1 = excA(σ′).

Now, for the case i > 0 : n − 1, n ̸∈ ExcA(σ) (since σ(n − 1) = n[i]

is not an excedance with respect to the color order). We also have:
n − 1, n ̸∈ ExcA(σ′) and thus ExcA(σ) = ExcA(σ′) for σ ∈ Ri

r,n where
i > 0.

In both cases, we have that csum(σ) = csum(σ′). Hence, excClr(σ)−
r = excClr(σ′) for i = 0 and excClr(σ) = exc(σ′) for i > 0.

As before, the number of cycles changes its parity due to the multi-
plication by a transposition, and hence: (−1)cyc(σ) = −(−1)cyc(σ′).

Hence, the total contribution of elements in Ri
r,n is

qrPClr
Gr,n−1

(q, 1,−1)

for i = 0, and

qiPClr
Gr,n−1

(q, 1,−1)

for i > 0.
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Now, if we sum up all the parts, we get:

PClr
Gr,n

(q, 1,−1) =

r−1
∑

i=0

(−qiPClr
Gr,n−1

(q, 1,−1)) + qrPClr
Gr,n−1

(q, 1,−1)+

r−1
∑

i=1

qiPClr
Gr,n−1

(q, 1,−1) = (qr − 1)P Clr
Gr,n−1

(q, 1,−1)

as needed.
Now, for n = 1, Gr,1 is the cyclic group of order r and thus

PClr
Gr,1

(q, 1,−1) = −(1 + q + · · ·+ qr−1) = −
qr − 1

q − 1

so we have

PClr
Gr,n

(q, 1,−1) = −
(qr − 1)n

q − 1

5. Proof of Theorem ?? for the color order

We recall that Dn is the subgroup of Bn consisting of the even signed
permutations, i.e., permutations with an even number of minus signs.
We divide Dn into 5 subsets:

Kn = {σ ∈ Dn | |σ(n)| ̸= n, |σ(n− 1)| ̸= n}.

T 0
n = {σ ∈ Dn | σ(n) = n}.

T 1
n = {σ ∈ Dn | σ(n) = n̄}.

R0
n = {σ ∈ Dn | σ(n− 1) = n}.

R1
n = {σ ∈ Dn | σ(n− 1) = n̄}.

Now we denote:

an = P Clr
Dn

(q, 1,−1),

bn = P Clr
Dc

n
(q, 1,−1),

where Dc
n is the complement of Dn in Bn.

Define ϕ : Kn → Kn by

σ′ = ϕ(σ) = (σ(n− 1), σ(n))σ.

Note that ϕ exchanges σ(n − 1) with σ(n). It is easy to see that ϕ is
a killing involution on Kn.

We turn now to the set T 0
n . Note that there is a natural bijection

between T 0
n and Dn−1 defined by ignoring the last digit. Let σ ∈ T 0

n .
Denote the image of σ ∈ T 0

n under this bijection by σ′. Note that

csum(σ′) = csum(σ), ExcA(σ′) = ExcA(σ) and ExcClr(σ′) = ExcClr(σ).
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On the other hand, cyc(σ′) = cyc(σ)− 1 and thus the restriction of an

to T 0
n is just −an−1.

For the contribution of the set T 1
n note that the function ϕ de-

fined above gives us a bijection between T 1
n and Dc

n−1. In this case,

csum(σ′) = csum(σ)−1, excA(σ′) = excA(σ) and exc(σ′)Clr = excClr(σ).
On the other hand, cyc(σ′) = cyc(σ)− 1 as before. Hence, the restric-
tion of an to T 1

n is −qbn−1.
Now, for the set R0

n, we have the following bijection between R0
n and

Dn−1: for σ ∈ R0
n, exchange the last two digits, and then ignore the last

digit. If we denote the image of σ by σ′, we have: csum(σ′) = csum(σ),
excA(σ′) = excA(σ)−1, excClr(σ′) = excClr(σ)−2 and cyc(σ′) ≡ cyc(σ)
(mod 2). Hence, the restriction of an to R0

n is q2an−1.
Similarly, for the set R1

n, we have a bijection between R1
n and Dc

n−1:
for σ ∈ R1

n, exchange the last two digits, and then ignore the last
digit. Denoting the image of σ by σ′, we have csum(σ′) = csum(σ)−1,
excA(σ′) = excA(σ), and hence excClr(σ′) = excClr(σ) − 1. Also, we
have cyc(σ′) ≡ cyc(σ) (mod 2). Hence, the restriction of an to R1

n is
qbn−1.

We summarize all the contributions over all the four subsets, and we
have:

an = −an−1 − qbn−1 + q2an−1 + qbn−1 = (q2 − 1)an−1.

For computing a1, note that D1 = {1} and thus a1 = −1.
Therefore, we have:

PClr
Dn

(q, 1,−1) = an = −(q2 − 1)n−1,

and we are done. !
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