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Abstract. We realize several combinatorial Hopf algebras based on set compositions, plane trees and
segmented compositions in terms of noncommutative polynomials in infinitely many variables. For each of
them, we describe a trialgebra structure, an internal product, and several bases.

Résumé. Nous réalisons plusieurs algèbres de Hopf combinatoires dont les bases sont indexées par les par-
titions d’ensembles ordonnées, les arbres plans et les compositions segmentées en termes de polynômes
non-commutatifs en une infinité de variables. Pour chacune d’elles, nous décrivons sa structure de trigèbre,
un produit intérieur et plusieurs bases.

1. Introduction

The aim of this note is to construct and analyze several combinatorial Hopf algebras arising in the theory
of operads from the point of view of the theory of noncommutative symmetric functions. Our starting point
will be the algebra of noncommutative polynomial invariants

WQSym(A) = K〈A〉S(A)QS

of Hivert’s quasi-symmetrizing action [8]. It is known that, when the alphabet A is infinite, WQSym(A)
acquires the structure of a graded Hopf algebra whose bases are parametrized by ordered set partitions
(also called set compositions) [8, 20, 2]. Set compositions are in one-to-one correspondence with faces of
permutohedra, and actually, WQSym turns out to be isomorphic to one of the Hopf algebras introduced
by Chapoton in [4]. From this algebra, Chapoton obtained graded Hopf algebras based on the faces of
the associahedra (corresponding to plane trees counted by the little Schröder numbers) and on faces of
the hypercubes (counted by powers of 3). Since then, Loday and Ronco have introduced the operads
of dendriform trialgebras and of tricubical algebras [15], in which the free algebras on one generator are
respectively based on faces of associahedras and hypercubes, and are isomorphic (as Hopf algebras) to the
corresponding algebras of Chapoton. More recently, we have introduced a Hopf algebra PQSym, based on
parking functions [17, 18, 19], and derived from it a series of Hopf subalgebras or quotients, some of which
being isomorphic to the above mentioned ones as associative algebras, but not as Hopf algebras.

In the following, we will show that applying the same techniques, starting from WQSym instead of
PQSym, allows one to recover all of these algebras, together with their original Hopf structure, in a very
natural way. This provides in particular for each of them an explicit realization in terms of noncommutative
polynomials. The Hopf structures can be analyzed very efficiently by means of Foissy’s theory of bidendriform
bialgebras [6]. A natural embedding of WQSym in PQSym∗ implies that WQSym is bidendriform, hence,
free and self-dual. These properties are inherited by TD, the free dendriform trialgebra on one generator,
and some of them by TC, the free cubical trialgebra on one generator. A lattice structure on the set of
faces of the permutohedron (introduced in [12] under the name “pseudo-permutohedron” and rediscovered
in [21]) leads to the construction of various bases of these algebras. Finally, the natural identification of the
homogeneous components of the dual WQSym∗

n (endowed with the internal product induced by PQSym)
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with the Solomon-Tits algebras (that is, the face algebras of the braid arrangements of hyperplanes) implies
that all three algebras admit an internal product.

Notations – We assume that the reader is familiar with the standard notations of the theory of noncommutative symmetric

functions [7, 5] and with the Hopf algebra of parking functions [17, 18, 19]. We shall need an infinite totally ordered alphabet

A = {a1 < a2 < · · · < an < · · · }, generally assumed to be the set of positive integers. We denote by K a field of characteristic

0, and by K〈A〉 the free associative algebra over A when A is finite, and the projective limit proj limBK〈B〉, where B runs over

finite subsets of A, when A is infinite. The evaluation of a word w is the sequence whose i-th term is the number of times the

letter ai occurs in w. The standardized word Std(w) of a word w ∈ A∗ is the permutation obtained by iteratively scanning w

from left to right, and labelling 1, 2, . . . the occurrences of its smallest letter, then numbering the occurrences of the next one,

and so on. For example, Std(bbacab) = 341624. For a word w on the alphabet {1, 2, . . .}, we denote by w[k] the word obtained

by replacing each letter i by the integer i+k. If u and v are two words, with u of length k, one defines the shifted concatenation

u • v = u · (v[k]) and the shifted shuffle u d v = u (v[k]), where is the usual shuffle product.

