

Kazhdan-Lusztig immanants and products of matrix minors, II

Brendon Rhoades and Mark Skandera

Abstract

We show that for each permutation w containing no decreasing subsequence of length k, the Kazhdan-Lusztig immanant $\operatorname{Imm}_{w}(x)$ vanishes on all matrices having k equal columns. We also construct new and simple inequalities satisfied by the minors of totally nonnegative matrices.

Abstract

RÉSumé. Nous démontrons que pour chaque permutation w qui ne contient aucune sous-suite décroissante de longeur k, l'immanant de Kazhdan-Lusztig $\operatorname{Imm}_{w}(x)$ s'annule sur toutes les matrices avec k colonnes identiques. Nous introduisons par ailleurs des inégalités simples et nouvelles satisfaites par les mineurs des matrices complètement non-negatives.

1. Introduction and Preliminaries

The Kazhdan-Lusztig basis $\left\{C_{w}^{\prime}(q) \mid w \in S_{n}\right\}$ of the Hecke algebra $H_{n}(q)$, originally introduced in [10], has seen several applications in combinatorics and positivity. In [14] Rhoades and Skandera define the Kazhdan-Lusztig immanants via the Kazhdan-Lusztig basis and obtain various positivity results concerning linear combinations of products of matrix minors. Lam, Postnikov, and Pylyavskyy, in turn, use these results in $[\mathbf{1 1}]$ to resolve several conjectures in Schur positivity. In this paper, we further develop algebraic properties of the Kazhdan-Lusztig immanants and apply these immanants to obtain additional positivity results.

Fix $n \in \mathbb{N}$ and let $x=\left(x_{i j}\right)_{1 \leq i, j \leq n}$ be a matrix of n^{2} variables. For a pair of subsets $I, J \subseteq[n]$, with $|I|=|J|$, define the (I, J)-minor of x, denoted $\Delta_{I, J}(x)$, to be the determinant of the submatrix of x indexed by rows in I and columns in J. We adopt the convention that the empty minor $\Delta_{\emptyset, \emptyset}(x)$ is equal to 1 . An $n \times n$ matrix A is said to be totally nonnegative $(T N N)$ if every minor of A is a nonnegative real number. A polynomial $p(x)$ in n^{2} variables is called totally nonnegative if whenever $A=\left(a_{i, j}\right)_{1 \leq i, j \leq n}$ is a totally nonnegative matrix, $p(A) \underset{\text { def }}{=} p\left(a_{1,1}, \ldots, a_{n, n}\right)$ is a nonnegative real number. $[\mathbf{2}],[\mathbf{3}],[\mathbf{9}],[\mathbf{1 3}],[\mathbf{1 2}],[\mathbf{1 9}]$ give a graph theoretic characterization of totally nonnegative matrices which is used by Rhoades and Skandera in [15] and [14] to construct several examples of totally nonnegative polynomials.

Let H denote the infinite array $\left(h_{j-i}\right)_{i, j \geq 1}$, where h_{i} denotes the complete homogeneous symmetric function of degree i. (see, for example, [18]) Here we use the convention that $h_{i}=0$ whenever $i<0$. A polynomial $p(x)$ in n^{2} variables is called Schur nonnegative $(S N N)$ if whenever K is an $n \times n$ submatrix of H, the symmetric function $p(K)$ is a nonnegative linear combination of Schur functions. By the Jacobi identity, the determinant is a trivial example of a SNN polynomial.

For $i \in[n-1]$, let s_{i} denote the adjacent transposition in S_{n} which is written $(i, i+1)$ in cycle notation. For a fixed $w \in S_{n}$, call an expression $s_{i_{1}} \cdots s_{i_{\ell}}$ representing w reduced if ℓ is minimal. In this case, define the length of w, denoted $\ell(w)$, to be ℓ.

For q a formal indeterminate, define the Hecke algebra $H_{n}(q)$ to be the $\mathbb{C}\left[q^{1 / 2}, q^{-1 / 2}\right]$-algebra with generators $T_{s_{1}}, \ldots, T_{s_{n-1}}$ subject to the relations

$$
\begin{aligned}
T_{s_{i}}^{2} & =(q-1) T_{s_{i}}+q, & & \text { for } i=1, \ldots, n-1, \\
T_{s_{i}} T_{s_{j}} T_{s_{i}} & =T_{s_{j}} T_{s_{i}} T_{s_{j}}, & & \text { if }|i-j|=1, \\
T_{s_{i}} T_{s_{j}} & =T_{s_{j}} T_{s_{i}}, & & \text { if }|i-j| \geq 2 .
\end{aligned}
$$

For $w \in S_{n}$, define the Hecke algebra element T_{w} by

$$
T_{w}=T_{s_{i_{1}}} \cdots T_{s_{i_{\ell}}}
$$

where $s_{i_{1}} \cdots s_{i_{\ell}}$ is any reduced expression for w. Specializing at $q=1$, the map $T_{s_{i}} \mapsto s_{i}$ induces an isomorphism between $H_{n}(1)$ and the symmetric group algebra $\mathbb{C}\left[S_{n}\right]$.

