

Kazhdan-Lusztig immanants and products of matrix minors, II

Brendon Rhoades and Mark Skandera

ABSTRACT. We show that for each permutation w containing no decreasing subsequence of length k, the Kazhdan-Lusztig immanant $\operatorname{Imm}_w(x)$ vanishes on all matrices having k equal columns. We also construct new and simple inequalities satisfied by the minors of totally nonnegative matrices.

RÉSUMÉ. Nous démontrons que pour chaque permutation w qui ne contient aucune sous-suite décroissante de longeur k, l'immanant de Kazhdan-Lusztig $\text{Imm}_w(x)$ s'annule sur toutes les matrices avec k colonnes identiques. Nous introduisons par ailleurs des inégalités simples et nouvelles satisfaites par les mineurs des matrices complètement non-negatives.

1. Introduction and Preliminaries

The Kazhdan-Lusztig basis $\{C'_w(q) \mid w \in S_n\}$ of the Hecke algebra $H_n(q)$, originally introduced in [10], has seen several applications in combinatorics and positivity. In [14] Rhoades and Skandera define the Kazhdan-Lusztig immanants via the Kazhdan-Lusztig basis and obtain various positivity results concerning linear combinations of products of matrix minors. Lam, Postnikov, and Pylyavskyy, in turn, use these results in [11] to resolve several conjectures in Schur positivity. In this paper, we further develop algebraic properties of the Kazhdan-Lusztig immanants and apply these immanants to obtain additional positivity results.

Fix $n \in \mathbb{N}$ and let $x = (x_{ij})_{1 \le i,j \le n}$ be a matrix of n^2 variables. For a pair of subsets $I, J \subseteq [n]$, with |I| = |J|, define the (I, J)-minor of x, denoted $\Delta_{I,J}(x)$, to be the determinant of the submatrix of x indexed by rows in I and columns in J. We adopt the convention that the empty minor $\Delta_{\emptyset,\emptyset}(x)$ is equal to 1. An $n \times n$ matrix A is said to be *totally nonnegative* (TNN) if every minor of A is a nonnegative real number. A polynomial p(x) in n^2 variables is called totally nonnegative if whenever $A = (a_{i,j})_{1 \le i,j \le n}$ is a totally nonnegative matrix, $p(A) = p(a_{1,1}, \ldots, a_{n,n})$ is a nonnegative real number. [2], [3], [9], [13], [12], [19] give a graph theoretic characterization of totally nonnegative matrices which is used by Rhoades and Skandera in [15] and [14] to construct several examples of totally nonnegative polynomials.

Let H denote the infinite array $(h_{j-i})_{i,j\geq 1}$, where h_i denotes the complete homogeneous symmetric function of degree i. (see, for example, [18]) Here we use the convention that $h_i = 0$ whenever i < 0. A polynomial p(x) in n^2 variables is called *Schur nonnegative* (*SNN*) if whenever K is an $n \times n$ submatrix of H, the symmetric function p(K) is a nonnegative linear combination of Schur functions. By the Jacobi identity, the determinant is a trivial example of a SNN polynomial.

For $i \in [n-1]$, let s_i denote the adjacent transposition in S_n which is written (i, i+1) in cycle notation. For a fixed $w \in S_n$, call an expression $s_{i_1} \cdots s_{i_\ell}$ representing w reduced if ℓ is minimal. In this case, define the *length* of w, denoted $\ell(w)$, to be ℓ .

For q a formal indeterminate, define the *Hecke algebra* $H_n(q)$ to be the $\mathbb{C}[q^{1/2}, q^{-1/2}]$ -algebra with generators $T_{s_1}, \ldots, T_{s_{n-1}}$ subject to the relations

$$T_{s_i}^2 = (q-1)T_{s_i} + q, \quad \text{for } i = 1, \dots, n-1,$$

$$T_{s_i}T_{s_j}T_{s_i} = T_{s_j}T_{s_i}T_{s_j}, \quad \text{if } |i-j| = 1,$$

$$T_{s_i}T_{s_j} = T_{s_i}T_{s_i}, \quad \text{if } |i-j| \ge 2.$$

For $w \in S_n$, define the Hecke algebra element T_w by

$$T_w = T_{s_{i_1}} \cdots T_{s_{i_\ell}}$$

where $s_{i_1} \cdots s_{i_\ell}$ is any reduced expression for w. Specializing at q = 1, the map $T_{s_i} \mapsto s_i$ induces an isomorphism between $H_n(1)$ and the symmetric group algebra $\mathbb{C}[S_n]$.