2. The Hopf algebra WQSym

2.1. Noncommutative quasi-symmetric invariants. The packed word u = pack(w) associated with
a word w ∈ A∗ is obtained by the following process. If b1 < b2 < . . . < br are the letters occuring in w, u is
the image of w by the homomorphism bi 7→ ai. A word u is said to be packed if pack(u) = u. We denote by
PW the set of packed words. With such a word, we associate the polynomial

(1) Mu :=
∑

pack(w)=u

w .

For example, restricting A to the first five integers,

(2) M13132 = 13132 + 14142 + 14143 + 24243 + 15152 + 15153 + 25253 + 15154 + 25254 + 35354.

Under the abelianization χ : K〈A〉 → K[X ], the Mu are mapped to the monomial quasi-symmetric functions
MI (I = (|u|a)a∈A being the evaluation vector of u).

These polynomials span a subalgebra of K〈A〉, called WQSym for Word Quasi-Symmetric functions [8]
(and called NCQSym in [2]), consisting in the invariants of the noncommutative version of Hivert’s quasi-
symmetrizing action [9], which is defined by σ · w = w′ where w′ is such that Std(w′) = Std(w) and
χ(w′) = σ · χ(w). Hence, two words are in the same S(A)-orbit iff they have the same packed word.

WQSym can be embedded in MQSym [8, 5], by Mu 7→ MSM , where M is the packed (0, 1)-matrix
whose jth column contains exactly one 1 at row i whenever the jth letter of u is ai. Since the duality in
MQSym consists in tranposing the matrices, one can also embed WQSym∗ in MQSym. The multiplication
formula for the basis Mu follows from that of MSM in MQSym:

Proposition 2.1. The product on WQSym is given by

(3) Mu′Mu′′ =
∑

u∈u′∗W u′′

Mu ,

where the convolution u′∗W u′′ of two packed words is defined as

(4) u′∗W u′′ =
∑

v,w;u=v·w∈PW,pack(v)=u′,pack(w)=u′′

u .

For example,

(5) M11M21 = M1121 + M1132 + M2221 + M2231 + M3321.

Similarly, the embedding in MQSym implies immediately that WQSym is a Hopf subalgebra of MQSym.
However, the coproduct can also be defined directly by the usual trick of noncommutative symmetric func-
tions, considering the alphabet A as an ordered sum of two mutually commuting alphabets A′+̂A′′. First,
by direct inspection, one finds that

(6) Mu(A′+̂A′′) =
∑

0≤k≤max(u)

M(u|[1,k])(A
′)Mpack(u|[k+1,max(u))(A

′′),
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where u|B denote the subword obtained by restricting u to the subset B of the alphabet, and now, the
coproduct ∆ defined by

(7) ∆Mu(A) =
∑

0≤k≤max(u)

M(u|[1,k]) ⊗ Mpack(u|[k+1,max(u)),

is then clearly a morphism for the concatenation product, hence defines a bialgebra structure.
Given two packed words u and v, define the packed shifted shuffle u dW v as the shuffle product of u

and v[max(u)]. One then easily sees that

(8) ∆Mw(A) =
∑

u,v;w∈udW v

Mu ⊗ Mv.

For example,

(9) ∆M32121 = 1 ⊗ M32121 + M11 ⊗ M211 + M2121 ⊗ M1 + M32121 ⊗ 1.

Packed words can be naturally identified with ordered set partitions, the letter ai at the jth position
meaning that j belongs to block i. For example,

(10) u = 313144132 ↔ Π = ({2, 4, 7}, {9}, {1, 3, 8}, {5, 6}) .

To improve the readability of the formulas, we write instead of Π a segmented permutation, that is, the
permutation obtained by reading the blocks of Π in increasing order and inserting bars | between blocks.

For example,

(11) Π = ({2, 4, 7}, {9}, {1, 3, 8}, {5, 6}) ↔ 247|9|138|56.

On this representation, the coproduct amounts to deconcatenate the blocks, and then standardize the factors.
For example, in terms of segmented permutations, Equation (9) reads

(12) ∆M35|24|1 = 1 ⊗ M35|24|1 + M12 ⊗ M23|1 + M24|13 ⊗ M1 + M35|24|1 ⊗ 1.

The dimensions of the homogeneous components of WQSym are the ordered Bell numbers 1, 1, 3, 13,
75, 541, . . . (sequence A000670, [22]) so that

(13) dimWQSymn =
n

∑

k=1

S(n, k)k! = An(2) ,

where An(q) are the Eulerian polynomials.

