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On the chromatic symmetric function of a tree

Jeremy L. Martin and Jennifer D. Wagner

Abstract. Stanley defined the chromatic symmetric function X(G) of a graph G as a sum of monomial
symmetric functions corresponding to proper colorings of G, and asked whether a tree is determined up to
isomorphism by its chromatic symmetric function. We approach Stanley’s question by asking what invariants
of a tree T can be recovered from its chromatic symmetric function X(T ). We prove that the degree sequence

(δ1, . . . ), where δj is the number of vertices of T of degree j, and the path sequence (π1, . . . ), where πk is
the number of k-edge paths in T , are given by explicit linear combinations of the coefficients of X(T ). These
results are consistent with an affirmative answer to Stanley’s question. We briefly present some applications
of these results to classifying certain special classes of trees by their chromatic symmetric functions.

Résumé. Stanley a défini la fonction symétrique chromatique X(G) d’un graphe G par une somme de
fonctions symétriques monomials qui correspondent aux colorations propres de G, et il a demandé si un
arbre est déterminé jusqu’à l’isomorphisme par sa fonction symétrique chromatique. Nous approchons la
question de Stanley en demandant quels invariants d’un arbre T peut être récupéré de sa fonction symétrique
chromatique X(T ). Nous prouvons que le suite des degrés (δ1, . . . ), où δj est le nombre des sommets de T

de degré j, et le suite des chemins (π1, . . . ), où πk est le nombre de chemins de longueur k, sont données
par des combinaisons lineaires explicites des coefficients X(T ). Ces résultats sont conformés à une réponse
affirmative à la question de Stanley. Nous présentons brièvement quelques applications de ces résultats à
classifier certaines classes spéciales des arbres par ses fonctions symétriques chromatiques.

Introduction

Let G be a simple graph with vertices V (G) and edges E(G), and let n = #V (G) (the order of G). We
assume familiarity with standard facts about graphs and trees, as set forth in, e.g., [11, Chapters 1–2]. In
particular, a coloring of G is a function κ : V (G) → {1, 2, . . .} such that κ(v) 6= κ(w) whenever the vertices
v, w are adjacent. Stanley [7] defined the chromatic symmetric function of G as

X(G) = X(G;x1, x2, . . . ) =
∑

κ

∏

v∈V (G)

xκ(v),

the sum over all proper colorings κ, where x1, x2, . . . are countably infinitely many commuting indetermi-
nates. Note that X(G) is homogeneous of degree n, and is invariant under permuting the xi, so that X(G)
is a symmetric function. Moreover, the usual chromatic function χ(G; k), the number of colorings of G using
at most k colors [11, Chapter 5], may be obtained from X(G) by setting

xi =

{

1 for i ≤ k,

0 for i > k.

Our work is an attempt to resolve the following question.

Question (Stanley [7]): Is X(G) a complete isomorphism invariant for trees? That is, must two
nonisomorphic trees have different chromatic symmetric functions?
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The answer to the question is “no” for arbitrary graphs; Stanley [7] exhibited two nonisomorphic graphs
G,G′ on 5 vertices such that X(G) = X(G′). For trees, however, the problem remains open. We note that
Gebhard and Sagan [2] studied a chromatic symmetric function in noncommuting variables x1, x2, . . . ; this
is easily seen to be a complete invariant of G. On the other hand, it is well-known (and elementary) that
the chromatic function χ(G; k) is the same, namely k(k−1)n−1, for all trees G on n vertices. Thus Stanley’s
question asks where X(G) falls between these two extremes. Li-Yang Tan [10] has verified computationally1

that X(T ) determines T up to isomorphism for all trees T of order ≤ 23.
Stanley showed that when X(G) is expanded in the basis of power-sum symmetric functions pλ (indexed

by partitions λ), the coefficients cλ enumerate the edge-selected subgraphs of G by the sizes of their compo-
nents (see equations (1), (2) (3) below). With the additional assumption that G is a tree, this expansion is
a powerful tool with which to recover the structure of G from X(G). The first steps in this direction are due
to Matthew Morin, who studied the chromatic symmetric functions of caterpillars (trees in which deleting
all the leaves yields a path) in [4, 5].

We now summarize our results.
The degree degT (v) of a vertex v in a graph T is the number of edges having v as an endpoint, and the

degree sequence of G is (δ1, δ2, . . . ), where δj is the number of vertices having degree k. Our first main result
is that the numbers δj are given by explicit linear combinations of the power-sum coefficients cλ(T ).