The elements $\{C'_v(q) \mid v \in S_n\}$ of the Kazhdan-Lusztig basis of $H_n(q)$ have the form

(1.1)
$$C'_{v}(q) = \sum_{w \leq v} P_{w,v}(q) q^{-\ell(v)/2} T_{w},$$

where

$$\{P_{w,v}(q) \mid w, v \in S_n\}$$

are polynomials in $\mathbb{N}[q]$ called the Kazhdan-Lusztig polynomials. We recall a couple of elementary properties of the Kazhdan-Lusztig polynomials.

LEMMA 1.1. For $w, v \in S_n$, $P_{w,v}(q) \equiv 0$ if and only if $w \not\leq v$, where $\leq is$ (strong) Bruhat ordering. Also, $P_{w,w}(q) \equiv 1$.

A polynomial p(x) in n^2 variables is called an *immanant* if it belongs to the \mathbb{C} -linear span of $\{x_{1,w(1)} \cdots x_{n,w(n)} | w \in S_n\}$. Following [14], for $w \in S_n$, define the *w*-Kazhdan-Lusztig immanant by

(1.2)
$$\operatorname{Imm}_{w}(x) = \sum_{v \in S_{n}} (-1)^{\ell(w) - \ell(v)} P_{w_{0}v, w_{0}w}(1) x_{1,v(1)} \cdots x_{n,v(n)},$$

where w_o denotes the long element of S_n , written $n(n-1) \dots 1$ in one-line notation. Specializing at w = 1, we have that $\text{Imm}_1(x) = det(x)$.

It follows from Lemma 1.1 that the expression $(-1)^{\ell(w)-\ell(v)}P_{w_0v,w_0w}(1)$ is nonzero if and only if $w \leq v$ in the Bruhat order and that $P_{w_0w,w_0w}(1) = 1$. Therefore, the set $\{\operatorname{Imm}_w(x) \mid w \in S_n\}$ forms a basis for the vector space of immanants. The Kazhdan-Lusztig immanants are both TNN and SNN and various examples of TNN and SNN polynomials can be constructed by studying the cone generated by the Kazhdan-Lusztig immanants [14]. Moreover, when w is 321-avoiding, the Kazhdan-Lusztig immanant $\operatorname{Imm}_w(x)$ is satisfies a natural generalization of Lindström's Lemma [15].

2. Main

For $1 \leq k \leq n$, let $\Gamma_{n,k}$ denote the subset of $\mathbb{C}[x_{1,1},\ldots,x_{n,n}]$ consisting of all products of the form $\Delta_{I_1,J_1}(x)\cdots\Delta_{I_k,J_k}(x)$, where $I_1,J_1,\ldots,I_k,J_k \subseteq [n], I_1 \oplus \cdots \oplus I_k = J_1 \oplus \cdots \oplus J_k = [n]$, and $|I_j| = |J_j|$ for all $j \in [k]$. Here \oplus denotes disjoint union. Elements of $\Gamma_{n,k}$ are sometimes called complementary products of minors. In [15], Kazhdan-Lusztig immanants are used to find that the dimension of span $(\Gamma_{n,k})$ is equal to the n^{th} Catalan number C_n . In this paper we shall relate the dimension of span $(\Gamma_{n,k})$ to pattern avoidence in S_n for arbitrary k.

For $k \in \mathbb{N}$, let $S_{n,k}$ denote the set of permutations in S_n which do not have a decreasing subsequence of length k + 1. For example, in one-line notation, $S_{3,2} = \{123, 213, 132, 312, 231\}$. Notice that $S_{n,k} = S_n$ for all $k \ge n$. We start by examining the image of $S_{n,k}$ under the Robinson-Schensted correspondence.