2.2. The trialgebra structure of WQSym. A dendriform trialgebra [15] is an associative algebra
whose multiplication � splits into three pieces

(14) x � y = x≺y + x ◦ y + x�y ,

where ◦ is associative, and

(15) (x≺y)≺z = x≺(y � z) , (x�y)≺z = x�(y≺z) , (x � y)�z = x�(y�z) ,

(16) (x�y) ◦ z = x�(y ◦ z) , (x≺y) ◦ z = x ◦ (y�z) , (x ◦ y)≺z = x ◦ (y≺z) .

It has been shown in [19] that the augmentation ideal K〈An〉+ has a natural structure of dendriform
trialgebra: for two non empty words u, v ∈ A∗, we set

u≺v =

{

uv if max(u) > max(v)

0 otherwise,
(17)

u ◦ v =

{

uv if max(u) = max(v)

0 otherwise,
(18)

u�v =

{

uv if max(u) < max(v)

0 otherwise.
(19)
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Theorem 2.2. WQSym+ is a sub-dendriform trialgebra of K〈A〉+, the partial products being given by

(20) Mw′ ≺Mw′′ =
∑

w=u.v∈w′∗W w′′,|u|=|w′|;max(v)<max(u)

Mw,

(21) Mw′ ◦ Mw′′ =
∑

w=u.v∈w′∗W w′′,|u|=|w′|;max(v)=max(u)

Mw,

(22) Mw′ �Mw′′ =
∑

w=u.v∈w′∗W w′′,|u|=|w′|;max(v)>max(u)

Mw,

It is known [15] that the free dendriform trialgebra on one generator, denoted here by TD, is a free
associative algebra with Hilbert series

(23)
∑

n≥0

sntn =
1 + t −

√
1 − 6t + t2

4t
= 1 + t + 3t2 + 11t3 + 45t4 + 197t5 + · · · ,

the generating function of the super-Catalan, or little Schröder numbers, counting plane trees. The previous
considerations allow us to give a simple polynomial realization of TD. Consider the polynomial

(24) M1 =
∑

i≥1

ai ∈ WQSym ,

Theorem 2.3 ([19]). The sub-trialgebra TD of WQSym+ generated by M1 is free as a dendriform
trialgebra.

Based on numerical evidence, we conjecture the following result:

Conjecture 2.4. WQSym is a free dendriform trialgebra.

The number g′n of generators in degree n of WQSym as a free dendriform trialgebra would then be

(25)
∑

n≥0

g′ntn =
OB(t) − 1

2OB(t)2 − OB(t)
= t + 2 t3 + 18 t4 + 170 t5 + 1 794 t6 + 21 082 t7 + O(t8).

where OB(t) is the generating series of the ordered Bell numbers.

2.3. Bidendriform structure of WQSym. A dendriform dialgebra, as defined by Loday [13], is an
associative algebra D whose multiplication � splits into two binary operations

(26) x � y = x � y + x � y ,

called left and right, satisfying the following three compatibility relations for all a, b, and c different from 1
in D:

(27) (a � b) � c = a � (b � c), (a � b) � c = a � (b � c), (a � b) � c = a � (b � c).

A codendriform coalgebra is a coalgebra C whose coproduct ∆ splits as ∆(c) = ∆(c) + c⊗ 1 + 1⊗ c and
∆ = ∆� + ∆�, such that, for all c in C:

(28) (∆� ⊗ Id) ◦ ∆�(c) = (Id ⊗ ∆) ◦ ∆�(c),

(29) (∆� ⊗ Id) ◦ ∆�(c) = (Id ⊗ ∆�) ◦ ∆�(c),

(30) (∆ ⊗ Id) ◦ ∆�(c) = (Id ⊗ ∆�) ◦ ∆�(c).

The Loday-Ronco algebra of planar binary trees introduced in [14] arises as the free dendriform dialgebra
on one generator. This is moreover a Hopf algebra, which turns out to be self-dual, so that it is also
codendriform. There is some compatibility between the dendriform and the codendriform structures, leading
to what has been called by Foissy [6] a bidendriform bialgebra, defined as a bialgebra which is both a
dendriform dialgebra and a codendriform coalgebra, satisfying the following four compatibility relations

(31) ∆�(a � b) = a′b′�⊗a′′�b′′� + a′⊗a′′�b + b′�⊗a�b′′� + ab′�⊗b′′� + a⊗b ,

(32) ∆�(a � b) = a′b′�⊗a′′�b′′� + a′⊗a′′�b + b′�⊗a�b′′� ,
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(33) ∆�(a � b) = a′b′�⊗ a′′�b′′� + ab′� ⊗ b′′� + b′� ⊗ a � b′′� ,