The elements $\left\{C_{v}^{\prime}(q) \mid v \in S_{n}\right\}$ of the Kazhdan-Lusztig basis of $H_{n}(q)$ have the form

$$
\begin{equation*}
C_{v}^{\prime}(q)=\sum_{w \leq v} P_{w, v}(q) q^{-\ell(v) / 2} T_{w} \tag{1.1}
\end{equation*}
$$

where

$$
\left\{P_{w, v}(q) \mid w, v \in S_{n}\right\}
$$

are polynomials in $\mathbb{N}[q]$ called the Kazhdan-Lusztig polynomials. We recall a couple of elementary properties of the Kazhdan-Lusztig polynomials.

Lemma 1.1. For $w, v \in S_{n}, P_{w, v}(q) \equiv 0$ if and only if $w \not \leq v$, where $\leq i s$ (strong) Bruhat ordering. Also, $P_{w, w}(q) \equiv 1$.

A polynomial $p(x)$ in n^{2} variables is called an immanant if it belongs to the \mathbb{C}-linear span of $\left\{x_{1, w(1)} \cdots x_{n, w(n)} \mid w \in\right.$ $\left.S_{n}\right\}$. Following [14], for $w \in S_{n}$, define the w-Kazhdan-Lusztig immanant by

$$
\begin{equation*}
\operatorname{Imm}_{w}(x) \underset{\operatorname{def}}{=} \sum_{v \in S_{n}}(-1)^{\ell(w)-\ell(v)} P_{w_{0} v, w_{0} w}(1) x_{1, v(1)} \cdots x_{n, v(n)} \tag{1.2}
\end{equation*}
$$

where w_{o} denotes the long element of S_{n}, written $n(n-1) \ldots 1$ in one-line notation. Specializing at $w=1$, we have that $\operatorname{Imm}_{1}(x)=\operatorname{det}(x)$.

It follows from Lemma 1.1 that the expression $(-1)^{\ell(w)-\ell(v)} P_{w_{0} v, w_{0} w}(1)$ is nonzero if and only if $w \leq v$ in the Bruhat order and that $P_{w_{0} w, w_{0} w}(1)=1$. Therefore, the set $\left\{\operatorname{Imm}_{w}(x) \mid w \in S_{n}\right\}$ forms a basis for the vector space of immanants. The Kazhdan-Lusztig immanants are both TNN and SNN and various examples of TNN and SNN polynomials can be constructed by studying the cone generated by the Kazhdan-Lusztig immanants $[\mathbf{1 4}]$. Moreover, when w is 321-avoiding, the Kazhdan-Lusztig immanant $\operatorname{Imm}_{w}(x)$ is satisfies a natural generalization of Lindström's Lemma [15].

2. Main

For $1 \leq k \leq n$, let $\Gamma_{n, k}$ denote the subset of $\mathbb{C}\left[x_{1,1}, \ldots, x_{n, n}\right]$ consisting of all products of the form $\Delta_{I_{1}, J_{1}}(x) \cdots \Delta_{I_{k}, J_{k}}(x)$, where $I_{1}, J_{1}, \ldots, I_{k}, J_{k} \subseteq[n], I_{1} \uplus \cdots \uplus I_{k}=J_{1} \uplus \cdots \uplus J_{k}=[n]$, and $\left|I_{j}\right|=\left|J_{j}\right|$ for all $j \in[k]$. Here \uplus denotes disjoint union. Elements of $\Gamma_{n, k}$ are sometimes called complementary products of minors. In [15], Kazhdan-Lusztig immanants are used to find that the dimension of $\operatorname{span}\left(\Gamma_{n, 2}\right)$ is equal to the $n^{t h}$ Catalan number C_{n}. In this paper we shall relate the dimension of $\operatorname{span}\left(\Gamma_{n, k}\right)$ to pattern avoidence in S_{n} for arbitrary k.

For $k \in \mathbb{N}$, let $S_{n, k}$ denote the set of permutations in S_{n} which do not have a decreasing subsequence of length $k+1$. For example, in one-line notation, $S_{3,2}=\{123,213,132,312,231\}$. Notice that $S_{n, k}=S_{n}$ for all $k \geq n$. We start by examining the image of $S_{n, k}$ under the Robinson-Schensted correspondence.

Let $\leq_{L R}$ be the preorder on S_{n} defined in [10] and let $s_{[1, k]}$ be the longest element in the subgroup of S_{n} generated by s_{1}, \ldots, s_{k-1}.