Theorem 1. For every tree T , we have δ1(T ) = cn−1(T ), and for all j ≥ 2,

δj(T ) =
∑

λ`n



`(λ̃)
∑

k≥j

(−1)j+k−1

(

k

j

)(

`(λ) − 1

k + `− n

)



 cλ(T ).

It is easier to compute directly the number sk of subgraphs of T that are k-edge stars, or trees with
one central vertex and k leaves. It is easily seen that the sequences (s1, s2, . . . ) and (δ1, δ2, . . . ) are linearly
equivalent.

The distance between two vertices of T is the number of edges in the unique path connecting them. The
path sequence of G is (π1, π2, . . . ), where πk is the number of vertex pairs at distance k, or equivalently the
number of k-edge paths occurring as subgraphs of G. Our second main result, Theorem 2, asserts that the
numbers πk are again given by certain linear combinations of the coefficients cλ(T ), as follows.

Theorem 2. For every tree T , we have π1(T ) = c2(T ) and π2(T ) = c3(T ), and for all k ≥ 3,

πk(T ) =
∑

λ`n

(

(−1)n+k+1−`(λ)

(

`(λ) − 1

k − n+ `(λ)

)

m(λ)

)

cλ(T ),

where

m(λ) =

(

n− `(λ)

2

)

−
s
∑

i=1

(

λi − 1

2

)

.

To prove each of these theorems, we interpret the desired linear combination of the coefficients of X(T )
as generating functions for certain subgraphs of G, using Stanley’s characterization of those coefficients. We
then show that these labeled subgraphs admit a sign-reversing involution. The ensuing cancellation permits
us to recognize the surviving terms as enumerating either stars or paths in G, as appropriate.

This extended abstract is organized as follows. Section 1 contains the elements of the theory of chromatic
symmetric functions, as developed by Stanley in [7]. Sections 2 and 3 contain sketches of the proofs of the
degree and path sequence theorems, respectively.

The final section contains some brief remarks about other isomorphism invariants that can be extracted
from X(T ), and about some special classes of trees that can be distinguished up to isomorphism by their
path and/or degree sequences (hence by their chromatic symmetric functions).

More details and applications will be found in a future paper written jointly by the present authors and
Matthew Morin.

1In an earlier version of this extended abstract, it was mentioned that the present authors have checked this for trees of
order ≤ 14, using the database of trees available online at http://www.zis.agh.edu.pl/trees/, generated by Piec, Malarz, and
Kulakowski as described in [6]. Evidently Tan’s result is a substantial improvement!
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1. Basic properties of X(G)

We begin by reviewing some of the theory of chromatic symmetric functions developed by Stanley in
[7]. A partition is a sequence of positive integers λ = (λ1, . . . , λs) with λ1 ≥ · · · ≥ λs > 0; the number
s = `(λ) is the length of λ. The corresponding power-sum symmetric function pλ = pλ(x1, x2, . . . ) is defined
by pλ = pλ1

pλ2
· · · pλs

, where pk = xk
1 + xk

2 + · · · .
One can obtain a family of useful invariants ofG by expandingX(G) in terms of the power sum symmetric

functions pλ. For each S ⊆ E, let λ(S) be the partition of n whose parts are the orders of the components
of the edge-induced subgraph G|S = (V, S). Stanley [7, Theorem 2.5] proved that

(1) X(G) =
∑

S⊂E

(−1)#Spλ(S).

In particular, the number of components of G|S is `(λ(S)). When G = T is a tree, every subgraph S is a
forest, so `(λ(S)) = n− #S. Therefore, we may rewrite (1) as

(2) X(T ) =
∑

λ`n

(−1)n−`(λ)cλpλ,

where

(3) cλ = cλ(T ) = #{S ⊂ E : λ(S) = λ}.

The coefficients cλ(T ) are concrete combinatorial invariants of T that can be extracted from the chromatic
symmetric function X(T ). Note that the cλ are themselves not independent. For instance, it is immediate
from (3) that

(4)
∑

λ: `(λ)=k

cλ =

(

n− 1

k

)

,

and there are several invariants of T that can be expressed in more than one distinct way in terms of the cλ.
For notational simplicity, we shall often omit the parentheses and singleton parts when giving the index

of one of these coefficients; for example, we abbreviate c(h,1,1,...,1) by ch. (This raises the question of how we
are going to denote the partition λ = (1, 1, . . . , 1) = 1n. In fact, we won’t need to do so, because 1n is the
only partition of length n, so (4) implies that c1n(G) = 1 for all G.)