(34) ∆�(a � b) = a′b′�⊗a′′�b′′� + a′b⊗a′′ + b′�⊗a�b′′� + b⊗a ,

where the pairs (x′, x′′) (resp. (x′
�, x′′

�) and (x′
�, x′′

�)) correspond to all possible elements occuring in ∆x

(resp. ∆�x and ∆�x), summation signs being understood (Sweedler’s notation).
Foissy has shown [6] that a connected bidendriform bialgebra B is always free as an associative algebra

and self-dual as a Hopf algebra. Moreover, its primitive Lie algebra is free, and as a dendriform dialgebra, B
is also free over the space of totally primitive elements (those annihilated by ∆� and ∆�). It is also proved
in [6] that FQSym is bidendriform, so that it satisfies all these properties. In [19], we have proved that
PQSym, the Hopf algebra of parking functions, as also bidendriform.

The realization of PQSym∗ given in [18, 19] implies that

(35) Mu =
∑

pack(a)=u

Ga .

Hence, WQSym is a subalgebra of PQSym∗. Since in both cases the coproduct correponds to A → A′+̂A′′,
it is actually a Hopf subalgebra. It also stable by the tridendriform operations, and by the codendriform
half-coproducts. Hence,

Theorem 2.5. WQSym is a sub-bidendriform bialgebra of PQSym∗. More precisely, the product rules
are

(36) Mw′ � Mw′′ =
∑

w=u.v∈w′∗W w′′,|u|=|w′|;max(v)<max(u)

Mw,

(37) Mw′ � Mw′′ =
∑

w=u.v∈w′∗W w′′,|u|=|w′|;max(v)≥max(u)

Mw,

(38) ∆�Mw =
∑

w∈udW v;last(w)≤|u|

Mu ⊗ Mv,

(39) ∆�Mw =
∑

w∈udW v;last(w)>|u|

Mu ⊗ Mv.

where |u| ≥ 1 and |v| ≥ 1, and last(w) means the last letter of w. As a consequence, WQSym is free, cofree,
self-dual, and its primitive Lie algebra is free.

2.4. Duality: embedding WQSym∗ into PQSym. Recall from [17] that PQSym is the algebra
with basis (Fa), the product being given by the shifted shuffle of parking functions, and that (Ga) is the
dual basis in PQSym∗.

For a packed word u over the integers, let us define its maximal unpacking mup(u) as the greatest parking
function b for the lexicographic order such that pack(b) = u. For example, mup(321412451) = 641714791.

Since the basis (Mu) of WQSym can be expressed as the sum of Ga with a given packed word, the dual
basis of (Mu) in WQSym∗ can be identified with equivalence classes of (Fa) under the relation Fa = Fa′

iff pack(a) = pack(a′). Since the shifted shuffle of two maximally unpacked parking functions contains only
maximally unpacked parking functions, the dual algebra WQSym∗ is in fact a subalgebra of PQSym.
Finally, since, if a is maximally unpacked then only maximally unpacked parking functions appear in the
coproduct ∆Fa, one has

Theorem 2.6. WQSym∗ is a Hopf subalgebra of PQSym. Its basis element M∗
u can be identified with

Fb where b = mup(u).

So we have

(40) Fb′Fb′ :=
∑

b∈b′db′′

Fb , ∆Fb =
∑

u·v=b

FPark(u) ⊗ FPark(v) ,

where Park is the parkization algorithm defined in [19]. For example,

(41) F113F11 = F11344 + F11434 + F11443 + F14134 + F14143 + F14413 + F41134 + F41143 + F41413 + F44113.
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(42) ∆F531613 = 1⊗F531613+F1⊗F31513+F21⊗F1413+F321⊗F312+F3214⊗F12+F43151⊗F1F531613⊗1.

2.5. The Solomon-Tits algebra. The above realization of WQSym∗ in PQSym is stable under the
internal product of PQSym defined in [18]. Indeed, by definition of the internal product, if b′ and b′′ are
maximally unpacked, and Fb = Fb′ ∗ Fb′′ , then b is also maximally unpacked.