Lemma 2.1. Suppose $v \notin S_{n, k-1}$. Then we have $v \leq_{L R} s_{[1, k]}$.
Proof. Given any permutation w, define the pair of tableaux $\left(P^{\prime}(w), Q^{\prime}(w)\right)$ to be the image of w under the Robinson-Schensted column insertion correspondence. Let $\lambda^{\prime}(w)$ be the shape of these tableaux.

A well-known property of the Robinson-Schensted correspondence implies that $\lambda^{\prime}(v) \geq \lambda^{\prime}\left(s_{[1, k]}\right)$ in the dominance order. This dominance relation in turn is known to be equivalent to the partial order on KazhdanLusztig cells induced by the preorder $\leq_{L R}$. Thus in the preorder $\leq_{L R}$, every permutation in the cell of v precedes every permutation in the cell of $s_{[1, k]}$. (See [1], [6, Sec. 1], [8, Appendix].)

Proposition 2.2. Suppose $A \in \operatorname{Mat}_{n}(\mathbb{C})$ has k equal rows and let $v \in S_{n, k-1}$. Then, $\operatorname{Imm}_{v}(A)=0$.
This result generalizes Proposition 3.14 of Rhoades and Skandera [15], which together with [14] implies that Proposition 2.2 holds when $k=2$.

KAZHDAN-LUSZTIG IMMANANTS

Proof. Define the element $[A]$ of $\mathbb{C}\left[S_{n}\right]$ by

$$
[A]=\sum_{w \in S_{n}} a_{1, w(1)} \cdots a_{n, w(n)} w
$$

Let $i_{1}<\cdots<i_{k}$ be the indices of k rows in A which are equal and let U be the subgroup of S_{n} which fixes all indices not contained in the set $\left\{i_{1}, \ldots, i_{k}\right\}$. Then

$$
\sum_{u \in U} u
$$

factors as $w z_{[1, k]} w^{\prime}$ for some elements w, w^{\prime} of S_{n}. It follows that $[A]$ factors as

$$
\begin{aligned}
{[A] } & =\left(\sum_{u \in U} u\right) f(A) \\
& =\left(w z_{[1, k]} w^{\prime}\right) f(A)
\end{aligned}
$$

for some group algebra element $f(A)$.
Let I be the two-sided ideal of $\mathbb{C}\left[S_{n}\right]$ spanned by $\left\{C_{u}^{\prime}(1) \mid u \leq_{L R} s_{[1, k]}\right\}$ and let $\theta: \mathbb{C}\left[S_{n}\right] \rightarrow \mathbb{C}\left[S_{n}\right] / I$ be the canonical homomorphism. Clearly we have $\theta([A])=0$.

On the other hand, we have

$$
\begin{aligned}
\theta([A]) & =\theta\left(\sum_{w \in S_{n}} \operatorname{Imm}_{w}(A) C_{w}^{\prime}(1)\right) \\
& =\sum_{w \in S_{n}} \operatorname{Imm}_{w}(A) \theta\left(C_{w}^{\prime}(1)\right) .
\end{aligned}
$$

Since $\theta\left(C_{w}^{\prime}(1)\right)=0$ for all permutations $w \leq_{L R} s_{[1, k]}$, we have

$$
0=\sum_{w} \operatorname{Imm}_{w}(A) \theta\left(C_{w}^{\prime}(1)\right)
$$

where the sum is over all permutations $w \not \not_{L R} s_{[1, k]}$, i.e., those permutations having no decreasing subsequence of length k. Since the elements $\theta\left(C_{w}^{\prime}(1)\right)$ in this sum are linearly independent, we must have $\operatorname{Imm}_{w}(A)=0$ for each permutation w having no decreasing subsequence of length k.

Proposition 2.3. Suppose $\Delta_{I_{1}, J_{1}}(x) \cdots \Delta_{I_{k}, J_{k}}(x) \in \Gamma_{n, k}$. Then, there exist $d_{w} \in \mathbb{C}$ such that $\Delta_{I_{1}, J_{1}}(x) \cdots \Delta_{I_{k}, J_{k}}(x)=$ $\sum_{w \in S_{n, k}} d_{w} \operatorname{Imm}_{w}(x)$.

Proof. The Kazhdan-Lusztig immanants form a basis for the vector space of immanants, so we may write

$$
\begin{equation*}
\Delta_{I_{1}, J_{1}}(x) \cdots \Delta_{I_{k}, J_{k}}(x)=\sum_{w \in S_{n}} d_{w} \operatorname{Imm}_{w}(x), \tag{2.1}
\end{equation*}
$$

for some $d_{w} \in \mathbb{C}$. If $k \geq n$ the claim is trivial, so we assume that $k<n$. We show that $d_{w}=0$ whenever $w \notin S_{n, k}$.