Let \leq_{LR} be the preorder on S_n defined in [10] and let $s_{[1,k]}$ be the longest element in the subgroup of S_n generated by s_1, \ldots, s_{k-1} .

LEMMA 2.1. Suppose $v \notin S_{n,k-1}$. Then we have $v \leq_{LR} s_{[1,k]}$.

PROOF. Given any permutation w, define the pair of tableaux (P'(w), Q'(w)) to be the image of w under the Robinson-Schensted column insertion correspondence. Let $\lambda'(w)$ be the shape of these tableaux.

A well-known property of the Robinson-Schensted correspondence implies that $\lambda'(v) \geq \lambda'(s_{[1,k]})$ in the dominance order. This dominance relation in turn is known to be equivalent to the partial order on Kazhdan-Lusztig cells induced by the preorder \leq_{LR} . Thus in the preorder \leq_{LR} , every permutation in the cell of v precedes every permutation in the cell of $s_{[1,k]}$. (See [1], [6, Sec. 1], [8, Appendix].)

PROPOSITION 2.2. Suppose $A \in Mat_n(\mathbb{C})$ has k equal rows and let $v \in S_{n,k-1}$. Then, $Imm_v(A) = 0$.

This result generalizes Proposition 3.14 of Rhoades and Skandera [15], which together with [14] implies that Proposition 2.2 holds when k = 2.

PROOF. Define the element [A] of $\mathbb{C}[S_n]$ by

$$A] = \sum_{w \in S_n} a_{1,w(1)} \cdots a_{n,w(n)} w.$$

Let $i_1 < \cdots < i_k$ be the indices of k rows in A which are equal and let U be the subgroup of S_n which fixes all indices not contained in the set $\{i_1, \ldots, i_k\}$. Then

$$\sum_{u \in U} u$$

factors as $wz_{[1,k]}w'$ for some elements w, w' of S_n . It follows that [A] factors as

$$[A] = \left(\sum_{u \in U} u\right) f(A)$$
$$= (wz_{[1,k]}w')f(A)$$

for some group algebra element f(A).

Let I be the two-sided ideal of $\mathbb{C}[S_n]$ spanned by $\{C'_u(1) \mid u \leq_{LR} s_{[1,k]}\}$ and let $\theta : \mathbb{C}[S_n] \to \mathbb{C}[S_n]/I$ be the canonical homomorphism. Clearly we have $\theta([A]) = 0$.

On the other hand, we have

$$\theta([A]) = \theta\left(\sum_{w \in S_n} \operatorname{Imm}_w(A)C'_w(1)\right)$$
$$= \sum_{w \in S_n} \operatorname{Imm}_w(A)\theta(C'_w(1)).$$

Since $\theta(C'_w(1)) = 0$ for all permutations $w \leq_{LR} s_{[1,k]}$, we have

$$0 = \sum_{w} \operatorname{Imm}_{w}(A)\theta(C'_{w}(1)),$$

where the sum is over all permutations $w \not\leq_{LR} s_{[1,k]}$, i.e., those permutations having no decreasing subsequence of length k. Since the elements $\theta(C'_w(1))$ in this sum are linearly independent, we must have $\operatorname{Imm}_w(A) = 0$ for each permutation w having no decreasing subsequence of length k. \Box

PROPOSITION 2.3. Suppose $\Delta_{I_1,J_1}(x) \cdots \Delta_{I_k,J_k}(x) \in \Gamma_{n,k}$. Then, there exist $d_w \in \mathbb{C}$ such that $\Delta_{I_1,J_1}(x) \cdots \Delta_{I_k,J_k}(x) = \sum_{w \in S_{n,k}} d_w \operatorname{Imm}_w(x)$.

PROOF. The Kazhdan-Lusztig immanants form a basis for the vector space of immanants, so we may write

(2.1)
$$\Delta_{I_1,J_1}(x)\cdots\Delta_{I_k,J_k}(x) = \sum_{w\in S_n} d_w \operatorname{Imm}_w(x),$$

for some $d_w \in \mathbb{C}$. If $k \ge n$ the claim is trivial, so we assume that k < n. We show that $d_w = 0$ whenever $w \notin S_{n,k}$.