Moreover, if one writes b′ = {s′1, . . . , s′k} and b′′ = {s′′1 , . . . , s′′l } as ordered set partitions, then the
parkized word b = Park(b′,b′′) corresponds to the ordered set partition obtained from

(43) {s′1 ∩ s′′1 , s′1 ∩ s′′2 , . . . , s′1 ∩ s′′l , s′2 ∩ s′′1 , . . . , s′k ∩ s′′l }.
This formula was rediscovered in [2] and Bergeron and Zabrocki recognized the Solomon-Tits algebra, in the
version given by Bidigare [3], in terms of the face semigroup of the braid arrangement of hyperplanes. So,

Theorem 2.7. (WQSym∗, ∗) is isomorphic to the Solomon-Tits algebra.

In particular, the product of the Solomon-Tits algebra is dual to the coproduct δG(A) = G(A′A′′).

2.6. The pseudo-permutohedron. We shall now make use of the lattice of pseudo-permutations,
a combinatorial structure defined in [12] and rediscovered in [21]. Pseudo-permutations are nothing but
ordered set partitions. However, regarding them as generalized permutations helps uncovering their lattice
structure. Indeed, let us say that if i is in a block strictly to the right of j with i < j then we have a full
inversion (i, j), and that if i is in the same block as j, then we have a half inversion 1

2 (i, j). The total number
of inversions is the sum of these numbers. For example, the table of inversions of 45|13|267|8 is

(44)

{

1

2
(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5),

1

2
(2, 6),

1

2
(2, 7), (3, 4), (3, 5),

1

2
(4, 5),

1

2
(6, 7)

}

,

and it has 9.5 inversions.
One can now define a partial order � on pseudo-permutations by setting p1 � p2 if the value of the

inversion (i, j) in the table of inversions of p1 is smaller than or equal to its value in the table of inversions
of p2, for all (i, j). This partial order is a lattice [12]. In terms of packed words, the covering relation reads
as follows. The successors of a packed word u are the packed words v such that

• if all the i − 1 are to the left of all the i in u then u has as successor the element where all letters
j greater than or equal to i are replaced by j − 1.

• if there are k letters i in u, then one can choose an integer j in the interval [1, k − 1] and change
the j righmost letters i into i + 1 and the letters l greater than i into l + 1.

For example, w = 44253313 has five successors,

(45) 33242212, 44243313, 55264313, 55264413, 54263313.
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Figure 1. The pseudo-permutohedron of degree 3.

Theorem 2.8 ([21]). Let u and v be two packed words. Then MuMv is an interval of the pseudo-
permutohedron lattice. The minimum of the interval is given by u·v[max(u)] and its maximum by u[max(v)]·v.

For example,

(46) M13214M212 =
∑

u∈[13214656,35436212]

Mu.
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2.7. Other bases of WQSym and WQSym∗. Since there is a lattice structure on packed words and
since we know that the product MuMv is an interval of this lattice, we can define several interesting bases,
depending on the way we use the lattice.

As in the case of the permutohedron, one can take sums of Mu, over all the elements upper or lower than
u in the lattice, or restricted to elements belonging to the same “class” as u (see [5, 1] for examples of such
bases). In the case of the permutohedron, the classes are the descent classes of permutations. In our case,
the classes are the intervals of the pseudo-permutohedron composed of words with the same standardization.

Summing over all elements upper (or lower) than a word u naturally yields multiplicative bases on
WQSym. Summing over all elements upper (or lower) than u inside its standardization class leads to
analogs of the usual bases of QSym.

2.7.1. Multiplicative bases. Let

(47) Su :=
∑

v�u

Mv and Eu :=
∑

u�v

Mv.

For example,

(48) S212 = M212 + M213 + M112 + M123.

(49) E212 = M212 + M312 + M211 + M321.

(50) S1122 = M1122 + M1123 + M1233 + M1234.

Since both S and E are triangular over the basis Mu of WQSym, we know that these are bases of
WQSym.

Theorem 2.9. The sets (Su) and (Eu) where u runs over packed words are bases of WQSym. Moreover,
their product is given by

(51) Su′Su′′ = Su′[max(u′′)]·u′′ .

(52) Eu′Eu′′ = Eu′·u′′[max(u′)].

For example,

(53) S1122S132 = S4455132.

(54) E1122E132 = E1122354.

2.7.2. Quasi-ribbon basis of WQSym. Let us first mention that a basis of WQSym has been defined
in [2] by summing over intervals restricted to standardization classes of packed words.