Suppose that $C \in \operatorname{Mat}_{n}(\mathbb{C})$ has $k+1$ equal rows. Then, by the pigeonhole principle, there exist two equal rows of C indexed by integers lying in one of I_{1}, \ldots, I_{k}. Hence, $\Delta_{I_{1}, J_{1}}(C) \cdots \Delta_{I_{k}, J_{k}}(C)=0$.

Now let $B=\left(b_{i j}\right) \in \operatorname{Mat}_{n}(\mathbb{C})$ be defined by $b_{i j}=1$ for all i and j. By Proposition 2.2 , since $k<$ n we have that $\operatorname{Imm}_{w}(B)=0$ for every $w \neq w_{o}$. Also, $\operatorname{Imm}_{w_{o}}(B)=1$. By the above paragraph, $\Delta_{I_{1}, J_{1}}(B) \cdots \Delta_{I_{k}, J_{k}}(B)=0$. Therefore, applying both sides of (2.1) to B, we get that $d_{w_{o}}=0$.

For $l \in \mathbb{N}$, define $T_{n, l}$ to be the set difference $S_{n, l} \backslash S_{n, l-1}$. Suppose that $k<m<n$ and suppose that for all p satisfying $m<p \leq n$ we have that $d_{w}=0$ for every $w \in T_{n, p}$. Give the elements of $T_{n, m}$ a total order which is an extension of their Bruhat ordering and write $T_{n, m}=\left\{w_{1}<w_{2}<\cdots<w_{h}\right\}$. Let $t \in[h]$ and suppose by induction that $d_{w}=0$ for $w \in\left\{w_{t+1}, \ldots, w_{h}\right\}$. Since $w_{t} \in T_{n, m}$, there exist $i_{1}<i_{2}<\cdots<i_{m}$ such that $w_{t}\left(i_{1}\right)>w_{t}\left(i_{2}\right)>\cdots>w_{t}\left(i_{m}\right)$. Let $D \in \operatorname{Mat}_{n}(\mathbb{C})$ be the matrix obtained by replacing the rows i_{1}, \ldots, i_{m} in the permutation matrix for w_{t} by rows of 1 's. By Proposition $2.2, \operatorname{Imm}_{w}(D)=0$ for every $w \in S_{n, m-1}$. By (1.1) we also have that $\operatorname{Imm}_{w}(D)=0$ for every $w \not \leq w_{t}$ in the Bruhat order. Since $k<m$,
we have that $\Delta_{I_{1}, J_{1}}(D) \cdots \Delta_{I_{k}, J_{k}}(D)=0$. Thus, applying both sides of (2.1) to D, we get that $d_{w_{t}}=0$ and the Proposition follows by induction.

If $k=2$ in Proposition 2.3, results in [15] and [14] imply that the d_{w} must be nonnegative. For k arbitrary, Skandera [16] has given an elementary proof that whenever w avoids the patterns 3412 and 4231, (i.e., when the Schubert variety Γ_{w} corresponding to w is smooth), the coefficient d_{w} is also nonnegative. Using deeper properties of the dual canonical basis of $\mathcal{O} S L_{n} \mathbb{C}$, it is possible to show that the coefficients d_{w} are nonnegative for general k and w.
$\operatorname{PROPOSITION}$ 2.4. $\operatorname{dim}\left(\operatorname{span}_{\mathbb{C}}\left(\Gamma_{n, k}\right)\right)=\left|S_{n, k}\right|$.
Specializing at $k=2, S_{n, 2}$ is the set of 321-avoiding permutations, so we have that $\left|S_{n, 2}\right|=C_{n}$, the $n^{\text {th }}$ Catalan number. Thus, this result is a generalization of Proposition 4.7 of [15].

Proof. By Proposition 2.3 we have that $\operatorname{dim}\left(\operatorname{span}_{\mathbb{C}}\left(\Gamma_{n, k}\right)\right) \leq\left|S_{n, k}\right|$.
For each collection of sets $I_{1}, J_{1}, \ldots, I_{k}, J_{k} \subseteq[n]$ with $[n]=I_{1} \uplus \cdots \uplus I_{k}=J_{1} \uplus \cdots \uplus J_{k}$ and $\left|I_{j}\right|=\left|J_{j}\right|$ for each $j \in k$, let $\min \left(I_{1}, J_{1}, \ldots, I_{k}, J_{k}\right)$ denote the unique minimal permutation in the Bruhat order which $\operatorname{maps} I_{i}$ into J_{i} for each $i \in[k]$. For example, if we set $n=6, I_{1}=\{1,3,6\}, I_{2}=\{2,4\}, I_{3}=\{5\}, J_{1}=$ $\{3,4,6\}, J_{2}=\{1,5\}, J_{3}=\{2\}$, we have that $\min \left(I_{1}, J_{1}, I_{2}, J_{2}, I_{3}, J_{3}\right)=314526$ in one-line notation.