Suppose that $C \in Mat_n(\mathbb{C})$ has k + 1 equal rows. Then, by the pigeonhole principle, there exist two equal rows of C indexed by integers lying in one of I_1, \ldots, I_k . Hence, $\Delta_{I_1, J_1}(C) \cdots \Delta_{I_k, J_k}(C) = 0$.

Now let $B = (b_{ij}) \in Mat_n(\mathbb{C})$ be defined by $b_{ij} = 1$ for all i and j. By Proposition 2.2, since k < n we have that $Imm_w(B) = 0$ for every $w \neq w_o$. Also, $Imm_{w_o}(B) = 1$. By the above paragraph, $\Delta_{I_1,J_1}(B) \cdots \Delta_{I_k,J_k}(B) = 0$. Therefore, applying both sides of (2.1) to B, we get that $d_{w_o} = 0$.

For $l \in \mathbb{N}$, define $T_{n,l}$ to be the set difference $S_{n,l} \setminus S_{n,l-1}$. Suppose that k < m < n and suppose that for all p satisfying $m we have that <math>d_w = 0$ for every $w \in T_{n,p}$. Give the elements of $T_{n,m}$ a total order which is an extension of their Bruhat ordering and write $T_{n,m} = \{w_1 < w_2 < \cdots < w_h\}$. Let $t \in [h]$ and suppose by induction that $d_w = 0$ for $w \in \{w_{t+1}, \ldots, w_h\}$. Since $w_t \in T_{n,m}$, there exist $i_1 < i_2 < \cdots < i_m$ such that $w_t(i_1) > w_t(i_2) > \cdots > w_t(i_m)$. Let $D \in Mat_n(\mathbb{C})$ be the matrix obtained by replacing the rows i_1, \ldots, i_m in the permutation matrix for w_t by rows of 1's. By Proposition 2.2, $Imm_w(D) = 0$ for every $w \in S_{n,m-1}$. By (1.1) we also have that $Imm_w(D) = 0$ for every $w \nleq w_t$ in the Bruhat order. Since k < m, we have that $\Delta_{I_1,J_1}(D)\cdots \Delta_{I_k,J_k}(D) = 0$. Thus, applying both sides of (2.1) to D, we get that $d_{w_t} = 0$ and the Proposition follows by induction.

If k = 2 in Proposition 2.3, results in [15] and [14] imply that the d_w must be nonnegative. For k arbitrary, Skandera [16] has given an elementary proof that whenever w avoids the patterns 3412 and 4231, (i.e., when the Schubert variety Γ_w corresponding to w is smooth), the coefficient d_w is also nonnegative. Using deeper properties of the dual canonical basis of $OSL_n\mathbb{C}$, it is possible to show that the coefficients d_w are nonnegative for general k and w.

PROPOSITION 2.4. $\dim(\operatorname{span}_{\mathbb{C}}(\Gamma_{n,k})) = |S_{n,k}|.$

Specializing at k = 2, $S_{n,2}$ is the set of 321-avoiding permutations, so we have that $|S_{n,2}| = C_n$, the n^{th} Catalan number. Thus, this result is a generalization of Proposition 4.7 of [15].

PROOF. By Proposition 2.3 we have that $\dim(\operatorname{span}_{\mathbb{C}}(\Gamma_{n,k})) \leq |S_{n,k}|$.

For each collection of sets $I_1, J_1, \ldots, I_k, J_k \subseteq [n]$ with $[n] = I_1 \uplus \cdots \uplus I_k = J_1 \uplus \cdots \uplus J_k$ and $|I_j| = |J_j|$ for each $j \in k$, let $min(I_1, J_1, \ldots, I_k, J_k)$ denote the unique minimal permutation in the Bruhat order which maps I_i into J_i for each $i \in [k]$. For example, if we set n = 6, $I_1 = \{1, 3, 6\}, I_2 = \{2, 4\}, I_3 = \{5\}, J_1 = \{3, 4, 6\}, J_2 = \{1, 5\}, J_3 = \{2\}$, we have that $min(I_1, J_1, I_2, J_2, I_3, J_3) = 314526$ in one-line notation.