We will now consider similar sums but taken the other way round, in order to build the analogs of
WQSym of Gessel’s fundamental basis FI of QSym. Indeed, as already mentioned, the Mu are mapped to
the MI of QSym under the abelianization K〈A〉 → K[X ] of WQSym. Since the pair of dual bases (FI , RI)
of (QSym ,Sym) is of fundamental importance, it is natural to ask whether one can find an analogous pair
for (WQSym,WQSym∗). To avoid confusion in the notations, we will denote the analog of FI by Φu

instead of Fu since this notation is already used in the dual algebra WQSym∗ ⊂ PQSym, with a different
meaning. The analog of R basis in WQSym∗ will still be denoted by R. The representation of packed words
by segmented permutations is more suited for the next statements since one easily checks that two words u

and v having the same standardized word satisfy v � u iff v is obtained as a segmented permutation from
the segmented permutation of u by inserting any number of bars. Let

(55) Φσ :=
∑

σ′

Mσ′

where σ′ runs ver the set of segmented permutations obtained from σ by inserting any number of bars. For
example,

(56) Φ14|6|23|5 = M14|6|23|5 + M14|6|2|3|5 + M1|4|6|23|5 + M1|4|6|2|3|5.

Since (Φu) is triangular over (Mu), it is a basis of WQSym. By construction, it satisfies a product
formula similar to that of Gessel’s basis FI of QSym (whence the choice of notation). To state it, we
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need an analogue of the shifted shuffle, defined on the special class of segmented permutations encoding set
compositions.

The shifted shuffle α d β of two such segmented permutations is obtained from the usual shifted shuffle
σ d τ of the underlying permutations σ and τ by inserting bars

• between each pairs of letters coming from the same word if they were separated by a bar in this
word,

• after each element of β followed by an element of α.

For example,

(57) 2|1 d 12 = 2|134 + 23|14 + 234|1 + 3|2|14 + 3|24|1 + 34|2|1.

Theorem 2.10. The product and coproduct in the basis Φ are given by

(58) Φσ′Φσ′′ =
∑

σ∈σ′dσ′′

Φσ.

(59) ∆Φσ =
∑

σ′|σ′′=σ or σ′·σ′′=σ

ΦStd(σ′) ⊗ ΦStd(σ′′).

For example, we have

(60) Φ1Φ13|2 = Φ124|3 + Φ2|14|3 + Φ24|13 + Φ24|3|1.

(61) ∆Φ35|14|2 = 1 ⊗ Φ35|14|2 + Φ1 ⊗ Φ4|13|2 + Φ12 ⊗ Φ13|2 + Φ23|1 ⊗ Φ2|1 + Φ24|13 ⊗ Φ1 + Φ35|14|2 ⊗ 1.

Note that under abelianization, χ(Φu) = FI where I is the evaluation of u.

2.7.3. Ribbon basis of WQSym∗. Let us now consider the dual basis of Φ. We have seen that it should
be regarded as an analog of the ribbon basis of Sym. By duality, one can state:

Theorem 2.11. Let Rσ be the dual basis of Φσ. Then the product and coproduct in this basis are given
by

(62) Rσ′Rσ′′ =
∑

σ=τ |ν or σ=τν;Std(τ)=σ′,Std(ν)=σ′′

Rσ.

(63) ∆Rσ =
∑

σ′.σ′′=σ

RStd(σ′) ⊗ RStd(σ′′).

Note that there are more elements coming from τ |ν than from τν since the permutation σ has to be
increasing between two bars.

For example,

(64) R21R1 = R212 + R221 + R213 + R231 + R321.

3. Hopf algebras based on Schröder sets

In Section 2.2, we recalled that the little Schröder numbers build up the Hilbert series of the free
dendriform trialgebra on one generator TD. We will see that our relization of TD endows it with a natural
structure of bidendriform bialgebra. In particular, this will prove that there is a natural self-dual Hopf
structure on TD. But there are other ways to arrive at the little Schröder numbers from the other Hopf
algebras WQSym and PQSym. Indeed, the number of classes of packed words of size n under the sylvester
congruence is sn, and the number of classes of parking functions of size n under the hypoplactic congruence
is also sn. The hypoplactic quotient of PQSym∗ has been studied in [19]. It is not isomorphic to TD nor to
the sylvester quotient of WQSym since it is a non self-dual Hopf algebra whereas the last two are self-dual,
and furthemore isomorphic as bidendriform bialgebras and as dendriform trialgebras.