For $\Delta_{I_{1}, J_{1}}(x) \cdots \Delta_{I_{k}, J_{k}}(x) \in \Gamma_{n, k}$ it is easy to see that there exist $d_{w} \in \mathbb{C}$ such that

$$
\Delta_{I_{1}, J_{1}}(x) \cdots \Delta_{I_{k}, J_{k}}(x)=\sum_{w \geq \min \left(I_{1}, J_{1}, \ldots, I_{k}, J_{k}\right)} d_{w} x_{1, w(1)} \cdots x_{n, w(n)}
$$

where $d_{\min \left(I_{1}, J_{1}, \ldots, I_{k}, J_{k}\right)}=1$. In light of this, it suffices to show that for every permutation $w \in S_{n, k}$, there exists a collection of sets $I_{1}, J_{1}, \ldots, I_{k}, J_{k} \subseteq[n]$ such that $[n]=I_{1} \uplus \cdots \uplus I_{k}=J_{1} \uplus \cdots \uplus J_{k}$ and $\left|I_{j}\right|=\left|J_{j}\right|$ for each $j \in k$ and $w=\min \left(I_{1}, J_{1}, \ldots, I_{k}, J_{k}\right)$. For then, we have that $\operatorname{dim}\left(\operatorname{span}_{\mathbb{C}}\left(\Gamma_{n, k}\right)\right) \geq\left|S_{n, k}\right|$.

Let $w \in S_{n, k}$. Define a partial order on the set $P=\{(i, w(i)) \mid i \in[n]\}$ by setting $(i, w(i))<(j, w(j))$ if $i<j$ and $w(i)<w(j)$. Now $\left\{\left(i_{1}, w\left(i_{1}\right)\right), \ldots,\left(i_{m}, w\left(i_{m}\right)\right)\right\} \subseteq P$ with $i_{1}<\cdots<i_{m}$ is an antichain in P if and only if $\left(w\left(i_{1}\right), \ldots, w\left(i_{m}\right)\right)$ is an decreasing subsequence of w. Hence, width $(P)<k+1$ (see [17] for definitions). By Dilworth's Theorem, there exist k disjoint (possibly empty) chains C_{1}, \ldots, C_{k} which partition P. Now, for each $j \in[k]$, write $C_{j}=\left\{\left(i_{1}, w\left(i_{1}\right)\right), \ldots,\left(i_{m_{j}}, w\left(i_{m_{j}}\right)\right\}\right.$, with $i_{1}<\cdots<i_{m_{j}}$. Since C_{j} is a chain in $P,\left(w\left(i_{1}\right), \ldots, w\left(i_{m_{j}}\right)\right)$ is an increasing subsequence of w. Define $I_{j}=\left\{i_{1}, \ldots i_{m_{j}}\right\}$ and $J_{j}=\left\{w\left(i_{1}\right), \ldots w\left(i_{m_{j}}\right)\right\}$. It is now easy to check that $w=\min \left(I_{1}, J_{1}, \ldots, I_{k}, J_{k}\right)$ and we are done.

The numbers $\left|S_{n, k}\right|$ were studied by Gessel [7] who found an expression involving Bessel functions for the generating function $\sum_{n \geq 1}\left|S_{n, k}\right| t^{n}$. The authors do not know of a simple form of the polynomial $\sum_{k=1}^{n}\left|S_{n, k}\right| t^{k}$.

Corollary 2.5. Suppose that $I_{1} \uplus I_{2}=J_{1} \uplus J_{2}=[n],\left|I_{1}\right|=\left|J_{1}\right|=n_{1},\left|I_{2}\right|=\left|J_{2}\right|=n_{2}, w_{1} \in S_{n_{1}, k_{1}}$, and $w_{2} \in S_{n_{2}, k_{2}}$. For $i=1,2$ let x_{i} be the submatrix of x with row set I_{i} and column set J_{i}. Then, there exist $d_{v} \in \mathbb{C}$ such that $\operatorname{Imm}_{w_{1}}\left(x_{1}\right) \operatorname{Imm}_{w_{2}}\left(x_{2}\right)=\sum_{v} d_{v} \operatorname{Imm}_{v}(x)$, where the sum is over v in $S_{n, k_{1}+k_{2}}$.

Specializing at $w_{1}=w_{2}=1$, we have that the coefficients d_{v} in the Corollary are in fact nonnegative real numbers. (see [15], [14]) Again, one may use the properties of the dual canonical basis of $\mathcal{O} S L_{n} \mathbb{C}$ to show that $\left\{d_{w} \mid w \in S_{n}\right\}$ are nonnegative real numbers.