For $\Delta_{I_1,J_1}(x)\cdots\Delta_{I_k,J_k}(x)\in\Gamma_{n,k}$ it is easy to see that there exist $d_w\in\mathbb{C}$ such that

$$\Delta_{I_1,J_1}(x)\cdots\Delta_{I_k,J_k}(x) = \sum_{w \ge \min(I_1,J_1,\dots,I_k,J_k)} d_w x_{1,w(1)}\cdots x_{n,w(n)}$$

where $d_{min(I_1,J_1,\ldots,I_k,J_k)} = 1$. In light of this, it suffices to show that for every permutation $w \in S_{n,k}$, there exists a collection of sets $I_1, J_1, \ldots, I_k, J_k \subseteq [n]$ such that $[n] = I_1 \uplus \cdots \uplus I_k = J_1 \uplus \cdots \uplus J_k$ and $|I_j| = |J_j|$ for each $j \in k$ and $w = min(I_1, J_1, \ldots, I_k, J_k)$. For then, we have that $dim(span_{\mathbb{C}}(\Gamma_{n,k})) \geq |S_{n,k}|$.

Let $w \in S_{n,k}$. Define a partial order on the set $P = \{(i, w(i)) | i \in [n]\}$ by setting (i, w(i)) < (j, w(j))if i < j and w(i) < w(j). Now $\{(i_1, w(i_1)), \ldots, (i_m, w(i_m))\} \subseteq P$ with $i_1 < \cdots < i_m$ is an antichain in P if and only if $(w(i_1), \ldots, w(i_m))$ is an decreasing subsequence of w. Hence, width(P) < k + 1 (see [17] for definitions). By Dilworth's Theorem, there exist k disjoint (possibly empty) chains C_1, \ldots, C_k which partition P. Now, for each $j \in [k]$, write $C_j = \{(i_1, w(i_1)), \ldots, (i_{m_j}, w(i_{m_j})\}$, with $i_1 < \cdots < i_{m_j}$. Since C_j is a chain in P, $(w(i_1), \ldots, w(i_{m_j}))$ is an increasing subsequence of w. Define $I_j = \{i_1, \ldots, i_{m_j}\}$ and $J_j = \{w(i_1), \ldots, w(i_{m_j})\}$. It is now easy to check that $w = min(I_1, J_1, \ldots, I_k, J_k)$ and we are done.

The numbers $|S_{n,k}|$ were studied by Gessel [7] who found an expression involving Bessel functions for the generating function $\sum_{n\geq 1} |S_{n,k}|t^n$. The authors do not know of a simple form of the polynomial $\sum_{k=1}^{n} |S_{n,k}|t^k$.

COROLLARY 2.5. Suppose that $I_1 \uplus I_2 = J_1 \uplus J_2 = [n]$, $|I_1| = |J_1| = n_1$, $|I_2| = |J_2| = n_2$, $w_1 \in S_{n_1,k_1}$, and $w_2 \in S_{n_2,k_2}$. For i = 1, 2 let x_i be the submatrix of x with row set I_i and column set J_i . Then, there exist $d_v \in \mathbb{C}$ such that $\operatorname{Imm}_{w_1}(x_1)\operatorname{Imm}_{w_2}(x_2) = \sum_v d_v\operatorname{Imm}_v(x)$, where the sum is over v in S_{n,k_1+k_2} .

Specializing at $w_1 = w_2 = 1$, we have that the coefficients d_v in the Corollary are in fact nonnegative real numbers. (see [15], [14]) Again, one may use the properties of the dual canonical basis of $OSL_n\mathbb{C}$ to show that $\{d_w | w \in S_n\}$ are nonnegative real numbers.