For future reference, we list some properties of graphs and trees that can easily be read off its chromatic
symmetric function. Several of these facts have already been noted by Morin [4, 5], and all of them are easy
to deduce from (1) or (for trees) (2) and (3).

Proposition 3. Let G = (V,E) be a graph of order n = #V .

(i) The number of vertices of G is the degree of X(G).
(ii) The number of edges of G is c2.
(iii) The number of components of G is min{`(λ) | cλ(G) 6= 0}.
(iv) If T is a tree, then the number of subtrees of T with k vertices is ck(T ).
(v) If T is a tree, then the number of leaves (vertices of degree 1) in G is cn−1(T ).

Recall that a graph G is a tree if and only if it is connected and #E(G) = #V (G)−1. Therefore, by (i),
(ii) and (iii) of Proposition 3, the trees can be distinguished from other graphs by their chromatic symmetric
functions. Moreover, part (v) implies that paths (trees with exactly two leaves) and stars (trees with exactly
one nonleaf) are determined up to isomorphism by their chromatic symmetric functions.

2. The degree sequence

Let T be a tree with n vertices (and hence n − 1 edges). Recall that the degree degT (v) of a vertex
v ∈ V (T ) is defined as the number of edges having v as an endpoint; a vertex of degree one is called a leaf
of T .

Definition 4. The degree sequence of T is (δ1, δ2, . . . , δn−1), where

δj = δj(T ) = #{v ∈ V (T ) : degT (v) = j}.



Jeremy L. Martin and Jennifer D. Wagner

Notice that δj = 0 whenever j < 1 or j ≥ n. Moreover, it is a standard fact that
∑

δj = 2n− 2.
For k ≥ 1, let Sk be the tree with vertices {0, 1, . . . , k} in which 0 is adjacent to every other vertex. Any

graph that is isomorphic to Sk is called a k-star. If k ≥ 2, then every k-star has a unique non-leaf vertex,
called its center.

Definition 5. The star sequence of T is defined to be (s1, s2, . . . , sn−1), where

sk = sk(T ) = #{U ⊂ T : U ≡ Sk}.

Notice that s1 = n− 1 (the number of edges of T ), and that sk = 0 whenever k < 1 or k ≥ n.
Knowing the degree sequence of T is equivalent to knowing the number of substars of T of each possible

order; it is straightforward to show that

(5a) sk =
∑

j≥k

(

j

k

)

δj

and that

(5b) δj =
∑

k≥j

(

k

j

)

(−1)j+ksk.

It is more straightforward to recover the star sequence from the power-sum coefficients cλ than it is to recover
the degree sequence directly. For λ ` n, define `(λ) to be the number of parts of λ, and let λ̃ be the partition
obtained by deleting all the singleton parts of λ.

Theorem 6. Let T be a tree with n vertices, and let 2 ≤ k < n. Then

sk(T ) = −
∑

λ`n

`(λ̃)

(

`(λ) − 1

k + `(λ) − n

)

cλ(T ).

We sketch the proof, omitting many of the calculations and technical details. First, we obtain by
straightforward calculation the identity

(6)
∑

λ`n

`(λ̃)

(

`(λ) − 1

k + `(λ) − n

)

cλ(T ) =
∑

F⊂T :
#F=k

∑

G⊆F

∑

nontrivial
components

C of G

(−1)#G.

For each subforest F ⊂ T , denote by Σ(F ) the summand indexed by F on the right-hand side of (6).
The second step in the proof is to analyze Σ(F ). When F is a star, it is not hard to see that this summand
reduces to





∑

G⊆F

(−1)#G



− (−1)#∅ = −1.

Now, suppose that F is not a star; we wish to show that Σ(F ) = 0. The expression Σ(F ) may be
regarded as counting ordered pairs (G,C), where G ⊂ F is a subforest and C is a nontrivial component of
G, assigning to each such pair the weight (−1)#G. We construct an involution ψ on the set of such pairs
(G,C). Whenever (G,C) and (G′, C′) are paired by ψ, we have #G′ = #G±1; in particular, the summands
in Σ(F ) corresponding to (G,C) and (G′, C′) cancel. We conclude that Σ(F ) = 0 as desired.

Theorem 6 now follows immediately from (6) together with the calculation of Σ(F ). The degree sequence
formula, Theorem 1, follows in turn from Theorem 6 together with (5b).

