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Séries Formelles et Combinatoire Algébrique
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On the Number of Factorizations of a Full Cycle

John Irving

Abstract. We give a new expression for the number of factorizations of a full cycle into an ordered product
of permutations of specified cycle types. This is done through purely algebraic means, extending recent work
of Biane [Nombre de factorisations d’un grand cycle, Sém. Lothar. de Combinatoire 51 (2004)]. We deduce
from our result a remarkable formula of Poulalhon and Schaeffer [Factorizations of large cycles in the

symmetric group, Discrete Math. 254 (2002), 433–458] that was previously derived through an intricate
combinatorial argument.

Résumé. Nous proposons une nouvelle formule pour le nombre de factorisations d’un grand cycle en un pro-
duit ordonné de permutations de types cycliques donnés. Nous utilisons des arguments purement algébriques,
étendant un travail récent de Biane [Nombre de factorisations d’un grand cycle., Sém. Lothar. de Combi-

natoire 51 (2004)]. Nous déduisons de notre résultat une formule remarquable de Poulalhon et Schaef-
fer [Factorizations of large cycles in the symmetric group, Discrete Math. 254 (2002), 433–458] obtenue
précédemment à l’aide d’arguments combinatoires complexes.

1. Notation

Our notation is generally consistent with Macdonald [5]. We write λ ` n (or |λ| = n) and `(λ) = k
to indicate that λ is a partition of n into k parts; that is, λ = (λ1, . . . , λk) with λ1 ≥ · · · ≥ λk ≥ 1 and
λ1 + . . .+λk = n. If λ has exactly mi parts equal to i then we write λ = [1m12m2 · · · ], suppressing terms with
mi = 0. We also define zλ =

∏

i imimi! and Aut(λ) =
∏

i mi!. A hook is a partition of the form [1b, a + 1]

with a, b ≥ 0. We use Frobenius notation for hooks, writing (a|b) in place of [1b, a + 1].
The conjugacy class of the symmetric group Sn consisting of all n!/zλ permutations of cycle type λ ` n

will be denoted by Cλ. The irreducible characters χλ of Sn are naturally indexed by partitions λ of n, and
we use the usual notation χλ

µ for the common value of χλ at any element of Cµ. We write fλ for the degree

χλ
[1n] of χλ.

For vectors j = (j1, . . . , jm) and x = (x1, . . . , xm) we use the abbreviations j! = j1! · · · jm! and xj =

xj1
1 · · ·xjm

m . Finally, if α ∈ Q and f ∈ Q[[x]] is a formal power series, then we write [αxj] f(x) for the
coefficient of the monomial αxj in f(x).

2. Factorizations of Full Cycles

Given λ, α1, . . . , αm ` n, let cλ
α1,...,αm

be the number of factorizations in Sn of a given permutation

π ∈ Cλ as an ordered product π = σ1 . . . σm, with σi ∈ Cαi
for all i. The problem of evaluating cλ

α1,...,αm

for various λ and αi has attracted a good deal of attention and is linked to various questions in algebra,
geometry, and physics. For details on the history of this problem and its connections to other areas of
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mathematics, we direct the reader to [4] and the references therein. Here we focus on the particularly well-
studied case λ = (n), which corresponds to counting factorizations of the full cycle (1 2 · · · n) ∈ Sn into
factors of specified cycle types.

While it is straightforward to express c
(n)
α1,...,αm

as a character sum (see (3.1) below), the appearance
of alternating signs in this sum — and resulting cancellations — preclude asymptotic analysis. Goupil
and Schaeffer [4, FPSAC’98] overcame this difficulty in the case m = 2 by interpreting certain characters
combinatorially (viz. the Murnaghan-Nakayama rule) and employing a sequence of bijections in which a sign-
reversing involution accounts for cancellations. This leads to an expression for c

(n)
α,β as a sum of positive terms,

which in turn permits nontrivial asymptotics. Poulalhon and Schaeffer [6] later extended this argument to
arrive at a similar formula for c

(n)
α1,...,αm

.
Biane [1] has recently given a remarkably succinct algebraic derivation of Goupil and Schaeffer’s formula

for c
(n)
α,β . Our purpose here is to extend his method to give a new expression for c

(n)
α1,...,αm

as a sum of positive
contributions. In particular, if for γ = (γ1, γ2, . . .) ` n we define the polynomial Rγ(x, y) and the nonnegative

constants rγ
j,k by

(2.1) Rγ(x, y) :=
1

2y

∏

i≥1

((x + y)γi − (x − y)γi) =
∑

j+k=n−1

rγ
j,kxjyk,

then our main result is the following:

Theorem 2.1. Let α1, . . . , αm ` n and, for λ = [1m12m23m3 · · · ], let 2λ − 1 = [1m13m25m3 · · · ]. Set

x = (x1, . . . , xm) and let eλ(x) denote the elementary symmetric function in x1, . . . , xm indexed by λ. Then

c(n)
α1,...,αm

=
nm−1

2(n−1)(m−1)
∏

i zαi

∑

j+k=n−1

[xj]
∑

`(λ)=n−1

e2λ−1(x)

Aut(λ)
·

m
∏

i=1

ji! ki! r
αi

ji,ki
,

where the outer sum extends over all vectors j = (j1, . . . , jm) and k = (k1, . . . , km) of nonnegative integers

such that ji + ki = n − 1 for all i, and the inner sum over all partitions λ with n − 1 parts.

A proof of Theorem 2.1 is given in the next section. In §4, we use this result to deduce Poulalhon and
Schaeffer’s formula for c

(n)
α1,...,αm

(listed here as Theorem 4.1), thereby giving a purely algebraic derivation
that avoids the detailed combinatorial constructions in [6].

3. Proof of the Main Result

It is well known that the class sums Kλ =
∑

σ∈Cλ
σ (for λ ` n) form a basis of the centre of the group

algebra CSn. Indeed, the linearization relations Kα1
· · ·Kαm

=
∑

λ`n cλ
α1,...,αm

Kλ identify the constants

cλ
α1,...,αm

as the connection coefficients of CSn. By using character theory to express Kλ in terms of central
idempotents of CSn (see [7], Problem 7.67b) one finds that

cλ
α1,...,αm

=
n!m−1

zα1
· · · zαm

∑

β`n

χβ
α1

· · ·χβ
αm

(fβ)m−1
χβ

λ.

This sum is generally intractable but simplifies considerably in the case λ = (n), since there χβ
λ vanishes

when β is not a hook; in particular, the Murnaghan-Nakayama rule [7] implies χβ
(n) = (−1)b if β = (a|b),

while χβ
(n) = 0 otherwise. Moreover, the hook-length formula gives f (a|b) =

(

a+b
b

)

, so

c(n)
α1,...,αm

=
nm−1

zα1
· · · zαm

∑

a+b=n−1

(a! b!)m−1χ(a|b)
α1

· · ·χ(a|b)
αm

(−1)b.(3.1)

Let µ be the measure on C defined by the density dµ(z) = 1
π e−|z|2dz, where dz is the standard Lebesgue

density (i.e. dz = ds dt for z = s + t
√
−1). Following Biane [1], we shall make use of the formula

(3.2)

∫

C

zj z̄kdµ(z) = j! δjk,

which is easily verified by changing to polar form.
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Proof of Theorem 2.1: For γ ` n, let Fγ(u, v) =
∑

χ
(a|b)
γ uavb be the generating series for hook characters,

where the sum extends over all pairs (a, b) of nonnegative integers with a + b = n − 1. Then

1

(n − 1)!
(u1 · · ·um − v1 · · · vm)n−1

m
∏

i=1

Fαi
(ūi, v̄i)

=
∑

a+b=n−1

ua
1 · · ·ua

m · vb
1 · · · vb

m

a! b!
(−1)b

m
∏

i=1

∑

ai+bi=n−1

χ(ai|bi)
αi

ūai

i v̄bi

i .

Consider the effect of integrating the RHS with respect to dµ(u,v) :=
∏m

i=1 dµ(ui)dµ(vi). Using (3.2), note

that all monomials (−1)b

a!b!

∏

i χ
(ai|bi)
ai

ua
i ūai

i vb
i v̄

bi

i vanish except those with ai = a and bi = b for all i, and each

monomial of this special form is replaced by (−1)b(a! b!)m−1
∏

i χ
(a|b)
αi

. Thus we obtain

∫

C2m

(u1 · · ·um − v1 · · ·vm)n−1
m
∏

i=1

Fαi
(ūi, v̄i) dµ(u,v)

= (n − 1)!
∑

a+b=n−1

(a! b!)m−1χ(a|b)
α1

· · ·χ(a|b)
αm

(−1)b.