PROOF. For i = 1, 2, by Propositions 2.3 and 2.4 there exist $p_{i,j}(x_i) \in \Gamma_{n_i,k_i}$ and $d_j \in \mathbb{C}$ such that $\operatorname{Imm}_{w_i}(x) = \sum_j d_j p_{i,j}(x_i)$. Since x_1 and x_2 are complementary submatrices of x, for any $p_1(x_1) \in \Gamma_{n_1,k_1}$ and $p_2(x_2) \in \Gamma_{n_2,k_2}$, the product $p_1(x_1)p_2(x_2)$ is contained in Γ_{n,k_1+k_2} . So, the product $\operatorname{Imm}_{w_1}(x_1)\operatorname{Imm}_{w_2}(x_2)$ is a linear combination of elements in Γ_{n,k_1+k_2} . The result now follows from Proposition 2.3.

Taken together, Propositions 2.3 and 2.4 imply that for $w \in S_{n,k}$, there exist $p_i(x) \in \Gamma_{n,k}$ and $d_i \in \mathbb{C}$ such that $\operatorname{Imm}_w(x) = \sum_{i=1}^m d_i p_i(x)$. Results in [15] and [14] show that, for k = 2, we may in fact assume that the $p_i(x)$ are contained in a subset of $\Gamma_{n,2}$ which is in a natural bijective correspondence with the set of Dyck paths of length 2n. It would be interesting to see if an analogous result holds for general k.

KAZHDAN-LUSZTIG IMMANANTS

We now investigate when polynomials in span($\Gamma_{n,k}$) are TNN or SNN. For any integers n and k satisfying $1 \le k \le n$, define the poset $P_{n,k}$ on $\Gamma_{n,k}$ by

 $\Delta_{I_1,J_1}(x)\cdots\Delta_{I_k,J_k}(x) \leq \Delta_{I'_1,J'_1}(x)\cdots\Delta_{I'_k,J'_k}(x)$ if and only if the difference

 $\Delta_{I'_1,J'_1}(x)\cdots\Delta_{I'_k,J'_k}(x) - \Delta_{I_1,J_1}(x)\cdots\Delta_{I_k,J_k}(x)$ is TNN. In [15] the authors develop necessary and sufficient combinatorial conditions for polynomials $p(x) \in \operatorname{span}(\Gamma_{n,2})$ to be TNN. For all positive integers $n, P_{n,2}$ has a unique maximal element given by $\Delta_{I,I}(x)\Delta_{J,J}(x)$, where $I = \{1,3,5,\ldots\}$ and $J = \{2,4,6,\ldots\}$. Also, the determinant $\Delta_{[n],[n]}(x)\Delta_{\emptyset,\emptyset}(x)$ is always a minimal element of $P_{n,2}$. In [14] the authors show that the combinatorial tests in [15] constitute sufficient conditions for polynomial in $\operatorname{span}(\Gamma_{n,2})$ to be SNN. Therefore, whenever $\Delta_{I,J}(x)\Delta_{I',J'}(x) \leq \Delta_{K,L}(x)\Delta_{K',L'}(x)$ in $P_{n,2}$ we also have that $\Delta_{K,L}(x)\Delta_{K',L'}(x) - \Delta_{I,J}(x)\Delta_{I',J'}(x)$ is SNN. It is unknown whether the converse of the last sentence is true.

In [4], [5], and [14] the positivity properties of differences of the form $x_{1,w(1)} \cdots x_{n,w(n)} - x_{1,u(1)} \cdots x_{n,u(n)}$ for $w, u \in S_n$ are studied. The authors prove the following about the subposet $P_{n,n}$ consisting of products of n nonempty minors.

THEOREM 2.6. Let $w, u \in S_n$. Then, the following statements are equivalent.

1. $w \leq u$ in the Bruhat order.

2. The difference $x_{1,w(1)} \cdots x_{n,w(n)} - x_{1,u(1)} \cdots x_{n,u(n)}$ is TNN.

3. The difference $x_{1,w(1)} \cdots x_{n,w(n)} - x_{1,u(1)} \cdots x_{n,u(n)}$ is SNN.

4. Whenever the difference $x_{1,w(1)} \cdots x_{n,w(n)} - x_{1,u(1)} \cdots x_{n,u(n)}$ is applied to a Jacobi-Trudi matrix, the result is a nonnegative linear combination of monomial symmetric functions.