3. The path sequence

Let T = (V,E) be a tree with #V = n. For any two vertices v, w ∈ V , their distance d(v, w) = dT (v, w)
is defined as the number of edges in the unique path joining v and w. Define

πk(T ) := # {{v, w} ⊆ V : d(v, w) = k} .

Equivalently, πk(T ) is the number of paths with exactly k edges that occur as subgraphs of T . It is easy to
see that πk(T ) = 0 if k ≤ 0 or k ≥ n, and that

∑

k πk(T ) =
(

n
2

)

. Moreover, we have π1(T ) = #E = n − 1
and π2(T ) = s2(T ) (because a two-edge path is identical to a two-edge star). As we already know, these
quantities can be recovered from X(T ).
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Suppose that k ≥ 3. We now recall Theorem 2, which describes the path numbers πk(T ) as linear
combinations of the coefficients of X(T ). For a partition λ = (λ1, . . . , λ`) ` n, define

(7) m(λ) =

(

n− `(λ)

2

)

−
s
∑

i=1

(

λi − 1

2

)

.

Theorem 2. For every tree T , we have π1(T ) = c2(T ) and π2(T ) = c3(T ), and for all k ≥ 3,

πk(T ) =
∑

λ`n

(−1)n+k+1−`(λ)

(

`(λ) − 1

k − n+ `(λ)

)

m(λ)cλ(T ).

Again, we give just a sketch of the proof. Using Stanley’s interpretation for cλ(T ), we can rewrite the
right-hand side of the desired equality as

∑

A⊆E

(−1)k+1+#A

(

n− #A− 1

k − #A

)

m(λ(A)).

We interpret the binomial coefficient
(

n−a−1
k−a

)

as counting the subsets of E − A of cardinality k − a, and

interpret m(λ(A)) as the number of pairs of distinct edges e, f ∈ A that belong to different components of
the induced subgraph (V,A); call such a pair of edges A-okay. Thus the last expression becomes

(−1)k+1
∑

A⊆E

∑

B⊆E−A
#B=k−#A

∑

A-okay pairs e,f

(−1)#A.

For e, f ∈ E, let P = P (e, f) be the unique shortest path between an endpoint of e and an endpoint
of f . Then e, f is an A-okay pair if and only if e, f ∈ A and A 6⊇ P . In particular, e, f have no common
endpoint (we abbreviate this condition as e ∩ f = ∅), and P 6= ∅. Changing the order of summation and
letting A′ = A− e− f and C = A′ ∪B, we can rewrite the last expression as

(8) (−1)k+1
∑

e∩f=∅

∑

C⊆E−e−f
#C=k−2









∑

A′⊆C

A′ 6⊇P (e,f)

(−1)#A′









.

If we remove the condition A′ 6⊇ P (e, f) from the last summation, then the parenthesized expression
becomes zero (since #C = k − 2 > 0). Therefore (8) can be rewritten as

(9) (−1)k
∑

e∩f=∅

∑

C⊆E−e−f
#C=k−2

∑

A′:
P (e,f)⊆A⊆C

(−1)#A′

.

The last sum is zero unless C = P (e, f). So (9) collapses to

(−1)k
∑

e∩f=∅

χ
[

#P (e, f) = k − 2
]

(−1)k =
∑

e∩f=∅

χ
[

#(e ∪ f ∪ P (e, f)) = k
]

= πk(T ),

(where χ is the “Garsia chi”: χ[S] = 1 if the sentence S is true, or 0 if S is false). This completes the proof
of Theorem 2.

4. Further remarks

4.1. Other invariants recoverable from X(T ). Theorems 1 and 2 imply that any isomorphism
invariant of a tree T that can be derived from its path and degree sequences can be recovered from X(T ).
Examples of such invariants include the diameter (the number of edges in a longest path) and the Wiener
index (the quantity σ(T ) =

∑

v,w d(v, w), where v, w range over all pairs of vertices of T . The Wiener index

can be obtained from the chromatic symmetric function in other ways. For example, when X(T ) is expanded
as a sum of elementary symmetric functions, Stanley has interpreted the coefficients as counting sinks in
acyclic orientations; this observation gives rise to a different expression for σ(T ). Note that the Wiener index
is far from distinguishing trees up to isomorphism; see [1, §13].