Let I be the integral on the LHS, and change variables by letting ui = (yi + xi)/
√

2, vi = (yi − xi)/
√

2. As
an immediate consequence of the Murnaghan-Nakayama rule we have

Fγ(u, v) =
1

u + v

∏

i≥1

(uγi − (−v)γi)

for a partition γ = (γ1, γ2, . . .). Thus (2.1) gives Fγ(y + x, y − x) = Rγ(x, y), and since Fαi
is homogeneous

of degree n − 1 the change of variables yields Fαi
(ūi, v̄i) = 2−(n−1)/2Rαi

(x̄i, ȳi) for all i. Furthermore, it is
easy to check that dµ(u,v) = dµ(x,y) and

u1 · · ·um − v1 · · · vm =
1√
2m

( m
∏

i=1

(yi + xi) −
m
∏

i=1

(yi − xi)

)

=
2y1 · · · ym√

2m

∑

s≥1

e2s−1(x/y),

where x/y = (x1

y1

, . . . , xm

ym

). Thus, with the aid of (3.2), we get

I =
1

2(n−1)(m−1)

∫

C2m

(

y1 · · · ym

∑

s≥1

e2s−1(x/y)

)n−1 m
∏

i=1

Rαi
(x̄i, ȳi) dµ(x,y)

=
1

2(n−1)(m−1)

∑

j,k

j!k! [xjyk]

(

y1 · · · ym

∑

s≥1

e2s−1(x/y)

)n−1

· [x̄jȳk]

m
∏

i=1

Rαi
(x̄i, ȳi)

=
1

2(n−1)(m−1)

∑

j+k=n−1

j!k! [xj]

(

∑

s≥1

e2s−1(x)

)n−1 m
∏

i=1

rαi

ji,ki

=
(n − 1)!

2(n−1)(m−1)

∑

j+k=n−1

j!k! [xj]
∑

`(λ)=n−1

e2λ−1(x)

Aut(λ)

m
∏

i=1

rαi

ji,ki
.

The result now follows from (3.1). �

4. Recovery of Poulalhon & Schaeffer’s Formula

We require some extra notation to state the Poulalhon-Schaeffer formula for c
(n)
α1,...,αm

. First, we define
symmetric polynomials Sp(x1, . . . , xl) by setting S0(x1, . . . , xl) = 1 and

Sp(x1, . . . , xl) =
∑

p1+···+pl=p

l
∏

i=1

1

xi

(

xi

2pi + 1

)
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for p > 0. Note that these have the simple generating series

(4.1)
∑

p≥0

Sp(x1, . . . , xl)t
2p =

l
∏

i=1

(1 + t)xi − (1 − t)xi

2xit
,

which is obviously closely related to our series Rγ(x, y) (see (2.1)). We also introduce an operator D on

Q[[x1, . . . , xm]] defined as follows: For each i and all j ≥ 0 set D(xj
i ) = xi(xi − 1) · · · (xi − j +1), and extend

the action of D multiplicatively to monomials xj1
1 · · ·xjm

m and then linearly to all of Q[[x1, . . . , xm]]. Finally,
we define polynomials P b

a(x1, . . . , xm) by setting P b
0 (x1, . . . , xm) = 1 for all b ≥ 1 and letting

(4.2) P b
a(x1, . . . , xm) =

∑

λ`a
`(λ)≤b

D

(e2λ+1(x)

Aut(λ)

)

for a, b ≥ 1, where 2λ+1 = [3m15m2 · · · ] when λ = [1m12m2 · · · ]. Then the main result of [6] is the following

intriguing formula for c
(n)
α1,...,αm

.

Theorem 4.1 (Poulalhon-Schaeffer). Let α1, . . . , αm ` n and set ri = n − `(αi) for all i. Let g =
1
2 (

∑

i ri − n + 1). If g is a nonnegative integer, then

c(n)
α1,...,αm

=
nm−1

22g
∏

i Aut(αi)

∑

Pn−1
q (r − 2p)

m
∏

i=1

(`(αi) + 2pi − 1)! Spi
(αi),

where r − 2p = (r1 − 2p1, . . . , rm − 2pm) and the sum extends over all tuples (q, p1, . . . , pm) of nonnegative

integers with q + p1 + · · · + pm = g.