Proof. For $i=1,2$, by Propositions 2.3 and 2.4 there exist $p_{i, j}\left(x_{i}\right) \in \Gamma_{n_{i}, k_{i}}$ and $d_{j} \in \mathbb{C}$ such that $\operatorname{Imm}_{w_{i}}(x)=\sum_{j} d_{j} p_{i, j}\left(x_{i}\right)$. Since x_{1} and x_{2} are complementary submatrices of x, for any $p_{1}\left(x_{1}\right) \in \Gamma_{n_{1}, k_{1}}$ and $p_{2}\left(x_{2}\right) \in \Gamma_{n_{2}, k_{2}}$, the product $p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right)$ is contained in $\Gamma_{n, k_{1}+k_{2}}$. So, the product $\operatorname{Imm}_{w_{1}}\left(x_{1}\right) \operatorname{Imm}_{w_{2}}\left(x_{2}\right)$ is a linear combination of elements in $\Gamma_{n, k_{1}+k_{2}}$. The result now follows from Proposition 2.3.

Taken together, Propositions 2.3 and 2.4 imply that for $w \in S_{n, k}$, there exist $p_{i}(x) \in \Gamma_{n, k}$ and $d_{i} \in \mathbb{C}$ such that $\operatorname{Imm}_{w}(x)=\sum_{i=1}^{m} d_{i} p_{i}(x)$. Results in $[\mathbf{1 5}]$ and $[\mathbf{1 4}]$ show that, for $k=2$, we may in fact assume that the $p_{i}(x)$ are contained in a subset of $\Gamma_{n, 2}$ which is in a natural bijective correspondence with the set of Dyck paths of length $2 n$. It would be interesting to see if an analogous result holds for general k.

KAZHDAN-LUSZTIG IMMANANTS

We now investigate when polynomials in $\operatorname{span}\left(\Gamma_{n, k}\right)$ are TNN or SNN. For any integers n and k satisfying $1 \leq k \leq n$, define the poset $P_{n, k}$ on $\Gamma_{n, k}$ by
$\Delta_{I_{1}, J_{1}}(x) \cdots \Delta_{I_{k}, J_{k}}(x) \leq \Delta_{I_{1}^{\prime}, J_{1}^{\prime}}(x) \cdots \Delta_{I_{k}^{\prime}, J_{k}^{\prime}}(x)$ if and only if the difference
$\Delta_{I_{1}^{\prime}, J_{1}^{\prime}}(x) \cdots \Delta_{I_{k}^{\prime}, J_{k}^{\prime}}(x)-\Delta_{I_{1}, J_{1}}(x) \cdots \Delta_{I_{k}, J_{k}}(x)$ is TNN. In [15] the authors develop necessary and sufficient combinatorial conditions for polynomials $p(x) \in \operatorname{span}\left(\Gamma_{n, 2}\right)$ to be TNN. For all positive integers $n, P_{n, 2}$ has a unique maximal element given by $\Delta_{I, I}(x) \Delta_{J, J}(x)$, where $I=\{1,3,5, \ldots\}$ and $J=\{2,4,6, \ldots\}$. Also, the determinant $\Delta_{[n],[n]}(x) \Delta_{\emptyset, \emptyset}(x)$ is always a minimal element of $P_{n, 2}$. In [14] the authors show that the combinatorial tests in [15] constitute sufficient conditions for polynomial in span $\left(\Gamma_{n, 2}\right)$ to be SNN. Therefore, whenever $\Delta_{I, J}(x) \Delta_{I^{\prime}, J^{\prime}}(x) \leq \Delta_{K, L}(x) \Delta_{K^{\prime}, L^{\prime}}(x)$ in $P_{n, 2}$ we also have that $\Delta_{K, L}(x) \Delta_{K^{\prime}, L^{\prime}}(x)$ $\Delta_{I, J}(x) \Delta_{I^{\prime}, J^{\prime}}(x)$ is SNN. It is unknown whether the converse of the last sentence is true.

In [4], [5], and [14] the positivity properties of differences of the form $x_{1, w(1)} \cdots x_{n, w(n)}-x_{1, u(1)} \cdots x_{n, u(n)}$ for $w, u \in S_{n}$ are studied. The authors prove the following about the subposet $P_{n, n}$ consisting of products of n nonempty minors.

Theorem 2.6. Let $w, u \in S_{n}$. Then, the following statements are equivalent.