3.1. The free dendriform trialgebra again. Recall that we realized the free dendriform trialgebra
in Section 2.2 as the subtrialgebra of WQSym generated by M1, the sum of all letters. It is immediate that
TD is stable by the codendriform half-coproducts of WQSym∗. Hence,

Theorem 3.1. TD is a sub-bidendriform bialgebra, and hence a Hopf subalgebra of WQSym∗. In
particular, TD is free, self-dual and its primitive Lie algebra is free.
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3.2. Lattice structure on plane trees. Given a plane tree T , define its canonical word as the maximal
packed word w in the pseudo-permutohedron such that T (w) = T .

For example, the canonical words up to n = 3 are

{1}, {11, 12, 21}, {111, 112, 211, 122, 212, 221, 123, 213, 231, 312, 321}(65)
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Figure 2. The lattice of plane trees represented by their canonical words for n = 3.

Define the second canonical word of each tree T as the minimal packed word w in the pseudo-permutohedron
such that T (w) = T .

A packed word u = u1 · · ·un is said to avoid the pattern w = w1 · · ·wk if there is no sequence 1 ≤ i1 <

· · · < ik ≤ n such that u′ = ui1 · · ·uik
has same inversions and same half-inversions as w.

For example, 41352312 avoids the patterns 111 and 1122, but not 2311 since 3522 has the same (half)-
inversions.

Theorem 3.2. The canonical words of trees are the packed words avoiding the patterns 121 and 132.
The second canonical words of trees are the packed words avoiding the patterns 121 and 231.

Set u ∼T v iff T (u) = T (v). We now define two orders ∼T -classes of packed words

1. A class S is smaller than a class S′ if the canonical word of S is smaller than the canonical word
of S′ in the pseudo-permutohedron.

2. A class S is smaller than a class S′ if there is a pair (w, w′) in S × S′ such that w is smaller than
w′ in the pseudo-permutohedron.

Theorem 3.3. These two orders coincide and are also identical with the one defined in [21]. Moreover,
the restriction of the pseudo-permutohedron to the canonical words of trees is a lattice.

3.3. Some bases of TD.

3.3.1. The basis MT . Let us start with the already defined basis MT . First note that MT expressed
as a sum of Mu in WQSym is an interval of the pseudo-permutohedron. From the above description of the
lattice, we obtain easily:

Theorem 3.4 ([21]). The product MT ′MT ′′ is an interval of the lattice of plane trees. On trees, the
minimum T ′ ∧ T ′′ is obtained by gluing the root of T ′′ at the end of the leftmost branch of T ′, whereas the
maximum T ′ ∨ T ′′ is obtained by gluing the root of T ′ at the end of the rightmost branch of T ′′.

On the canonical words w′ and w′′, the minimum is the canonical word associated with w′ ·w′′[max(w′)]
and the maximum is w′[max(w′′)] · w′′.

3.3.2. Complete and elementary bases of TD. We can also build two multiplicative bases as in WQSym.

Theorem 3.5. The set (Sw) (resp. (Ew)) where w runs over canonical (resp. second canonical) words
are multiplicative bases of TD.

3.4. Internal product on TD. If one defines TD as the Hopf subalgebra of WQSym defined by

(66) MT =
∑

T (u)=T

Mu ,

then TD
∗ is the quotient of WQSym∗ by the relation Fu ≡ Fv iff T (u) = T (v). We denote by ST the dual

basis of MT .
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Theorem 3.6. The internal product of WQSym∗
n induces an internal product on the homogeneous

components TD
∗
n of the dual algebra. More precisely, one has

(67) ST ′ ∗ ST ′′ = ST ,

where T is the tree obtained by applying T to the biword of the canonical words of the trees T ′ and T ′′.

For example, representing trees as their canonical words, one has

(68) S221 ∗ S122 = S231; S221 ∗ S321 = S321;

(69) S453223515 ∗ S433442214 = S674223518.

3.5. Sylvester quotient of WQSym. One can check by direct calculation that the sylvester quo-
tient [10] of WQSym is also stable by the tridendriform operations, and by the codendriform half-coproducts
since the elements of a sylvester class have the same last letter. Hence,

Theorem 3.7. The sylvester quotient of WQSym is a dendriform trialgebra, a bidendriform bialgebra,
and hence a Hopf algebra. It is isomorphic to TD as a dendriform trialgebra, as a bidendriform bialgebra
and as a Hopf algebra.