Before proceeding to deduce this result from Theorem 2.1, we pause for a few remarks. First, the integer
g identified in Theorem 4.1 is called the genus of the associated factorizations of (1 2 · · · n), and it has well-
understood geometric meaning; see [2], for example. The primary benefit of the Poulalhon-Schaeffer formula
(over Theorem 2.1) is that the dependence on genus is explicit. For instance, when g = 0 it is immediately
clear that Theorem 4.1 reduces to the very simple

c(n)
α1,...,αm

= nm−1
m
∏

i=1

(`(αi) − 1)!

Aut(αi)
.

The c
(n)
α1,...,αm

in this case are known as top connection coefficients, and the above formula was originally
given by Goulden and Jackson [3].

Secondly, we note that Poulalhon and Schaeffer actually define Pa(x) =
∑

λ`a D(e2λ+1(x)/ Aut(λ)), and
ignore the condition `(λ) ≤ b in our definition of P b

a . However, replacing Pn−1
q with Pq in Theorem 4.1

has nil effect, since for D(e2λ+1(x))|x=r−2p to be nonzero some monomial in e2λ+1(x) must be of the form

xj1
1 · · ·xjm

m with ji ≤ ri − 2pi for all i. This implies |2λ + 1| =
∑

i ji ≤
∑

i(ri − 2pi) = 2g + n − 1 − ∑

i 2pi,
while the conditions λ ` q and q +

∑

i pi = g give |2λ+1| = 2q + `(λ) = 2g−∑

i 2pi + `(λ). Thus we require
`(λ) ≤ n − 1 for nonzero contributions to Pq(r − 2p).

Lemma 4.2. Let s, t1, . . . , tm be nonnegative integers. Set x = (x1, . . . , xm) and t = (t1, . . . , tm), and let

f(x) be a homogeneous polynomial of total degree t1 + · · · + tm − s. Then
[

xt

t!

]

(x1 + · · · + xm)sf(x) = s! D
(

f(x)
)
∣

∣

x1=t1,...,xm=tm

.

Proof. Consider the case where f(x) = xj1
1 · · ·xjm

m with
∑

i ji =
∑

i ti − s. Here

[xt](x1 + · · · + xm)sf(x) = [xt]
∑

i1+···+im=s

s!

i1! · · · im!
xi1+j1

1 · · ·xim+jm

m

=











s!

t!

m
∏

i=1

ti!

(ti − ji)!
if ji ≤ ti for all i,

0 otherwise

=
s!

t!
D(f(x))|x=t.
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The general result now follows by linearity. �

Proof of Theorem 4.1: Comparing (2.1) and (4.1) we find that, for γ = (γ1, . . . , γl) ` n,

Rγ(x, y) = 2l−1
l

∏

i=1

γi ·
∑

p≥0

Sp(γ)xn−l−2py2p+l−1.

Thus

rγ
j,k =







2`(γ)−1zγ

Aut(γ)
Sp(γ) if (j, k) = (n − `(γ) − 2p, `(γ) + 2p− 1),

0 otherwise.

From this and Theorem 2.1 we immediately have

c(n)
α1,...,αm

=
nm−1

22g
∏

i Aut(αi)

∑

p

[

xr−2p

(r − 2p)!

]

∑

`(λ)=n−1

e2λ−1(x)

Aut(λ)

m
∏

i=1

(`(αi) + 2pi − 1)! Spi
(αi),

where the outer sum extends over all tuples p = (p1, . . . , pm) of nonnegative integers. Now
[

xr−2p

(r − 2p)!

]

∑

`(λ)=n−1

e2λ−1(x)

Aut(λ)
=

n−1
∑

s=0

∑

λ`q
`(λ)=n−1−s

[

xr−2p

(r − 2p)!

]

e1(x)s

s!

e2λ+1(x)

Aut(λ)
,(4.3)

where q is chosen to make e1(x)se2λ+1(x) of total degree
∑

i(ri − 2pi). In particular, if λ ` q and `(λ) =
n − 1 − s, then e1(x)se2λ+1(x) is of degree |2λ + 1| + s = 2|λ| + `(λ) + s = 2q + n − 1, so we require

2q + n − 1 =
∑

i(ri − 2pi) = (2g + n − 1) − ∑

i 2pi,

or simply q + p1 + · · · + pm = g. Finally, applying the lemma to the RHS of (4.3) results in

n−1
∑

s=0

∑

λ`q
`(λ)=n−1−s

D

(

e2λ+1(x)

Aut(λ)

)∣

∣

∣

∣

x=r−2p

= Pn−1
q (r − 2p)

and this completes the proof. �
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