5. The difference $x_{1,w(1)} \cdots x_{n,w(n)} - x_{1,u(1)} \cdots x_{n,u(n)}$ is a nonnegative linear combination of Kazhdan-Lusztig immanants.

With the above results as motivation, we show that $P_{n,k}$ has a unique maximal element for arbitrary k and that certain comparable elements in $P_{n,k}$ have differences which are SNN as well as TNN.

LEMMA 2.7. Let (I_1, \ldots, I_p) and (I'_1, \ldots, I'_p) be sequences of sets satisfying $I_1 \uplus \cdots \uplus I_p = I'_1 \uplus \cdots \uplus I'_p$,

 $|I_i| = |I'_i|$ for all *i*.

Fix indices $k < \ell$ and define increasing sequences $(\alpha_1, \ldots, \alpha_p)$ and $(\alpha'_1, \ldots, \alpha'_p)$ by

$$I_k \cup I_\ell = \{\alpha_1, \dots, \alpha_p\},\$$

$$I'_k \cup I'_\ell = \{\alpha'_1, \dots, \alpha'_p\}.$$

Define the sequences of sets (J_1, \ldots, J_p) and (J'_1, \ldots, J'_p) by

$$J_{i} = \begin{cases} \{\alpha_{1}, \alpha_{3}, \dots, \} & \text{if } i = k, \\ \{\alpha_{2}, \alpha_{4}, \dots, \} & \text{if } i = \ell, \\ I_{i} & \text{otherwise.} \end{cases}$$
$$J'_{i} = \begin{cases} \{\alpha'_{1}, \alpha'_{3}, \dots, \} & \text{if } i = k, \\ \{\alpha'_{2}, \alpha'_{4}, \dots, \} & \text{if } i = \ell, \\ I'_{i} & \text{otherwise.} \end{cases}$$

Then the immanant

$$\Delta_{J_1,J_1'}(x)\cdots\Delta_{J_p,J_p'}(x)-\Delta_{I_1,I_1'}(x)\cdots\Delta_{I_p,I_p'}(x)$$

is totally nonnegative and Schur nonnegative.

PROOF. This difference is

$$\frac{\Delta_{J_1,J_1'}(x)\cdots\Delta_{J_p,J_p'}(x)}{\Delta_{J_k,J_k'}(x)\Delta_{J_\ell,J_\ell'}(x)}(\Delta_{J_k,J_k'}(x)\Delta_{J_\ell,J_\ell'}(x)-\Delta_{I_k,I_k'}(x)\Delta_{I_\ell,I_\ell'}(x))$$

which is totally nonnegative and Schur nonnegative by [15, Prop. 4.6] and [14, Thm. 5.2].

Our next result implies that the poset $P_{n,k}$ has a maximal element for any n and k.

THEOREM 2.8. Let (I_1, \ldots, I_p) and (I'_1, \ldots, I'_p) be two sequences of sets satisfying

$$I_1 \uplus \cdots \uplus I_p = I'_1 \uplus \cdots \uplus I'_p = [n],$$

 $|I_1| = |I'_i| \quad for all i$

and define sets J_1, \ldots, J_p by

$$J_i = \{i \in [n] \mid i \equiv j \mod p\}.$$

Then the immanant

$$\Delta_{J_1,J_1}(x)\cdots\Delta_{J_p,J_p}(x)-\Delta_{I_1,I_1'}(x)\cdots\Delta_{I_p,I_p'}(x)$$

is totally nonnegative and Schur nonnegative.

Δ

PROOF. Applying several iterations of Lemma 2.7 to the sets $I_1, \ldots, I_p, I'_1, \ldots, I'_p$, we obtain the desired result.