1. $w \leq u$ in the Bruhat order.
2. The difference $x_{1, w(1)} \cdots x_{n, w(n)}-x_{1, u(1)} \cdots x_{n, u(n)}$ is TNN.
3. The difference $x_{1, w(1)} \cdots x_{n, w(n)}-x_{1, u(1)} \cdots x_{n, u(n)}$ is SNN.
4. Whenever the difference $x_{1, w(1)} \cdots x_{n, w(n)}-x_{1, u(1)} \cdots x_{n, u(n)}$ is applied to a Jacobi-Trudi matrix, the result is a nonnegative linear combination of monomial symmetric functions.
5. The difference $x_{1, w(1)} \cdots x_{n, w(n)}-x_{1, u(1)} \cdots x_{n, u(n)}$ is a nonnegative linear combination of KazhdanLusztig immanants.

With the above results as motivation, we show that $P_{n, k}$ has a unique maximal element for arbitrary k and that certain comparable elements in $P_{n, k}$ have differences which are SNN as well as TNN.

Lemma 2.7. Let $\left(I_{1}, \ldots, I_{p}\right)$ and $\left(I_{1}^{\prime}, \ldots, I_{p}^{\prime}\right)$ be seqences of sets satisfying
$I_{1} \uplus \cdots \uplus I_{p}=I_{1}^{\prime} \uplus \cdots \uplus I_{p}^{\prime}$,
$\left|I_{i}\right|=\left|I_{i}^{\prime}\right| \quad$ for all i.
Fix indices $k<\ell$ and define increasing sequences $\left(\alpha_{1}, \ldots, \alpha_{p}\right)$ and $\left(\alpha_{1}^{\prime}, \ldots, \alpha_{p}^{\prime}\right)$ by

$$
\begin{aligned}
I_{k} \cup I_{\ell} & =\left\{\alpha_{1}, \ldots, \alpha_{p}\right\} \\
I_{k}^{\prime} \cup I_{\ell}^{\prime} & =\left\{\alpha_{1}^{\prime}, \ldots, \alpha_{p}^{\prime}\right\}
\end{aligned}
$$

Define the sequences of sets $\left(J_{1}, \ldots, J_{p}\right)$ and $\left(J_{1}^{\prime}, \ldots, J_{p}^{\prime}\right)$ by

$$
\begin{gathered}
J_{i}= \begin{cases}\left\{\alpha_{1}, \alpha_{3}, \ldots,\right\} & \text { if } i=k, \\
\left\{\alpha_{2}, \alpha_{4}, \ldots,\right\} & \text { if } i=\ell, \\
I_{i} & \text { otherwise } .\end{cases} \\
J_{i}^{\prime}= \begin{cases}\left\{\alpha_{1}^{\prime}, \alpha_{3}^{\prime}, \ldots,\right\} & \text { if } i=k \\
\left\{\alpha_{2}^{\prime}, \alpha_{4}^{\prime}, \ldots,\right\} & \text { if } i=\ell, \\
I_{i}^{\prime} & \text { otherwise } .\end{cases}
\end{gathered}
$$

Then the immanant

$$
\Delta_{J_{1}, J_{1}^{\prime}}(x) \cdots \Delta_{J_{p}, J_{p}^{\prime}}(x)-\Delta_{I_{1}, I_{1}^{\prime}}(x) \cdots \Delta_{I_{p}, I_{p}^{\prime}}(x)
$$

is totally nonnegative and Schur nonnegative.
Proof. This difference is

$$
\frac{\Delta_{J_{1}, J_{1}^{\prime}}(x) \cdots \Delta_{J_{p}, J_{p}^{\prime}}(x)}{\Delta_{J_{k}, J_{k}^{\prime}}(x) \Delta_{J_{\ell}, J_{\ell}^{\prime}}(x)}\left(\Delta_{J_{k}, J_{k}^{\prime}}(x) \Delta_{J_{\ell}, J_{\ell}^{\prime}}(x)-\Delta_{I_{k}, I_{k}^{\prime}}(x) \Delta_{I_{\ell}, I_{\ell}^{\prime}}(x)\right)
$$

which is totally nonnegative and Schur nonnegative by [15, Prop. 4.6] and [14, Thm. 5.2].
Our next result implies that the poset $P_{n, k}$ has a maximal element for any n and k.

THEOREM 2.8. Let $\left(I_{1}, \ldots, I_{p}\right)$ and $\left(I_{1}^{\prime}, \ldots, I_{p}^{\prime}\right)$ be two sequences of sets satisfying

$$
\begin{gathered}
I_{1} \uplus \cdots \uplus I_{p}=I_{1}^{\prime} \uplus \cdots \uplus I_{p}^{\prime}=[n], \\
\left|I_{1}\right|=\left|I_{i}^{\prime}\right| \quad \text { for all } i
\end{gathered}
$$

and define sets J_{1}, \ldots, J_{p} by

$$
J_{i}=\{i \in[n] \mid i \equiv j \quad \bmod p\} .
$$

Then the immanant

$$
\Delta_{J_{1}, J_{1}}(x) \cdots \Delta_{J_{p}, J_{p}}(x)-\Delta_{I_{1}, I_{1}^{\prime}}(x) \cdots \Delta_{I_{p}, I_{p}^{\prime}}(x)
$$

is totally nonnegative and Schur nonnegative.
Proof. Applying several iterations of Lemma 2.7 to the sets $I_{1}, \ldots, I_{p}, I_{1}^{\prime}, \ldots I_{p}^{\prime}$, we obtain the desired result.