4. A Hopf algebra of segmented compositions

In [19], we have built a Hopf subalgebra SCQSym∗ of the hypoplactic quotient SQSym∗ of PQSym∗,
whose Hilbert series is given by

(70) 1 +
∑

n≥1

3n−1tn.

This Hopf algebra is not self-dual, but admits lifts of Gessel’s fundamental basis FI of QSym and its dual
basis. Since the elements of SCQSym∗ are obtained by summing up hypoplactic classes having the same
packed word, thanks to the following diagram, it is obvious that SCQSym∗ is also the quotient of WQSym

by the hypoplactic congruence.

(71)

PQSym∗ hypo−−−−→ SQSym∗

(pack)

x





x





(pack)

WQSym
hypo−−−−→ SCQSym∗

4.1. Segmented compositions. Define a segmented composition as a finite sequence of integers, sep-
arated by vertical bars or commas, e.g., (2, 1 | 2 | 1, 2).

The number of segmented compositions having the same underlying composition is obviously 2l−1 where
l is the length of the composition, so that the total number of segmented compositions of sum n is 3n−1.
There is a natural bijection between segmented compositions of n and sequences of length n − 1 over three
symbols <, =, >: start with a segmented composition I. If the i-th position is not a descent of the underlying
ribbon diagram, write < ; otherwise, if i is followed by a comma, write = ; if i is followed by a bar, write >.

Now, with each word w of length n, associate a segmented composition S(w) = s1 · · · sn−1 where si is
the correct comparison sign between wi and wi+1. For example, given w = 1615116244543, one gets the
sequence (and the segmented composition):

(72) <><>=<><=<>>⇐⇒ (2|2|1, 2|2, 2|1|1).

4.2. A subalgebra of TD. Given a segmented composition I, define

(73) MI =
∑

S(T )=I

MT =
∑

S(u)=I

Mu .

For example,

(74) M12|1 = M2231 M1|3 = M2123 + M2134 + M3123 + M3124 + M4123.
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Theorem 4.1. The MI generate a subalgebra TC of TD. Their product is given by

(75) MI′MI′′ = MI′.I′′ + MI′,I′′ + MI′|I′′ .

where I′ . I′′ is obtained by gluing the last part of I′ and the first part of I′′, so that TC is the free cubical
trialgebra on one generator [15].

For example,

(76) M1|21M31 = M1|241 + M1|2131 + M1|21|31.

4.3. A lattice structure on segmented compositions. Given a segmented composition I, define
its canonical word as the maximal packed word w in the pseudo-permutohedron such that S(w) = I.

For example, the canonical words up to n = 3 are

{1}, {11, 12, 21}, {111, 112, 211, 122, 221, 123, 231, 312, 321}(77)
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Figure 3. The lattice of segmented compositions represented by their canonical words at
n = 3.

Define the second canonical word of a segmented composition I as the minimal packed word w in the
pseudo-permutohedron such that S(w) = I.

Theorem 4.2. The canonical words of segmented compositions are the packed words avoiding the patterns
121, 132, 212, and 213. The second canonical words of segmented compositions are the packed words avoiding
the patterns 121, 231, 212, and 312.

Let u ∼S v iff S(u) = S(v). We define two orders on ∼S-equivalence classes of words.

1. A class S is smaller than a class S′ if the canonical word of S is smaller than the canonical word
of S′ in the pseudo-permutohedron.

2. A class S is smaller than a class S′ if there exists two elements (w, w′) in S × S′ such that w is
smaller than w′ in the pseudo-permutohedron.

Proposition 4.3. The two orders coincide. Moreover, the restriction of the pseudo-permutohedron to
the canonical segmented words is a lattice.

4.4. Multiplicative bases. We can build two multiplicative bases, as in WQSym. They are partic-
ularly simple:

Theorem 4.4. The set (Sw) where w runs into the set of canonical segmented words is a basis of TC.
The set (Ew) where w runs into the set of second canonical segmented words is a basis of TC.

4.5. Internal product on TC. If one defines TC as the Hopf subalgebra of WQSym as in Equa-
tion (73), then TC

∗ is the quotient of WQSym∗ by the relation Fu ≡ Fv iff S(u) = S(v). We denote by SI

the dual basis of MI.

Theorem 4.5. The internal product of WQSym∗ induces an internal product on the homogeneous
components TC

∗
n of TC

∗. More precisely, one has

(78) SI′ ∗ SI′′ = SI,

where I is the segmented composition obtained by applying S to the biword of the canonical words of the
segmented compositions I′ and I′′.
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