COROLLARY 2.9. Let $k < \ell$ and define the sequences of sets (I_1, \ldots, I_k) and (J_1, \ldots, J_ℓ) by

$$I_j = \{i \in [n] \mid i \equiv j \mod k\},\$$

$$J_j = \{i \in [n] \mid i \equiv j \mod \ell\}.$$

Then the immanant

$$\Delta_{J_1,J_1}(x)\cdots\Delta_{J_p,J_p}(x)-\Delta_{I_1,I_1'}(x)\cdots\Delta_{I_p,I_p'}(x)$$

is totally nonnegative and Schur nonnegative.

Not much is known about the posets $P_{n,k}$ in general. Obviously we have that $P_{n,1} \subset P_{n,2} \subset \cdots \subset P_{n,n}$. By Theorem 2.6 $P_{n,n}$ contains a subposet isomorphic to (the dual of) the Bruhat order on S_n . Also, it is possible to show that any element of span($\Gamma_{3,3}$) is TNN or SNN if and only if it may be expressed as a nonnegative linear combination of Kazhdan-Lusztig immanants. In particular, this allows one to construct the poset $P_{3,3}$ and see that it coincides with the analogous poset constructed by considering SNN differences. It would be interesting to see what $P_{n,k}$ looks like in general.

3. Acknowledgements

The authors are grateful to Mark Haiman and Peter Trapa for helpful conversations.

References

- Dan Barbasch and David Vogan. Primitive ideals and orbital integrals in complex exceptional groups. J. Algebra, 80(2):350– 382, 1983.
- [2] Francesco Brenti. Combinatorics and total positivity. J. Combin. Theory Ser. A, 71(2):175-218, 1995.
- [3] C. W. Cryer. Some properties of totally positive matrices. Linear Algebra Appl., 15:1–25, 1976.
- [4] B. Drake, S. Gerrish, and M. Skandera. Two new criteria for comparison in the Bruhat order. *Electron. J. Combin.*, 11(1), 2004. Note 6, 4 pp. (electronic).
- [5] B. Drake, S. Gerrish, and M. Skandera. Monomial nonnegativity and the Bruhat order. Submitted, 2005.
- [6] Jie Du. Canonical bases for irreducible representations of quantum GL_n . Bull. London Math. Soc., 24(4):325–334, 1992.
- [7] I. Gessel. Symmetric functions and p-recursiveness. J. Combin. Theory Ser. A, 58:257–285, 1990.
- [8] M. Haiman. Hecke algebra characters and immanant conjectures. J. Amer. Math. Soc., 6(3):569-595, 1993.
- [9] S. Karlin and G. McGregor. Coincidence probabilities. Pacific J. Math., 9:1141–1164, 1959.
- [10] D. Kazhdan and G. Lusztig. Representations of Coxeter groups and Hecke algebras. Inv. Math., 53:165–184, 1979.
- [11] Thomas Lam, Alexander Postnikov, and Pavlo Pylyavskyy. Schur positivity conjectures: $2\frac{1}{2}$ are no more! Preprint math.CO/0502446 on ArXiv, 2005.
- [12] B. Lindström. On the vector representations of induced matroids. Bull. London Math. Soc., 5:85–90, 1973.
- [13] C. Loewner. On totally positive matrices. Math. Z., 63:338–340, 1955.
- [14] B. Rhoades and M. Skandera. Kazhdan-Lusztig immanants and products of matrix minors. Submitted, 2005.
- [15] B. Rhoades and M. Skandera. Temperley-Lieb immanants. Ann. Comb., 2005. To appear.
- [16] M. Skandera. On the nonnegativity properties of the dual canonical basis. 2005. In progress.
- [17] R. Stanley. Enumerative Combinatorics, volume 1. Cambridge University Press, Cambridge, 1997.
- [18] R. Stanley. Enumerative Combinatorics, volume 2. Cambridge University Press, Cambridge, 1999.
- [19] A. Whitney. A reduction theorem for totally positive matrices. J. Anal. Math., 2:88–92, 1952.

Dept. of Mathematics, University of Minnesota, Minneapolis, MN, 55455

DEPARTMENT OF MATHEMATICS, HAVERFORD COLLEGE, 370 LANCASTER AVENUE, HAVERFORD, PA, 19041