Corollary 2.9. Let $k<\ell$ and define the sequences of sets $\left(I_{1}, \ldots, I_{k}\right)$ and $\left(J_{1}, \ldots, J_{\ell}\right)$ by

$$
\begin{aligned}
I_{j} & =\{i \in[n] \mid i \equiv j \quad \bmod k\} \\
J_{j} & =\{i \in[n] \mid i \equiv j \quad \bmod \ell\}
\end{aligned}
$$

Then the immanant

$$
\Delta_{J_{1}, J_{1}}(x) \cdots \Delta_{J_{p}, J_{p}}(x)-\Delta_{I_{1}, I_{1}^{\prime}}(x) \cdots \Delta_{I_{p}, I_{p}^{\prime}}(x)
$$

is totally nonnegative and Schur nonnegative.
Not much is known about the posets $P_{n, k}$ in general. Obviously we have that $P_{n, 1} \subset P_{n, 2} \subset \cdots \subset P_{n, n}$. By Theorem 2.6 $P_{n, n}$ contains a subposet isomorphic to (the dual of) the Bruhat order on S_{n}. Also, it is possible to show that any element of $\operatorname{span}\left(\Gamma_{3,3}\right)$ is TNN or SNN if and only if it may be expressed as a nonnegative linear combination of Kazhdan-Lusztig immanants. In particular, this allows one to construct the poset $P_{3,3}$ and see that it coincides with the analogous poset constructed by considering SNN differences. It would be interesting to see what $P_{n, k}$ looks like in general.

3. Acknowledgements

The authors are grateful to Mark Haiman and Peter Trapa for helpful conversations.

References

[1] Dan Barbasch and David Vogan. Primitive ideals and orbital integrals in complex exceptional groups. J. Algebra, 80(2):350382, 1983.
[2] Francesco Brenti. Combinatorics and total positivity. J. Combin. Theory Ser. A, 71(2):175-218, 1995.
[3] C. W. Cryer. Some properties of totally positive matrices. Linear Algebra Appl., 15:1-25, 1976.
[4] B. Drake, S. Gerrish, and M. Skandera. Two new criteria for comparison in the Bruhat order. Electron. J. Combin., 11(1), 2004. Note 6, 4 pp . (electronic).
[5] B. Drake, S. Gerrish, and M. Skandera. Monomial nonnegativity and the Bruhat order. Submitted, 2005.
[6] Jie Du. Canonical bases for irreducible representations of quantum GL_{n}. Bull. London Math. Soc., 24(4):325-334, 1992.
[7] I. Gessel. Symmetric functions and p-recursiveness. J. Combin. Theory Ser. A, 58:257-285, 1990.
[8] M. Haiman. Hecke algebra characters and immanant conjectures. J. Amer. Math. Soc., 6(3):569-595, 1993.
[9] S. Karlin and G. McGregor. Coincidence probabilities. Pacific J. Math., 9:1141-1164, 1959.
[10] D. Kazhdan and G. Lusztig. Representations of Coxeter groups and Hecke algebras. Inv. Math., 53:165-184, 1979.
[11] Thomas Lam, Alexander Postnikov, and Pavlo Pylyavskyy. Schur positivity conjectures: $2 \frac{1}{2}$ are no more! Preprint math.CO/0502446 on ArXiv, 2005.
[12] B. Lindström. On the vector representations of induced matroids. Bull. London Math. Soc., 5:85-90, 1973.
[13] C. Loewner. On totally positive matrices. Math. Z., 63:338-340, 1955.
[14] B. Rhoades and M. Skandera. Kazhdan-Lusztig immanants and products of matrix minors. Submitted, 2005.
[15] B. Rhoades and M. Skandera. Temperley-Lieb immanants. Ann. Comb., 2005. To appear.
[16] M. Skandera. On the nonnegativity properties of the dual canonical basis. 2005. In progress.
[17] R. Stanley. Enumerative Combinatorics, volume 1. Cambridge University Press, Cambridge, 1997.
[18] R. Stanley. Enumerative Combinatorics, volume 2. Cambridge University Press, Cambridge, 1999.
[19] A. Whitney. A reduction theorem for totally positive matrices. J. Anal. Math., 2:88-92, 1952.
Dept. of Mathematics, University of Minnesota, Minneapolis, MN, 55455
Department of Mathematics, Haverford College, 370 Lancaster Avenue, Haverford, PA, 19041