One might ask whether the methods of Theorems 1 and 2 can be used to count other kinds of subtrees
of a tree T (that is, other than stars and paths) by appropriate linear combinations of the coefficients of
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X(T ). Such a class may be quite subtle; our empirical computations seem to rule out, for instance, spiders
and double-stars (i.e., caterpillars with two branch vertices).

4.2. Spiders. Let T be a tree. A vertex v ∈ V (T ) is called a branch vertex if degT (v) ≥ 3. A spider
(or starlike tree) is a tree with exactly one branch vertex (to avoid trivialities, we do not consider paths
to be spiders). Since the definition of a spider relies only on the degree sequence, Theorem 1 implies that
membership in the class of spiders can be deduced from X(T ). In fact, much more is true: one can show
that every spider is determined up to isomorphism by its chromatic symmetric function.

We sketch the proof briefly. A spider may be regarded as a collection of edge-disjoint paths (the legs)
joined at a common endpoint t (the torso). The torso is the unique branch vertex, and the lengths of the legs
determine the spider up to isomorphism. That is, the isomorphism classes of spiders with n edges correspond
to the partitions µ ` n with `(µ) ≥ 3. The partition µ can then be recovered from the coefficients cλ(T ),
where λ ` n has exactly two parts. For example, when no single leg of the spider contains as many as half
the edges, the sequence

(c1,n−1, c2,n−2, . . . ) ;

is a partition whose conjugate is precisely µ. (The case of a spider with one “giant leg” is only slightly more
complicated.)

4.3. Caterpillars. A caterpillar is a tree such that deleting all the leaves yields a path (called the spine
of the caterpillar). It is not hard to see that this is equivalent to the condition that the diameter of T is one
more than the number of nonleaf vertices; therefore, whether or not T is a caterpillar can be deduced from
X(T ). When T is a symmetric caterpillar (i.e., it has an automorphism reversing the spine), it is determined
up to isomorphism by X(T ). This fact was proved by Morin[4], and can also be recovered from Theorem 2.
However, the corresponding statement for arbitrary caterpillars remains unknown. Gordon and McDonnell
[3] showed that there exist arbitrarily large families of nonisomorphic caterpillars with the same path and
degree sequences; however, we suspect that the additional information furnished by the chromatic symmetric
function of a caterpillar T will be enough to reconstruct it up to isomorphism.

Acknowledgements

Chromatic symmetric functions came to the first author’s attention thanks to Matthew Morin’s talk at
the Graduate Student Combinatorics Conference, held at the University of Minnesota on April 16 and 17,
2005. The authors are grateful to Matthew Morin, Victor Reiner, Bruce Sagan, and Stephanie van Willi-
genburg for numerous helpful discussions and suggestions.

References

[1] Andrey A. Dobrynin, Roger Entringer, and Ivan Gutman, Wiener index of trees: theory and applications, Acta Appl.

Math. 66 (2001), no. 3, 211–249.
[2] David D. Gebhard and Bruce E. Sagan, A chromatic symmetric function in noncommuting variables, J. Alg. Combin. 2

(2001), 227–255.
[3] Gary Gordon and Eleanor McDonnell, Trees with the same degree sequence and path number, Discrete Math. 147 (1995),

297–300.
[4] Matthew Morin, Caterpillars, ribbons, and the chromatic symmetric function, M.S. thesis, University of British Columbia,

2005.
[5] Matthew Morin, The chromatic symmetric function of symmetric caterpillars, preprint, 2005.
[6] S. Piec, K. Malarz, and K. Kulakowski, How to count trees?, preprint, arXiv:cond-mat/0501594.
[7] Richard P. Stanley, A symmetric function generalization of the chromatic polynomial of a graph, Adv. Math. 111 (1995),

166–194.
[8] Richard P. Stanley, Enumerative Combinatorics, Volume 2. Cambridge Univ. Press, Cambridge, 1997.
[9] Richard P. Stanley, Graph colorings and related symmetric functions: ideas and applications, Discrete Math. 193 (1998),

267–286.
[10] Li-Yang Tan, personal communication. Details of computation to be posted at http://www.cs.wustl.edu/∼lt1.
[11] Douglas B. West, Introduction to Graph Theory, 2nd edn. Prentice Hall, Upper Saddle River, NJ, 2001.

Department of Mathematics, University of Kansas, Lawrence, KS 66045

E-mail address: jmartin@math.ku.edu

URL: http://www.math.ku/edu/∼jmartin

E-mail address: wagner@math.ku.edu


